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Summary. An early response to an acute inflammatory insult, such as

wound healing or experimental glomerulonephritis, is the conversion of

arginine to the cytostatic molecule nitric oxide (NO). This ‘anti-bacterial’

phase is followed by the conversion of arginine to ornithine, which is the

precursor for the pro-proliferative polyamines as well as proline for the

production of extracellular matrix. This latter, pro-growth phase consti-

tutes a ‘repair’ phase response. The temporal switch of arginine as a

substrate for the cytostatic iNOS=NO axis to the pro-growth arginase=

ornithine=polyamine and proline axis is subject to regulation by inflam-

matory cytokines as well as interregulation by the arginine metabolites

themselves. Arginine is also the precursor for another biogenic amine,

agmatine. Here we describe the capacity of these three arginine pathways

to interregulate, and propose a model whereby agmatine has the potential

to serve in the coordination of the early and repair phase pathways of

arginine in the inflammatory response by acting as a gating mechanism at

the transition from the iNOS=NO axis to the arginase=ODC=polyamine

axis. Due to the pathophysiologic and therapeutic potential, we will

further examine the antiproliferative effects of agmatine on the polyamine

pathway.
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Introduction

The structure of arginine was determined prior to the

turn of the 20th century. However, it was the discovery

of the urea cycle in 1932 that brought arginine to the

forefront of physiology research (Krebs and Henseleit,

1932). In addition to its role as an amino acid for

protein synthesis, arginine is also the precursor mole-

cule for synthesis of urea, ornithine, nitric oxide (NO),

polyamines, proline, creatine, glutamate and agmatine.

The maintenance of plasma arginine levels is primarily

dependent upon its synthesis in the kidney and dietary

intake. Dietary arginine is not essential in healthy adult

humans, demonstrating the utility of the kidney in this

regard. However, it becomes ‘essential’ in conditions of

starvation, injury or stress (Barbul, 1986). Arginine sup-

plementation is therefore beneficial in pathophysiologic

settings where systemic arginine levels decrease, such

as in models of wound healing, lymphocyte responses

and mitogenesis.

Two well-described pathways of arginine metabolism

in inflammation include the conversion of arginine to NO,

and the breakdown of arginine to urea and ornithine

by arginase. These pathways are temporally regulated in

acute inflammatory models such as wound healing and

glomerulonephritis (Albina et al., 1990; Cook et al.,

1994; Ketteler et al., 1994).

Nitric oxide

The early phase response to inflammatory insult is char-

acterized by conversion of arginine by inducible nitric

oxide synthase (iNOS) to produce high-output generation

of NO in the millimolar range. Whereas low-output con-

stitutive NOS (cNOS) generation of NO would expect to

mediate its effects directly, for example by interactions

with metal-containing proteins, such as heme groups, or
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interactions with free radicals (Wink and Mitchell, 1998),

high-output NO generation would be expected to act

indirectly via reactive nitrogen oxide species (RNOS).

An interaction of NO with O2 or O2
� to generate RNOS

NOx or ONOO� is the first step of these effects. Although

these reactions occur to a minor extent at normal physio-

logic conditions, the occurrence of high RNOS formation

under pathological conditions where iNOS expression is

induced can lead to chemical stress (Wink and Mitchell,

1998). There is a propensity of S-nitrosothiol (RS-NO)

formation due to the prevalence of thiols over other bio-

logical nucleophiles. The thiols react with and quench

NOx, metal-NO and ONOO� species. Therefore, the

potential for the ‘indirect effects’ mediated by RNOS

are more likely to occur in settings of oxidative stress,

i.e. pathologic conditions, where the thiol pool is

depleted. High levels of RNOS can lead to lipid peroxida-

tion, DNA damage, oxidation of thiols and nitration

of tyrosine residues (Wink and Mitchell, 1998). Thus,

high-output NO evokes protective actions in mammalian

tissues due to its cytostatic=cytotoxic antimicrobial activ-

ity towards certain pathogens (De Groote and Fang, 1995;

Stuehr and Nathan, 1989; Vincendeau and Daulouede,

1991).

Polyamines

The conversion of arginine to ornithine and urea by argi-

nase initiates the later repair phase of the inflammatory

response. Ornithine is converted to the pro-proliferative

polyamines via ornithine decarboxylase (ODC), and to

proline, a constituent of extracellular matrix, via ornithine

aminotransferase (OAT). Juxtaposed to the cytostatic

effects of NO are the pro-proliferative effects of the poly-

amines. Polyamines (putrescine, spermidine, and sper-

mine) are small ubiquitous cationic molecules required

for cell growth and homeostasis (Pegg and McCann,

1982; Tabor and Tabor, 1984). ODC, one of the most

highly regulated eukaryotic enzymes, is the first and rate-

limiting enzyme of biosynthesis metabolizing ornithine

to putrescine, the first polyamine. ODC overexpression

results in the transformation of NIH=3T3 cells (Auvinen

et al., 1992; Moshier et al., 1993), it enhances tumor

development (Clifford et al., 1995) and invasiveness

(Kubota et al., 1995), and is significantly elevated in vir-

tually all animal tumors (Scalabrino and Ferioli, 1981;

Scalabrino and Ferioli, 1982). A stepwise increase in

ODC activity correlating with the progression from nor-

mal colon mucosa to adenocarcinoma suggests a role for

ODC in multistage carcinogenesis (Luk and Baylin, 1984;

Porter et al., 1987; Radford et al., 1990). ODC is a proto-

oncogene. Conversely, the depletion of intracellular poly-

amines inhibits cell division. In addition, arginine, but not

ornithine, deprivation induces compensatory polyamine

transport (Bogle et al., 1994). This observation supports

the position that arginine is at the crux of polyamine

synthesis as well as NO generation. The production of

ornithine and its metabolism to polyamines is a principal

element of the repair phase.

The arginine switch

It is easy to see the necessity in regulating the transition

between these arginine pathways in the inflammatory

response. Induction of pro-proliferative polyamines in

the early phase would offset the beneficial effects of NO

in the eradication of pathogens; just as maintaining cyto-

static NO production into the repair phase would suppress

the positive growth effects mediated by polyamines. In

both instances arginine would become limiting. However,

the components and mechanisms that regulate this tem-

poral switch are not well understood.

An indication of interregulation of these pathways was

demonstrated in the model of experimental glomerulone-

phritis. NOS inhibition increased both the magnitude of,

and decreased the ‘lag’ time for, ornithine production for

the repair phase, suggesting suppression of the arginine=

arginase pathway by NO (Cook et al., 1994). NOS could

inhibit arginase by competing for substrate, or by the gen-

eration of an intermediate in the production of NO, NG-

hydroxy-L-arginine (NOHA) (Buga et al., 1998). There are

numerous examples of arginase and NOS competing for

arginine. However, in experimental glomerulonephritis the

cells that employ arginine for NO generation (macrophage

cells) are different than those that utilize arginine for the

repair functions of polyamine and proline synthesis

(mesangial cells) (Cook et al., 1994; Jansen et al., 1994),

suggesting that competition for substrate alone is insuffi-

cient to explain these effects in this model. NOHA is a

potent arginase inhibitor (Boucher et al., 1994). The effec-

tiveness of NOHA in producing paracrine effects in vivo,

such as required in the glomerulonephritis model, has also

yet to be determined, although NOHA levels do increase in

LPS-treated rats (Hecker et al., 1995). In addition, NOHA

induces caspase-3 activity and apoptosis in a breast cancer

cell line, whereas depletion of polyamines decreases cas-

pase-3 activity and does not induce apoptosis (Singh et al.,

2001). These results imply effects of NOHA beyond those

of specifically suppressing the arginase=ODC=polyamine

axis and require further investigation.
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Can the NOS=NO pathway affect polyamine bio-

synthesis? NO can directly alter enzymatic activity by

nitrosylation or nitration. ODC has a cysteine in its active

site at the dimer interface that is an absolute requirement

for full enzymatic activity (Coleman et al., 1993). Due to

the rapid interchange of enzymatic subunits, this cysteine

may be subject to attack by NO. We and others have shown

NO can directly nitrosylate ODC and inhibit enzymatic

activity (Bauer et al., 2001; Satriano et al., 1999). In the

rat aortic smooth muscle model, inhibition of cellular

proliferation by NO was attributed to inactivation of

ODC activity (Ignarro et al., 2001). NO also inactivates

S-adenosylmethionine decarboxylase (SAMDC), an essen-

tial enzyme for conversion of lower to higher order poly-

amines, via nitrosylation of the C82 residue of the enzyme

(Hillary and Pegg, 2003). Nitrosylation, unlike nitration, is

readily reversible and dependent upon the oxidative state

of the cell. For example, high glutathione levels typical of

unstressed cells could suppress or reverse nitrosylation,

whereas oxidative stress would create an environment of

low glutathione levels that would promote nitrosylation,

and thus inactivation of ODC activity. In cell culture sys-

tems cytokine induction of NO demonstrated a component

of ODC activity that was reactivated in the presence of

dithiothreitol (DTT). This ODC component directly corre-

lated with NO generation (Satriano et al., 1999), implying

NO mediated ODC inhibition occurs in cells as an early

event in the inflammatory response.

Can the arginase pathway effect the NOS=NO axis?

As stated above, arginase can inhibit NOS activity by

competing for substrate, arginine. Yet direct competition

would be insufficient means alone to explain the temporal

arginine switch in the model of glomerulonephritis where

NOS and arginase activities are observed in different cell

types. However, cytokines and hormones can influence

the balance of the arginine switch in inflammation. For

example, whereas T helper 1 (Th1) cells generate inter-

feron-� and induction of iNOS, Th2 cells generate IL-4

and IL-10 with resultant induction of arginase and sup-

pression of iNOS (Munder et al., 1999).

Agmatine

Arginine decarboxylase (ADC) converts arginine to

agmatine. Although well described in some bacteria and

plants, this is the most recent arginine pathway demon-

strated in mammals (Li et al., 1994). The kidney and liver,

sites of high arginine synthesis, maintain high constitutive

ADC activity (Lortie et al., 1996; Morrissey et al., 1995).

The intracellular concentration of agmatine in the kidney

was reported by HPLC analysis approximating 430�M

with plasma concentrations of 2.8�M (Lortie et al.,

2000). Due to the lability of agmatine in the derivatization

process, values reported in the literature may be under-

estimated. Agmatine has been shown at concentrations

several fold higher than the kidney in several organs that

do not demonstrate ADC activity (Lortie et al., 1996;

Raasch et al., 1995), suggesting circulating agmatine

could have paracrine and endocrine effects. Interestingly,

many of the organs that maintain high agmatine levels are

prone to environmental stress.

We believe that the principal function of agmatine has

evolved from the precursor of polyamines in bacteria and

plants to that of a regulatory role in mammals. Agmatine

can effect both the generation of NO as well as the intra-

cellular concentrations of polyamines. We will describe

both of these events and formulate a model whereby these

effects coordinate the transition of arginine from the

iNOS=NO axis to the arginase=ODC=polyamine axis in

the inflammatory response.

Early studies on the effects of agmatine on NO genera-

tion yielded contradictory results. Several laboratories,

including ours, demonstrated vasodilatory effects of

agmatine that are attenuated in the presence of NOS inhib-

itors (Gao et al., 1995; Ishikawa et al., 1995; Lortie et al.,

1996). In endothelial cells this induction of NO was pur-

portedly due to an increase in intracellular calcium tran-

sients, which in turn activate cNOS (Morrissey and Klahr,

1997). These studies demonstrate that activation of cNOS

is a downstream component of agmatine-mediated vaso-

dilation, although other NO independent effects of agmatine

may also contribute to this outcome (Blantz et al., 2000).

Conversely, other laboratories utilizing cell culture or

ex vivo models have observed suppression of NO gen-

eration with agmatine administration (Auguet et al., 1995;

Feng et al., 2002; Galea et al., 1996). However, studies

using highly purified enzyme preparations have demon-

strated that agmatine itself is neither a substrate for,

nor inhibitor of, NOS (Komori et al., 1994; Yokoi et al.,

1994). Our findings indicate the aldehyde metabolite

of agmatine, guanidinobutyraldehyde, but not agmatine

itself, is the NOS inhibitory moiety (Satriano et al.,

2001b). That it is not agmatine, but agmatine aldehyde

that inhibits NOS would explain why agmatine was not

able to inhibit NOS in purified enzyme systems but could

inhibit NOS in cell culture and ex vivo experiments where

it could be metabolized to an aldehyde by endogenous

amine oxidases. The conversion of agmatine to an alde-

hyde for iNOS inhibition is fundamental to the proposed

model system (Fig. 1).
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Agmatine is shown to affect intracellular polyamine

levels by induction of antizyme (Satriano et al., 1998)

and=or by induction of spermine=spermidine N-acyltrans-

ferase (SSAT) activity (Vargiu et al., 1999), an enzyme in

the back conversion from higher to lower order poly-

amines (spermine! spermidine! putrescine). There are

at least three isoforms of antizyme to date. Agmatine

induces antizyme-1 and is the only endogenous molecule

exclusive of the canonical polyamines themselves with

this capacity. The effects of agmatine on the other iso-

forms of antizyme have not been evaluated. In this dis-

cussion antizyme will signify the antizyme-1 isoform.

Antizyme expression increases in response to high intra-

cellular polyamine levels. Antizyme, in turn, inhibits

polyamine biosynthesis and polyamine import (Mitchell

et al., 1994; Suzuki et al., 1994) while increasing poly-

amine export (Sakata et al., 2000). This is a rapid response

system as the cell maintains antizyme mRNA that is trans-

lated to full length, active antizyme by a programmed þ1

translational frameshift in response to high polyamine

levels (Matsufuji et al., 1995). Antizyme inhibits poly-

amine biosynthesis by binding and inhibiting ODC, and

promoting its degradation by the 26S proteasome in an

ubiquitin independent fashion. It is then recycled to bind

and inhibit another ODC monomer. Antizyme is a tumor

suppressor. Several studies support antizyme as a promis-

ing means of attenuating neoplastic growth (Feith et al.,

2001; Iwata et al., 1999; Koike et al., 1999; Pegg et al.,

2003).

In accord with these observations, agmatine adminis-

tration markedly reduced both intracellular polyamine

levels, and cellular proliferation in a transformed kidney

proximal tubule cell line (MCT) (Satriano et al., 1998).

We found that agmatine suppressed ODC activity and

proliferation in all immortalized and transformed cell

lines examined (unpublished data and (Satriano et al.,

1998)). Agmatine can also reduce intracellular poly-

amines by upregulation of SSAT (Vargiu et al., 1999).

The resultant lower order and acetyl polyamines are more

readily exported from the cell.

Agmatine enters mammalian cells via the polyamine

transporter (Cabella et al., 2001; Satriano et al., 2001a).

Fig. 1. Proposed interregulation of arginine pathways by ADC metabolites. In inflammatory models, arginine to NO production is an early phase

response whereas the production of ornithine and polyamines is a later repair phase response. A Agmatine, in part by adding to the free polyamine

pool, can induce antizyme and=or SSAT to aid in the regulation of intracellular polyamine levels in normal cell homeostasis. B The early phase of an

acute inflammatory response: induction of iNOS and NO mediated events. C Suppression of iNOS via agmatine aldehyde comprises the transition

phase: AO induction metabolizes agmatine to an aldehyde. Nitrosylation by NO inhibits AldDH activity and suppresses the further metabolism of

agmatine aldehyde. Suppression of iNOS can occur by several other factors released during inflammation, such as cytokines. D The metabolism of

agmatine shifts its repression away from the polyamines. This shift is permissive for growth and supports the repair phase. Activation of AldDH

occurs after suppression of iNOS allowing metabolism of the aldehydes. Resetting to (A) occurs when AO returns to normal levels. Bars represent

negative regulation. ODC, ornithine decarboxylase; ADC, arginine decarboxylase; NO, nitric oxide; iNOS, inducible nitric oxide synthase; DAO,

diamine oxidase; AldDH, aldehyde dehydrogenase; GBA, guanidinobutyric acid
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As polyamine transport is positively correlated with pro-

liferation rate (Bogle et al., 1994; Moulinoux et al., 1991;

Pegg, 1988), we examined the effects of agmatine on

several mammalian cell lines. We observed an increased

sensitivity of transformed cell lines, relative to their non-

transformed counter-parts, to the antiproliferative effects

of agmatine due, in part, to preferential import and accu-

mulation of the molecule (manuscript in preparation). We

find the decreased growth response by agmatine is attrib-

uted to an active G1 arrest of the cell cycle, and is inde-

pendent from apoptotic attrition in an H-ras transformed

NIH=3T3 cell line (Ras=3T3). Ras=3T3 cells adminis-

tered agmatine display temporal increases in antizyme

and cyclin kinase inhibitor (CKI) expression with concur-

rent decreases in retinoblastoma protein (Rb) phosphory-

lation and cyclin A expression (unpublished data). Rb is a

tumor suppressor protein considered the guardian of the

G1 restriction site, and thus the transition from the G1 to

S phase of the cell cycle. Rb must be inactivated by

cyclin=cyclin dependent kinase mediated hyperphosphor-

ylation to allow this G1 to S phase transition. CKI can act

by suppressing the hyperphosphorylation of Rb, allowing

it to remain active and inhibiting G1 to S transition.

Inhibition of proliferation by agmatine also occurs in

cell lines in which these CKI are suppressed or deficient,

suggesting a redundant mechanism of arrest by agmatine

in addition to the temporal CKI mediated G1 arrest

observed in Ras=3T3 cells. The mechanism(s) of arrest

is currently under investigation. In primary rat hepato-

cytes where agmatine significantly increases SSAT activ-

ity an increase in apoptosis is observed (Gardini et al.,

2001; Vargiu et al., 1999). Antiproliferative effects of

agmatine have been observed in in vivo models as well

(Dudkowska et al., 2003; Ishizuka et al., 2000).

Hypothesis: The agmatine pendulum

In this paradigm we propose agmatine would act as a

guardian against aberrant proliferation in the normal,

unstressed physiologic state. In this regard intracellular

agmatine levels would be complimentary, or additive, to

the endogenous polyamine pool in their ability to bring

about the induction of antizyme in the regulation of intra-

cellular polyamines. This would effectively lower the

threshold levels of ‘free’ intracellular polyamine required

for antizyme induction. Other means, such as increasing

SSAT activity (Vargiu et al., 1999) or mechanisms yet

unresolved, could also be employed by agmatine to aid

in this protective antiproliferative function. As such,

agmatine has the capacity to defend against increased

intracellular polyamine levels required for growth

(Fig. 1A) (Satriano et al., 1998).

The onset of the inflammatory response is marked by a

transient upregulation of iNOS and generation of high NO

levels. NO would promote cytostatic=bactericidal effects,

as well as the nitrosylation and nitration of several pro-

teins and enzymes (Fig. 1B). Nitrosylation of ODC and

SAMDC by NO can inhibit both polyamine biosynthesis

and conversion to higher order polyamines (putres-

cine! spermidine! spermine), respectively (Bauer et al.,

2001; Hillary and Pegg, 2003; Satriano et al., 1999).

Another enzyme inactivated by NO mediated nitrosyla-

tion that is pertinent to this discussion is aldehyde dehy-

drogenase (AldDH) (McDonald and Moss, 1993).

In this model we propose that the transition from the

NO phase to the advent of the repair phase would be

marked by increased amine oxidase activity, such as

diamine oxidase (DAO) which metabolizes agmatine to

agmatine aldehyde (Holt and Baker, 1995) (Fig. 1C).

However, it is unknown whether induction of DAO, or

another amine oxidase with this capacity, occurs in patho-

logical settings in cells that do not normally express the

enzyme. The precedent for such an enzyme response is

iNOS, which is markedly induced by inflammatory cyto-

kines in all cell types. The difference is that iNOS is

induced early and robustly in the response whereas a lag

phase would be necessary prior to the induction of DAO,

if our hypothesis is correct. However, DAO levels de-

crease in viral hepatitis (Gang et al., 1976), inflamed

appendix (Menningen et al., 1986), Crohn’s disease

(Schmidt et al., 1990) and ulcerative colitis (Mennigen

et al., 1990). Although DAO does increase in partial small

bowel resection (Kusche et al., 1988) and in the Arthus

reaction (Tachibana et al., 1986), this occurs early, with

decreasing DAO levels reported as the disease progresses.

Opposite to what we would expect for our model. Also,

several lines of evidence demonstrate polyamines can

induce DAO expression, suggesting a protective feedback

loop (D’Agostino et al., 1990; Daniele and Quaroni, 1991;

Perin et al., 1986). In accord with this idea DAO increases

in some cancers, such as experimentally induced gliomas

(Sessa et al., 1993) and hepatocarcinoma (Sessa et al.,

1990), whereas the potentiation of other cancers, such

as colorectal cancer (Linsalata et al., 1993) and large

bowel tumors (Mennigen et al., 1988) may be attributed

to a decrease in DAO, and thus a decrease in polyamine

degradation leading to transformation (Quash et al.,

1979). Alternatively, DAO activity could be a function

of the invading inflammatory cells. Indeed, human eosin-

ophils (Herman, 1982; Zeiger et al., 1976) and neutrophils
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(Baenziger et al., 1994) can generate DAO activity in inflam-

matory states. Interestingly, partial hepatectomy (Sessa et al.,

1981) or nephrectomy (Desiderio et al., 1982) maximally

increase DAO activity at delayed time points that could cor-

respond to the repair phase of our model.

ADC is a mitochondrial bound enzyme whose product,

agmatine, has been shown to bind imadazoline (I2) recep-

tors. Both monoamine oxidase (MAO) and semicarbazide-

sensitive amine oxidase (SSAO) activities have been

localized to the mitochondria (Senatori and Nicotra,

1988), and may also co-localize with I2 binding sites (Marti

et al., 1998), making them attractive candidates for agmatine

regulation. Although changes in both MAO and SSAO were

associated with malignancy in experimentally induced

breast cancer (Lizcano et al., 1990), LPS= IFN-� adminis-

tration had little effect on MAO activity in astrocytes

(Mazzio et al., 2003). However, SSAO activity is associated

with inflammatory conditions and number of pathophysio-

logical conditions such as diabetes, heart and vascular dis-

eases, cirrhotic liver inflammation, atherogenesis, and some

cancers (for review see (Boomsma et al., 2003; Yu et al.,

2003)). SSAO is present in a wide variety of tissues, yet its

source, regulation of expression and functional role has not

been well resolved. Another protein, vascular adhesion pro-

tein-1 (VAP-1), has a high degree of sequence identity to

SSAO and demonstrates SSAO activity. It is expressed in

multiple tissues and cell types and is upregulated at sites of

inflammation (Salmi et al., 1993). As an adhesion molecule

VAP-1 also supports adhesion of lymphocytes to, and trans-

migration across, endothelial cells (Lalor et al., 2002).

Furthermore, the soluble form of VAP-1 may be the primary

soluble SSAO in man (Kurkijarvi et al., 2000). Thus, further

investigation is required to delineate the amine oxidase

responsible for metabolizing agmatine to an aldehyde in

inflammatory settings (depicted as DAO in Fig. 1).

In the LPS model of sepsis we observed beneficial effects

of agmatine that were indistinguishable from those of a

selective iNOS inhibitor (Satriano et al., 2001b; Schwartz

et al., 1997). To inhibit iNOS agmatine needs first to be

converted to an aldehyde (Satriano et al., 2001b), implying

conversion by an amine oxidase under these conditions.

The amine oxidase induced in response to LPS has yet to

be delineated. That agmatine is neuroprotective in ischemic

neuronal injury may also be attributed to similar effects on

the arginine pathways (Fairbanks et al., 2000; Feng et al.,

2002; Gilad and Gilad, 2000; Yu et al., 2000).

Metabolism of agmatine to an aldehyde by an amine

oxidase would shift the effects of agmatine away from

polyamine regulation, and thus be permissive for growth.

As NO inactivates AldDH, the enzyme that converts the

aldehyde into a stable acid, the aldehyde form of agmatine

would be sustained. Increased levels of agmatine alde-

hyde could aid in the suppression of NO generation

(Fig. 1C). As such agmatine aldehyde could exert bene-

ficial constraining influences on iNOS in an inflammatory

setting. Lower NO relieves inhibition of ODC and

SAMDC promoting growth, and of AldDH allowing

metabolism of agmatine aldehyde to continue to guani-

dinobutyrate (GBA) (Fig. 1D). Resetting occurs with

DAO returning to normal levels. We thus envision this

potential feedback loop to work in a pendulum-like man-

ner with agmatine alternately regulating intracellular

polyamine levels, then iNOS, and finally back to poly-

amines after resetting (Fig. 1).

In summary, the products of a third arginine metabolic

pathway, via ADC, pose the potential to coordinate reg-

ulation of both the antiproliferative NO and pro-prolifera-

tive polyamine repair phase pathways of arginine in the

inflammatory response.
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