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Summary. Owing to their chemical reactivity, radicals have cytocidal

properties. Destruction of cells by irradiation-induced radical formation

is one of the most frequent interventions in cancer therapy. An alternative

to irradiation-induced radical formation is in principle drug-induced for-

mation of radicals, and the formation of toxic metabolites by enzyme

catalysed reactions. Although these developments are currently still in

their infancy, they nevertheless deserve consideration. There are now nu-

merous examples known of conventional anti-cancer drugs that may at

least in part exert cytotoxicity by induction of radical formation. Some

drugs, such as arsenic trioxide and 2-methoxy-estradiol, were shown to

induce programmed cell death due to radical formation. Enzyme-catalysed

radical formation has the advantage that cytotoxic products are produced

continuously over an extended period of time in the vicinity of tumour

cells. Up to now the enzymatic formation of toxic metabolites has nearly

exclusively been investigated using bovine serum amine oxidase (BSAO),

and spermine as substrate. The metabolites of this reaction, hydrogen

peroxide and aldehydes are cytotoxic. The combination of BSAO and

spermine is not only able to prevent tumour cell growth, but prevents also

tumour growth, particularly well if the enzyme has been conjugated with a

biocompatible gel. Since the tumour cells release substrates of BSAO, the

administration of spermine is not required. Combination with cytotoxic

drugs, and elevation of temperature improves the cytocidal effect of sper-

mine metabolites. The fact that multidrug resistant cells are more sensitive

to spermine metabolites than their wild type counterparts makes this new

approach especially attractive, since the development of multidrug resis-

tance is one of the major problems of conventional cancer therapy.
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Introduction

The term reactive oxygen species (ROS) encompasses the

non-radical species hydrogen peroxide (H2O2) and singlet

oxygen (1O2), the radicals superoxide anion (O2
��) and

the hydroxyl radical (HO�). Owing to their reactivity free

radicals are cytotoxic. Their formation by irradiation is

beside surgery the most frequent therapeutic intervention

for the elimination of cancer cells. After the presence of

ROS and related reactive species had been shown in bio-

logical material (Commoner et al., 1954), not surprisingly

their cytotoxic potential was in the foreground of interest,

and they were nearly exclusively considered to be the

cause of undesired cellular damage and aging (Harman,

1956), against which the organism had to be defended. In

agreement with this view, the focus of interest has been on

the identification and advancement of compounds which

are either radical scavengers or antioxidants. These were

expected to prevent detrimental effects, e.g. in pathologi-

cal situations, which are linked to excessive ROS for-

mation, or an imbalance of redox regulation. Oxidative

stress is indeed a frequent complication of various disease

conditions: for example, ROS are potential carcinogens,

because they facilitate mutagenesis and promote tumour

progression. ROS have also been implicated among others

in diabetes, atherosclerosis, rheumatoid arthritis, HIV and

several neurodegenerative diseases.



Stimulated by the discovery of cell signalling and

other functions by nitric oxide (NO�) (Lane and Gross,

1999; Wink et al., 1996), an intrinsic radical, the assess-

ment of free radical functions has profoundly changed. It

became obvious that ROS are involved in the physiolo-

gical regulation of a wide range of signalling pathways,

including apoptosis signalling (Dr€ooge, 2002). Short-lived

radicals are intracellular signals, owing to its relatively

long half life and its ability to cross membranes. In con-

trast, H2O2 mediated signal transduction may function

even between cells, and the membrane receptor may

function at the same time as sensor of extracellular sig-

nals and as sensor of signals for the intracellular meta-

bolic state.

Now, 50 years after the detection of free radicals in

biological material, another development appears to gain

shape: the rational use of ROS formation in therapy. This

is the topic of the present review. Emphasis will be on the

targeted formation of H2O2 by enzymatic oxidative dea-

minations as a promising approach in cancer therapy.

Sources and metabolism of reactive oxygen species

The mitochondria are the major, though not exclusive

source of endogenous ROS. The electron transport chain

leads to the formation of superoxide radical (O2
��), H2O2,

and the hydroxyl radical (HO�). The superoxide radical is

formed from molecular oxygen by reduction. This reac-

tion is catalysed by NAD(P)H oxidases and by xanthine

oxidase. Non-enzymatically it is formed by reduction of

O2 with suitable redox-reactive compounds, such as the

semi-ubiquinone=ubiquinone redox pair of the mitochon-

drial electron transport chain (Fig. 1).

In the mammalian organism H2O2 has a central position

within the ROS family. Its formation by several reactions

and its controlled inactivation is the basis of ‘‘redox

homeostasis’’ (Chance et al., 1979). In Fig. 2 the meta-

bolic interrelationships of H2O2 are shown. O2
�� forms

H2O2 by a reaction that is catalysed by the superoxide

dismutase (SOD), a mitochondrial Mn2þ-containing en-

zyme. In addition a variety of oxidases, which use mole-

cular oxygen as substrate form H2O2: enzymes with FAD

Fig. 1. Pathways of mitochondrial superoxide formation

Fig. 2. Metabolic reactions of hydrogen peroxide. CuAO copper-con-

taining amine oxidase, DAAO D-aminoacid oxidase, GSH glutathione,

GSSG glutathione (oxidised form), MAO monoamine oxidase, MyPO

myeloperoxidase, PAO polyamine oxidase, SOD superoxide dismutase
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as cofactor (e.g. monoamine oxidase (MAO), polyamine

oxidase (PAO), D-amino acid oxidase (DAAO)), copper-

containing amine oxidases (CuAOs) (e.g: diamine oxidase

(DAO), serum amine oxidases, lysyl oxidases, glucose

oxidase, xanthine oxidase and peroxidases). Enzymes of

the arachidonic acid pathway (cyclooxygenases, lipooxy-

genases) also contribute to ROS formation.

H2O2 is the source of the highly reactive hydroxyl

radical and of hypochlorous acid, a product of the lyso-

somal enzyme myeloperoxidase (Fig. 2). From hypochlor-

ous acid the superoxide anion and singlet oxygen may be

formed (for a detailed description of the sources of

ROS and the enzymes involved in their metabolism see

Beaudeux and Vasson, 2005).

H2O2 is mainly decomposed by two enzymes of the

cellular defence system: glutathione peroxidase and cata-

lase. Both enzymes catalyse the oxidation of glutathione

(GSH) to a dithiol (GSSG). In the absence of GSH or

other substrates catalase releases molecular oxygen from

H2O2 (Fig. 2). The GSH content constitutes the largest

component of the endogenous redox buffer system. Hence

GSH and some other thiols (cysteine, thioredoxine) are

the major elements of the redox control system. They

protect against excessive ROS and determine the sensitiv-

ity of cells to oxidative stress. In addition to enzymatic

transformations of the thiols, antioxidants that are present

at low concentration in cells, compete with other oxidisa-

ble substrates (proteins, lipids etc.) and prevent or de-

lay their oxidative damage. To these belong a-tocopherol

(vitamin E), b-carotene, and ascorbic acid (vitamin C).

But amino acids, particularly cysteine and the aromatic

amino acids may also contribute to the ROS scavenging

activity of mammalian cells. The natural polyamines

putrescine spermidine and spermine are also radical sca-

vengers and metal chelators (Lovaas, 1997).

Reactive oxygen species and cancer

Several reviews were recently published with the aim to

re-assess the role of free radicals in cancer, or to empha-

sise the function of free radicals in cellular signalling

cascades (Turpaev, 2002; Das, 2002; Black, 2004a; Storz,

2005).

As long as ROS were exclusively considered as harmful

products of cell metabolism, and not, as now compelling

evidence suggests, being physiological components of

numerous signalling cascades (Dr€ooge, 2002), interrela-

tionships between ROS and malignant growth appeared

plausible, and it was not too surprising that several obser-

vations suggested mutagenic effects of ROS (Dreher and

Junod, 1996; Hussain et al., 1994; Nakamura et al., 1988;

Salim, 1993). However, a large body of evidence sup-

ported at the same time a pivotal role of excessive ROS

production in senescence (Dr€ooge, 2002). Therefore it is

unlikely that the increase in cell proliferation rate of nor-

mal cells due to elevated ROS pools (Burden, 1995) is

sufficient to induce malignant transformation. All ROS-

related approaches to carcinogenesis suffer from this con-

tradiction. It prevented the formulation of an unambigu-

ous concept that explains both senescence and malignant

transformation on the basis of enhanced ROS formation.

As is well established, carcinogenesis is a multistep

process that requires the participation of several endogen-

ous and exogenous factors. The chemical modification by

radical-induced reactions of the pyrimidine and purine

bases, and particularly the damage of the deoxyribosyl

backbone of DNA by ROS is critical. Critical are also

excessive transformations of other essential cell com-

ponents (peroxidation of lipids, oxidative damage of pro-

teins, including enzyme proteins). As pointed out by

Valko et al. (2004), DNA lesions are genotoxic. The for-

mation of 8-HO-G is known to be easily achieved and is

mutagenic; it involves GC – TA transversions. In addition

ROS production induces, mainly via MAP protein kinases

and several transcription factors (AP-1, ATF, NF-kB etc.),

the expression of a number of genes, such as H-Rasv12 and

mox 1, which maintain the malignant phenotype (Irani

et al., 1997; Su et al., 1994; Storz, 2005). In contrast, nor-

mal cells show an increased proliferation rate, and the

expression of growth-related genes (c-fos, c-myc, etc.), if

exposed to H2O2 or O2
�� (Burden, 1995; Crawford et al.,

1988). Furthermore the cellular defence systems against

ROS damage are up-regulated, implying the up-regulation

of gene products that can alter cell biology, and include

anti-apoptotic factors, such as anti-apoptotic members of

the Bcl-2 family, and inflammatory proteins (Greenberger

et al., 2001).

A variety of tumour cells, among these multidrug resis-

tant cells (P-glycoprotein expressing phenotype) produce

very high amounts of ROS (see e.g. Szatrowsky and

Nathan, 1991; Li et al., 1990; Soares et al., 1994; Arancia

et al., 2004), and in vivo many tumours appear resistant to

oxidative stress and apoptosis. Vaquero et al. (2004) sug-

gested even a pro-survival, anti-apoptotic function of ROS

in pancreatic cancer cells, which they relate to the therapy

resistance of this cancer. According to Pelicano et al.

(2004) the escalated ROS generation in cancer cells serves

as an endogenous source of DNA-damaging agents, which

promote genetic instability and development of drug resis-

tance. The intrinsic oxidative stress of cancer cells appears
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associated with the up-regulation of SOD and catalase ex-

pression (Hileman et al., 2004). On the basis of an in-

creased ROS production in cancer cells therapeutic strat-

egies have been suggested, which rely on the assumption

that cancer cells, mainly multidrug resistant cells, are

more sensitive to additional exposure to radicals than

normal cells (Calcabrini et al., 2002; Pelicano et al.,

2004; Hileman et al., 2004). In agreement with this sug-

gestion is the fact that numerous established anticancer

drugs generate ROS (or other radicals) as is briefly dis-

cussed in the following section. As suggested by Arancia

et al. (2004), it is likely that the apoptotic effect of these

drugs is due to the additional push of radical formation,

which accompanies the apoptotic cascade.

Drugs inducing ROS formation

a) Conventional anticancer drugs trigger

ROS formation

Apoptosis induction via death receptors (e.g. APO-1 Fas

(CD95)) frequently triggers ROS formation (see e.g.

Johnson et al., 1996; Um et al., 1996), although this seems

not a general prerequisite of programmed cell death, since

APO-1=Fas ligand activation is not always accompanied

by ROS production (Hug et al., 1994). But in general high

ROS concentrations induce apoptosis in a variety of cell

types (Slater et al., 1995). Therefore, perhaps not surpris-

ingly, more and more established anticancer drugs have

been found to induce an enhanced formation of ROS. The

therapeutic efficacy of these drugs (but also their side

effects) may at least in part depend on ROS production.

The increase of ROS levels following polychemotherapy

was demonstrated by the determination of thiobarbituric

acid – reactive substances in the plasma of patients (Look,

Musch, 1994). In Table 1 examples of ROS formation-

triggering drugs are compiled. This list is certainly incom-

plete. The recent systematic exploration of the apoptotic

signalling pathways for targets suitable for anti-cancer ther-

apy (Fulda and Debatin, 2004; Cummings et al., 2004) will

reveal many more examples. A detailed discussion of these

drugs is beyond the frame of this review; however, two

examples should be briefly introduced, because in these

cases ROS formation is intentionally employed as a ther-

apeutic principle.

b) Estrogens

Mitochondrial SOD is considered to have a key role in

the defence of aerobic cells against oxidative stress. Its

inhibition causes the accumulation of O2
��, but prevents

H2O2 formation as is obvious from Fig. 2. From the accu-

mulation of O2
�� an increase of the oxidative damage and

a new strategy of anticancer treatment was expected (see

e.g. Hileman et al., 2001; Pani et al., 2004). The issue is,

however, more complicated than was presumed: over-

expression of SOD paradoxically inhibited growth of a

wide variety of tumour cells (Oberley, 2005). Furthermore,

mimics of SOD, such as tetrakis(4-benzoic acid) porphy-

rin and related metalloporphyrins increased H2O2 levels,

inhibited the proliferation of normal cells, and killed tu-

mour cells (Ohse et al., 2001), particularly well in com-

Table 1. ROS formation triggering anti-cancer drugs

Drug Reference

Actinomycin D Ikeda et al. (1999)

Anthracyclines Efferth and Oesch (2004)

Adriamycin Bounias et al. (1997)

Doxorubicin Benchekroun et al. (1993)

Farmorubicin Bounias et al. (1997)

4-Epiadriblastin Look and Musch (1994)

Arsenic trioxide Gupta et al. (2003)

Artemisinins Efferth and Oesch (2004)

Bleomycin Dorr (1992); Guedez and

Zucali (1996); Khadir et al.

(1999); Seidel et al. (2003);

Hong et al. (2003); Lee

et al. (2004a)

Capsaicin Ito et al. (2004)

Cisplatin Olas and Wachowicz (1998)

Cyclophosphamide Kanekal and Kehrer (1994)

Hydroperoxide derivative

of cyclophosphamide

Murata et al. (2004)

Cytokines

Tumour necrosis factor-a (TNF-a) Thomas et al. (2002)

Cytosine arabinoside Kanno et al. (2004);

Iacobini et al. (2001)

Endotoxins

E. coli Lipopolysaccharide Victor and De la Fuente (2003)

Etoposide Gantchev and Hunting (1997)

Fatty acids (polyunsaturated)

g-Linoleic acid (Li salt) Ilc et al. (1999)

Docosahexaenoic acid Sturlan et al. (2003)

Hydrazine type anticancer drugs

Procarbazine� Goria-Gatti et al. (1992);

Ogawa et al. (2003)

2-Methoxyestradiol Huang (2000)

Quinone type anticancer

drugs��
Handa and Sato (1975);

Halinska et al. (1998)

Mitomycin C Bounias et al. (1997);

Lee et al. (2004b)

Sodium selenite Li et al. (2003)

Vincristin Look and Musch (1994)

� Forms methyl radicals
�� Form semiquinone radicals
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bination with cytotoxic compounds (Laurent et al., 2005).

The conclusion from these and related observations was

that H2O2, a product of SOD, is presumably the major

effector molecule, from which more reactive radicals are

formed than from O2
��. This idea is supported by the fact

that catalase and glutathione peroxidase modulate the

effect of SOD over-expression. Nevertheless, 2-methoxy-

estradiol entered clinical testing as a presumptive inhi-

bitor of SOD, even though it turned out that it does not

inhibit SOD (Kachadourian et al., 2001). 2-Methoxyestra-

diol enhances the formation of ROS and induces apoptosis

in leukaemia cells by a free radical-mediated mechanism

(Huang et al., 2000). Amplification of O2
�� formation by

the xanthine oxidase reaction, or by other radical forming

interventions increases cell death, and anti-tumour effi-

cacy of 2-methoxyestradiol (Lambert et al., 2002). Leu-

kaemia cells with a high basal O2
�� content are more

sensitive to 2-methoxyestradiol than cells with a low basal

O2
�� content. Arsenic trioxide, an inducer of ROS forma-

tion (see below) significantly improves the cytotoxicity of

2-methoxyestradiol (Zhou et al., 2003).

Indirect evidence for a receptor-mediated formation of

ROS by estrogens is available for estrogen receptor-a
positive (MCF-7) breast cancer cells. Upon exposure to

17-b-estradiol these cells showed a marked sensitivity to

oxidative damage of DNA, and the decrease of their abil-

ity to detoxify ROS was found to be due to a loss of

catalase activity and GSH. These changes were paralleled

by the increase of the antioxidant activity-related enzymes

SOD and glutathione peroxidase. The estrogen effects

were antagonised by tamoxifen, the well known estradiol

receptor-antagonist. In contrast, MDA-MB-231 cells,

which lack the estradiol receptor, did not show any of

these effects, suggesting that the sensitivity of breast

cancer cells to oxidative damage is receptor mediated

(Mobley and Brueggemeier, 2004).

c) Arsenic trioxide

Arsenic trioxide (As2O3) the notorious poison of classic

crimes found in recent years a revival as a safe and effi-

cacious treatment of promyelocytic leukaemia. It reacts

with water reversibly to form HAsO2 and H3AsO3. ROS

formation is an essential mechanism of As2O3-induced

apoptosis (Gupta et al., 2003). Exposure to As2O3 is

accompanied by the characteristic biochemical and mor-

phological changes of programmed cell death (activation

of caspase-3, release of cytochrome c, down-regulation of

Bcl-2 and Bcl-XL, cell shrinkage, oligonucleosomal DNA

fragmentation etc.) (Akao et al., 2000; Ora et al., 2000;

Gupta et al., 2003). In agreement with ROS-induced cell

death is the resistance to As2O3 of cells with a high GSH

content. Resistance develops at least in part due to the up-

regulation of the GSH pool (Davison et al., 2004). GSH

depletion by inhibition of its synthesis (e.g. by buthionine

sulfoximine) overcomes resistance (Davison et al., 2003).

The activation of c-jun terminal kinase (JNK) appears

essential for signalling of As2O3-induced apoptosis, since

the sensitivity of cells to As2O3 decreased by exposure of

acute promyelocytic leukaemia cells to dicumarol, an

inhibitor of JNK (Davison et al., 2004).

Methyl-derivatives of As2O3 are even more active

apoptotic inducers than As2O3. Hepatic (HepG2) cells

are able to methylate As2O3, and release the methyl-deri-

vatives, which are preferentially taken up by NB4 cells, a

promyelocytic leukaemia cell line (Chen et al., 2003). It is

not excluded that in vivo the hepatic methylation contri-

butes to the anti-leukaemia effect of As2O3.

In view of the success of As2O3 in the treatment of

promyelocytic leukaemia, several attempts were made to

extend its application to a wider range of malignant cells

with a higher resistance to this drug, by combining it with

compounds that are capable of inducing ROS formation.

Examples are docosahexaenoic acid (Sturlan et al., 2003),

emodin (a natural anthraquinone derivative) (Yi et al.,

2004), and trolox (6-hydroxy-2,5,7,8-tetramethylchroman-

2-carboxylic acid), a widely used antioxidant (Diaz et al.,

2004). These compounds appear to synergise the anti-

tumour effect of As2O3 by generating ROS, but protecting

non-malignant cells from As2O3-mediated oxidative

damage.

d) The two faces of antioxidants

Antioxidants have been proven to antagonise oxidative

stress by competing with other substrates of ROS. An

instructive example for the functioning of antioxidants

is the following: b-Lapachone, a topoisomerase I inhibitor

and potent anticancer drug induces apoptosis in cell lines

with low GSH content (e.g. HL-60 human promyelocytic

leukaemia cells), but much less effectively in cells with a

high GSH content. Induction of apoptosis is accompa-

nied by an elevation of H2O2 formation. The antioxidants

N-acetylcysteine, ascorbic acid, a-tocopherol, but not

2-mercaptoethanol, inhibit b-lapachone-induced apoptosis

according to expectations. Camptothecin, another topoi-

somerase I inhibitor, also induces apoptosis, but HL-60

cells neither enhance H2O2 production, nor is camptothecin-

induced apoptosis prevented by N-acetylcysteine (Chau

et al., 1998). Obviously the anti-apoptotic effect of anti-
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oxidants depends on H2O2-formation by the apoptogenic

mechanism.

Hints to paradoxical effects of antioxidants came first

from the observation that N-acetylcysteine induces apo-

ptosis in vascular smooth muscle cells (Tsai et al., 1996),

and has anti-tumour effects (Delneste et al., 1997). In

recent years more evidence has accumulated for the idea

that classical antioxidants stimulate radical formation, and

have apoptotic properties. For example b-carotene, an

accepted photoprotectant has even pro-carcinogenic activ-

ity (Black, 2004b).

In Jurkat cells (human T-cell leukaemia) incubation with

0.1–1 mM dehydroascorbic acid (that is rapidly taken up

by cells and reduced to ascorbic acid) stimulated apoptosis

of the cells that were exposed to H2O2. In contrast, pre-

incubation with dehydroascorbic acid prevented apoptosis

induction by camptothecin (Sane et al., 2004). Evidently

ascorbic acid activates H2O2-induced apoptosis. However,

although the prevention of camptothecin-induced apoptosis

by ascorbic acid is not in agreement with the above-men-

tioned failure of N-acetylcysteine to antagonise camptothe-

cin in a similar condition, it is nevertheless a hint to the

complexity of antioxidant function.

The following observations illustrate the necessity to

carefully explore antioxidants, before they may be con-

sidered for therapeutic use. Ascorbic acid at 0.25–1 mM

causes a dose-dependent inhibition of leukaemia cell

growth, and the oxidation of GSH, while ovarian cells were

only minimally affected by the same treatment. The role of

H2O2 production in apoptosis induction by ascorbic acid

was further supported by the abrogation of programmed

cell death in the presence of excessive catalase, and by the

usual events associated with apoptosis induction (increase

of Bax protein, release of cytochrome c, activation of cas-

pase 9 and caspase 3, etc.) (Park et al., 2004).

Curcumin is an established antioxidant with anticancer

properties. At low concentrations it diminishes ROS con-

centrations according to expectations: this effect is sup-

ported by water soluble antioxidants (ascorbic acid, N-

acetylcysteine and GSH), but its anticancer properties rely

on the promotion of ROS formation (Chen et al., 2005).

Presumably a similar relationship exists for (�)-epigallo-

catechin gallate, another well known natural antioxi-

dant. Nakagawa et al. (2004) reported that in Jurkat cells

the Fe2þ-mediated formation of hydroxyl radicals (HO�)
(Fig. 2) contributes importantly to cell death induced by

this antioxidant.

A further complication of the mechanisms involved in

the anticancer actions of antioxidants became recently

apparent. Quercetin is known to inhibit cell proliferation.

It had been claimed to have both anti-oxidant and pro-

oxidant properties. Along with its anti-oxidant properties

it prevents the apoptotic effect of H2O2 in HL-60 cells

(Chen et al., 2004a). Its anti-proliferative effect is improved

by ascorbic acid (1 mM), N-acetylcysteine (0.5 mM) or

GSH (0.25 mM): the diminution of the cell proliferation

rate was paralleled by a diminution of ROS formation

(Chen et al., 2004b).

Recently the concept of a-tocopherol functioning as

lipid-based radical chain breaking molecule has changed.

A number of non-antioxidant functions are now attributed

to vitamin E, such as stabilisation of mRNA and proteins,

regulation of gene transcription and protein translation.

These functions imply that vitamin E is protected by a

network of cellular antioxidants, rather than being oxi-

dised by ROS as other antioxidants are, which are present

in tissues at high concentration (Azzi et al., 2003).

These few examples demonstrate that the antioxidants

are two-faced, as Ianus, the Roman god: they may achieve

protection from oxidative stress, inhibit cell proliferation,

or enhance cell kill, depending on their concentration, the

cell type (which implies the capacity to neutralise ROS)

and the apoptogenic event.

Extracellular hydrogen peroxide formation

Since H2O2 is able to permeate the cell membrane, extra-

cellular H2O2 induces signalling cascades even in the

absence of a receptor ligand (DeYulia et al., 2005). Simi-

larly extracellular H2O2 can exert toxic actions not only

on the cell membrane, but also on intracellular structures.

Owing to the absence of catalase in the cellular environ-

ment the half life of H2O2 outside cells is relatively long

and signalling as well as toxic actions are favoured. A

H2O2 generating reaction in the tumour environment

was, therefore, considered to be a potential therapeutic

target (Agostinelli et al., 1994a). In principle any H2O2

generating reaction could be taken into consideration for

this purpose. Several examples of this idea have been

published. To mention only a few:

H2O2 formed from by autoxidation of 6-hydroxydopa-

mine caused cytolysis of neuroblastoma cells (Zaizen et al.,

1986). The interaction of 1,3-propanediamine, putrescine

and cadaverine with hog kidney diamine oxidase (DAO)

arrested cell growth (Gaugas and Dewey, 1981), and

immobilised DAO injected into the peritoneal cavity of

mice inhibited the growth of Ehrlich ascites tumour cells

(Mondovi et al., 1982). Microinjection into chick embryo

fibroblasts and glioma cells demonstrated intracellular

cytotoxicity of amine oxidases (Bachrach et al., 1987).
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The fact that inhibitors of monoamine oxidase A (MAO

A) protect against serum starvation-induced apoptosis

(Malorni et al., 1998) indicates a role of MAOA in this

model of programmed cell death.

a) Cytotoxicity of polyamine oxidation products

The so-called polyamines are a group of aliphatic bio-

genic amines. They attract interest because of their multi-

ple vital functions in cell biology (Cohen, 1998), includ-

ing among many others cell cycle regulation, gene ex-

pression and signal transduction (Bachrach et al., 2001;

Childs et al., 2003).

The natural polyamines are formed from the decarbox-

ylation products of ornithine and S-adenosyl-methionine

in nearly all eukaryotic cells (for their structures see

Fig. 4). Cellular polyamine concentrations are highly reg-

ulated. However in situations of over-accumulation or

depletion of intracellular polyamine pools cell death may

be induced (Schipper et al., 2001; Pignatti et al., 2004;

Seiler and Raul, 2005).

Direct toxic effects are exerted only by high polyamine

concentrations. Spermine, for example, is cytotoxic in the

mM range. The cytotoxicity of spermidine and putrescine

is even lower (Brunton et al., 1991; Seiler et al., 2000).

Because they bind tightly to anionic sites of various cell

constituents, the concentration of free polyamines is by

far too low to be toxic, even though spermine and sper-

midine are present in some tissues at mM concentrations.

For the same reason endogenous polyamines, in contrast

with exogenous polyamines, do not exert unfavourable

pharmacological effects (Seiler, 1991, 2005). Hence direct

cytotoxic actions of the natural polyamines play no phys-

iological role. However, several examples of cell death

induction due to over-expression of ornithine decarboxy-

lase are known: only in one case was cell death prevented

in the presence of aminoguanidine (Erez et al., 2002),

indicating that oxidative degradation of putrescine or

spermidine was involved in the cytotoxic mechanism

(aminoguanidine is a potent inhibitor of CuAOs (Nilsson,

1999).

The natural polyamines are substrates of several FAD-

dependent enzymes (monoamine oxidase (MAO), PAO,

spermine oxidase) and of CuAOs (diamine oxidase, se-

rum amine oxidases). PAO is involved in the homeo-

static regulation of polyamine pools. The other oxidases

are important for the terminal catabolism of polyamines,

i.e. they catalyse the formation of metabolites (ammonia,

amino acids) that can be excreted via the kidneys (Seiler,

1992).

Products of polyamine oxidation, H2O2 and aldehydes

(Fig. 4), are toxic to cells. In serum-containing cell cul-

tures cytotoxicity of polyamines correlates with their

property as substrates of serum amine oxidases (Morgan,

1988).

The products of polyamine oxidation have repeatedly

been implicated in cytotoxicity (see e.g. Gaugas and

Dewey, 1981; Agostinelli et al., 1994a; Calcabrini et al.,

2002; Ha et al., 1997; Chen et al., 2001), inhibition of cell

division (Bachrach et al., 1987; Henle et al., 1986) and

apoptosis (Parchment, 1996). More recently it has convin-

cingly been demonstrated that BSAO-catalysed spermine

oxidation causes necrotic cell death of L1210 mouse leu-

kaemia cells (Bonneau and Poulain, 2000): in fact death

mechanisms induced by the products of polyamine oxida-

tion are dependent of the cell type and of details of the

experimental condition. Both non-apoptotic (necrotic) and

apoptotic cell death due to exposure to spermine metabo-

lites was observed in cultured cells and in vivo in a mel-

anoma (Averill-Bates et al., 2005).

Both, aldehydes and H2O2 contribute to the cytocidal

effect of polyamine metabolites. During short incubation

times with BSAO and spermine H2O2 appears to be the

major toxin, while the effect of the aldehydes is mainly

observed after prolonged incubation. This is supported by

the evaluation of the dose–response curves of exogenous

H2O2 and acrolein, and by the following observation: if

catalase or NAD-dependent aldehyde dehydrogenase (EC

1.2.1.5) were added individually to the culture medium in

amounts sufficient to prevent accumulation to toxic levels

of H2O2, respectively of aldehydes, cytotoxicity of H2O2

and of aldehydes, that were generated by spermine oxida-

tion, was only partially diminished (Averill-Bates et al.,

1993, 1994; Calcabrini et al., 2002). Cytotoxicity of

spermine metabolites was, however, completely prevented

in the presence of both, catalase and aldehyde dehydro-

genase (Arancia et al., 2004).

The particular cytotoxic properties of acrolein (see Fig. 4)

were emphasised in a more recent publication (Sharmin

et al., 2001), and acrolein from spermidine and spermine

was made responsible for the activation of genes of phase

2 enzymes, and of other genes that promote cell survival

(Kwak et al., 2003). Polyamine-derived acrolein may be

one of the uraemic toxins (Sakata et al., 2003). It has been

shown that acrolein, which is also a metabolite of lipid

peroxidation, is rapidly incorporated into proteins, gener-

ating protein-linked carbonyl derivatives. Their deter-

mination may be used as a measure of oxidative stress

(Uchida et al., 1998). Polyamine-derived aldehydes other

than acrolein may also modify protein structure, even
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though they lack double bonds to undergo Michael addi-

tion (e.g. with thiols). In this regard it is interesting to

notice that apoptosis is induced by some endogenous

aldehydes, and that their accumulation may be related to

age-related diseases (Davydov et al., 2004).

The protective role of the GSH=GSSG redox pair in the

defence against excessive ROS has been discussed already

(see first paragraph). As a rule, cells with a high GSH

content are less sensitive to damage by spermine and

spermidine metabolites, than cells with a low GSH con-

tent. It appears that GSH is not only important in the

defence against BSAO-generated H2O2, but also against

the aldehydes formed from spermine, as was shown for

Chinese hamster ovary (CHO) cells, that were exposed to

BSAO and spermine in the presence of excessive catalase

(Agostinelli et al., 1996). While protective mechanisms

by GSH have extensively been studied, protection against

aldehydes is not as well understood. It has been postu-

lated, that aldehydes form conjugates with GSH by a

glutathione S-transferase-catalysed reaction (Agostinelli

et al., 1996).

As was shown by Henle (1986) DNA damage in CHO

cells parallels the concentration of spermidine in foetal

bovine serum-containing culture medium. Under similar

conditions (purified BSAO and spermine in the cell sus-

pension medium) the pentose phosphate cycle (which pro-

vides deoxyribose for DNA synthesis) is activated, pre-

sumably as a compensatory protective reaction. By re-

moving or adding glucose to the cell suspension medium

in the presence of purified BSAO and spermine, a protec-

tive effect of glucose against H2O2-induced damage could

be demonstrated (Averill-Bates and Przybytkowski, 1994;

Agostinelli et al., 1996).

b) Bovine serum amine oxidase (BSAO)

The superfamily of amine oxidases (amine oxidoreduc-

tases) represent an important class of enzymes present in

numerous living systems. Based on their cofactor, they are

divided in two classes: FAD-containing, and Cu2þ and

2,3,5-trihydroxyphenylalanine quinone (TPQ) containing

enzymes (Mondovi et al., 1989; James and Klinman, 1991).

Most of the work on ROS formation was performed

using bovine serum amine oxidase (BSAO) (EC 1.4.3.6),

the first enzyme found to metabolise preferentially sper-

midine and spermine (Hirsch, 1953). But other substrates

of this enzyme (e.g. benzylamine, heptylamine and sev-

eral other primary amines) are also known. The activities

of CuAOs with specificity for spermidine and spermine

are low in humans and most mammals. Except in rumi-

Fig. 3. Mode of action of the organic cofactor 2,3,5-triphenylalanine quinone (TPQ) of BSAO (according to Janes and Klinman, 1991). In the first

step the amine forms a quinoneimine (B) with the oxidised form of the enzyme (A). Abstraction of a proton, and rearrangement of the double bonds

analogous to that in transamination reactions forms the Schiff base (C), from which the aldehyde is released by hydrolysis. The oxidised form of the

enzyme (A) is regenerated in the last step by reaction of 2 amino-3,5-dihydroxyphenylalanine (D) with O2, and H2O2 and ammonia are released
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nants they seem not to play a major role. The physiolo-

gical function of BSAO is presumably the removal of

excessive spermidine from the blood, spermidine that

was liberated from bacteria. The oxidation products of

spermidine are bactericide (Cohen, 1998).

BSAO is the prototype of mammalian CuAOs (for

reviews see e.g. Houen, 1999; Agostinelli et al., 2004).

All serum amine oxidases are dimers and have similar

molecular organisations with 33 fully conserved residues

close to the catalytic site. The peptide chains of the

enzymes from different sources are sialylated to different

degrees. Recently the crystal structure of desialylated

BSAO has been reported at 2.37 Å resolution (Lunelli

et al., 2005). Each of the identical subunit (Mr 85 kDa)

contains in the active site one tightly bound Cu2þ coordi-

nated to three His residues, and TPQ, which is part of the

consensus sequence (Asn-TPQ-Asp (or Glu)) of the pep-

tide chain (Mu et al., 1992).

The catalytic mechanism involves the formation of a

Schiff base between the amine substrate and the oxidised

TPQ that is followed by an intramolecular rearrangement

of the double bonds. An aldehyde is released by a hydro-

lytic step. The cofactor in the reduced state, has at this

stage an amino nitrogen covalently bound. Re-oxidation

of TPQ by O2 releases ammonia and H2O2 (Janes and

Klinman, 1991) (Fig. 3). Cu2þ appears to play an impor-

tant role in both the formation of the reduced enzyme

species and its re-oxidation (Olson et al., 1978), and it

appears to control the transfer of the substrate from a

hydrophobic binding site near the protein surface to the

deeply buried active site (Agostinelli et al., 1997; Parsons

et al., 1995; Kumar et al., 1996). Cu2þ has also a struc-

tural function (Agostinelli et al., 1994b).

In the case of spermidine and spermine as substrates the

primary amino group of the aminopropyl moiety is pre-

ferentially removed, to form the respective mono- and di-

aldehydes (Tabor et al., 1964; Lee and Sayre, 1998)

(Fig. 4), but reaction of the secondary amino groups of

spermine with purified BSAO has also been reported

(not shown) (Houen, 1999). The aldehydes have been

identified and studied for their biological properties (see

e.g. Tabor et al., 1964). The formation of acrolein from

these aldehydes by spontaneous b-elimination, was first

postulated by Alarcon (1970), but has long been debated.

Fig. 4. Reaction scheme of the oxidative deamination of

spermidine and spermine by bovine serum amine oxidase
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It was particularly questioned by Israel et al. (1973),

based on experiments with synthetic aldehydes. Recent

work is in favour of the formation of acrolein as a product

of BSAO-catalysed oxidation of spermidine and spermine

in cell cultures, as has already been mentioned.

In the presence of suitable enzymes the aldehydes may

be oxidised to the corresponding amino acids, or reduced

to alcohols (not shown in Fig. 4; for details of polya-

mine catabolism see Seiler, 1992, 2004).

c) Death mechanisms induced by polyamine metabolites

Owing to the fact that mitochondria are not only the major

source of ROS, but also the powerhouse of the cells, strat-

egies were envisaged for the inhibition of mitochondrial

respiration, with the aim to enhance drug-induced apopto-

sis by ROS (Pelicano et al., 2003). Metabolites of spermine

oxidation have, as will be shown in the following, mito-

chondria toxic effects that may fit into the above strategy.

H2O2 is known to be able to cross the inner membrane

of mitochondria and induces oxidative stress (Mathai and

Sitaraman, 1994). As has been briefly discussed in the first

paragraph, H2O2 is detoxified either by reaction with cat-

alase, to form H2O and O2, or it is reduced by GSH or

thioredoxine (Fig. 2). For the reduction of GSSG and

oxidised thioreduxine NAD(P)H is required. The product

of this reaction, NADPþ, is reduced by NADH (which

is regulated by the respiratory chain and Bcl-2). This

transhydrogenase-catalysed reaction leads to the mito-

chondrial uptake of Hþ, and the membrane potential is

affected. In the presence of high H2O2 concentrations HO�
is formed by Fe2þ catalysis (Fenton reaction) (Fig. 2). HO�
oxidises, among others, critical thiol groups of adenine

translocase, which belongs to the mitochondrial perme-

ability transition pore complex, and leads to pore opening.

HO� also stimulates membrane permeabilisation due to

lipid peroxidation (Korshunov et al., 1997). Thus the

redox state of mitochondria is impaired by ROS, initiat-

ing further mitochondrial damage.

Transmission electron microscopic examination of LoVo

cells (which derive from a human colon adenocarcinoma)

exhibited after exposure for 60 min to BSAO and spermine

a generally well-preserved ultrastructure. Particularly the

chromatin structure was not visibly affected. However, in

agreement with the above discussed effects of H2O2 the

mitochondria showed a condensed matrix, an altered cris-

tae structure, and a slight swelling (Arancia et al., 2004).

Staining with 5,50,6,60-tetrachloro-1,10,3,30-tetraethyl-

benzimidazol-carbocyanine iodide (CJ-1) (Cossarizza et al.,

1993) demonstrated a marked depolarisation of the mito-

chondrial membrane already 10 min after incubation with

BSAO and spermine. Similar changes were observed after

incubation with H2O2. These observations suggest the

mitochondria as primary target of H2O2 that is generated

in the cellular environment. The role of aldehyde toxicity in

mitochondrial damage has not been adequately clarified,

although some authors emphasized a prominent role of

aldehydes in the induction of oxidative stress in the pre-

sence of phosphate (Kowaltowski et al., 1996).

The enhancement of intracellular ROS and a decrease

of the GSH content of cells due to exposure to BSAO and

spermine was also observed. All the above mentioned

changes were more pronounced in drug resistant LoVo

cells than in the corresponding wild type cells, in agree-

ment with the greater sensitivity of the former to damage

by polyamine metabolites (Arancia et al., 2004). One

among several possible interpretations of these findings

is that differences in structural and=or functional proper-

ties exist between the mitochondria of multidrug resistant

cells and the corresponding wild type cells. Along this

line of thinking it was hypothesised (Jia et al., 1996) that

multidrug resistant cells have an increased activity of

the mitochondrial electron transport chain, because they

highly express ATP-dependent P-glycoprotein (Jia et al.,

1999). A part of the mitochondrial ROS derives from

the electron transport chain. The cellular defence system

can normally cope with physiological ROS production

(Kowaltowski and Vercesi, 1999), but not with a high rate

of ROS formation. Since treatment with BSAO and sper-

mine causes a higher increase of the ROS level in multi-

drug resistant LoVo cells than in the corresponding wild

type cells, a higher grade of mitochondrial damage is the

consequence.

Perspectives of clinical applications

Catalytically liberated cytotoxic agents have the advan-

tage that only a small amount of the enzyme is required

for toxin formation, and that the cytotoxic reaction pro-

ducts are continuously formed over an extended period of

time. In the case of BSAO the substrates, spermidine and

spermine, are generated by the tumour cells themselves,

and they are released into the cellular environment, if cells

are damaged. Thus, if BSAO is placed in the immediate

vicinity of tumour cells, the toxic products, H2O2, and

aldehydes will be continuously produced, and more and

more substrate will become available to the enzyme due

to cell kill. In other words, a positive feedback mechanism

enhances the efficacy of BSAO catalysed cell damage

(Fig. 5). Since the products of spermine oxidation are
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chemically reactive, and H2O2 has in addition a limited

life span, the cytotoxic metabolites remain located in a

small area near the site of their formation. An advantage of

this approach is also the possibility to stop the formation

of cytotoxic metabolites by administration of non-toxic

doses of aminoguanidine.

Although only a few micrograms of enzyme protein are

required for inhibition of tumour growth, attempts were

made to incorporate the enzyme into liposomal vesicles

(Agostinelli et al., 1988), and to prepare complexes with

gold that are bound and incorporated by hepatocytes (Dini

et al., 1991). Furthermore BSAO was incorporated into bio-

compatible, non-immunogenic polyethylene glycol hydro-

gels (Demers et al., 2001). The immobilised enzyme exhib-

ited considerable advantages over the free enzyme: thus,

for example, the growth of a mouse melanoma (B16-F0)

was reduced by 70 percent after a single injection of the

immobilised enzyme, in comparison with 32 percent inhi-

bition after injection of the same amount of native enzyme.

While the immobilised enzyme induced a high level (70

percent) of apoptosis, non-apoptotic cell death prevailed in

the case of native enzyme (Averill-Bates et al., 2005). The

difference was attributed to the slow, gradual release of

spermine oxidation products from the hydrogel, i.e. the

long-term exposure of the tumour to ROS and aldehydes,

as compared with the shorter, though more rapid release

of toxic metabolites by the native enzyme.

Based on the above-discussed release of the substrates of

ROS formation from tumour cells, adjunct treatments suit-

able to enhance cell death, or impair tumour cell growth

by mechanisms which synergise the effect of ROS are of

obvious advantage. Combinations with conventional and

new anti-tumour drugs are currently investigated.

Since hyperthermia is a clinically established therapeu-

tic method, strategies should be developed that combine

hyperthermia with extracellular ROS formation. In sup-

port of this idea is the fact that a marked enhancement of

cytotoxicity was observed by elevating the temperature

of tumour cell cultures from 37 to 42 �C. Under these

conditions the spermine-derived aldehydes were mainly

responsible for the increased rate of cell death (Agostinelli

et al., 1994a). An additional advantage derives from the

fact that an increase of the incubation temperature, in

the presence of BSAO and spermine, increases the pro-

portion of P-glycoprotein over-expressing multidrug resis-

tant CHO cells (Lord-Fontaine et al., 2001). Since, as has

already been discussed, multidrug resistant cells are more

sensitive to toxic polyamine metabolites than the wild

type cells (Arancia et al., 2004), hyperthermia supports

apoptosis by several mechanisms.

A potential disadvantage of polyamine oxidation is the

impairment of inerleukin-2 production by human periph-

eral blood mononuclear cells, the consequent inhibition of

T-cell proliferation, and the impairment of the immune

defence system (Flescher et al., 1989). To what extent this

sequence is valid under therapeutic conditions has not yet

been investigated.

Conclusions

In contrast with therapeutic methods implying irradiation-

derived radicals, drug-induced radical formation is simple

and cost effective, because these methods are not dependent

of sophisticated, expensive devices. However, therapeutic

applications of radical generating systems are, with few

exceptions, still in their infancy. They may gain importance,

if major problems have been solved. Among these the

targeting of tumours by anticancer drugs is one of the

most difficult problems. For the time being, tumours which

are surgically accessible should be the main targets for

enzyme-catalysed radical formation. A major advantage of

this method is the continuous formation of cytotoxic pro-

ducts over an extended period of time within the tumour, or

in its vicinity. ROS formation may become particularly use-

ful in assisting to overcome a major problem of convention-

al anticancer therapy, namely the development of drug re-

sistance, because it has been demonstrated that multidrug

resistant cells are more sensitive to the treatment with BSAO

and spermine than their wild type counterparts.

Fig. 5. Scheme illustrating the positive feedback effect of cell damage

by bovine serum amine oxidase (BSAO) that was located within or near a

tumour. The substrates of this enzyme, spermidine and spermine, are

released from tumour cells spontaneously and from damaged cells, and

are transformed into cytotoxic products in the vicinity of tumour cells, so

that they induce cell death
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