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etiology of stroke, epilepsy, and neurodegenerative
disorders. On the basis of their signal transduction
pathways, glutamate receptors can be assigned to
two distinct groups: ionotropic glutamate receptors,
which are directly coupled to cationic channels, and
metabotropic glutamate receptors (mGluRs), which
are G-protein-coupled receptors. On the grounds
of amino acid sequences, the coupling to second-
messenger systems and agonist selectivity, the sub-
types of mGluRs can be dividied into three groups, yet
the diversity of the mGluR family is further increased
by the existence of variants with regard to the C-
terminal amino acid sequence. Group I comprises
mGluR1 and mGlu5 receptors which activate phos-
pholipase C; group II (mGluR2 and mGluR3) and
group III (mGluR4, mGluR6, mGluR7 and mGluR8)
receptors can inhibit the activity of adenylyl cyclase
(Conn and Pin, 1997). All these receptors are localized
either pre- or postsynaptically at the majority of
glutamatergic synapses, and at some GABAergic
synapses (Hanson and Smith, 1999; Neki et al., 1996;
Petralia et al., 1996).

Recent studies using in situ hybridization indicate
regional heterogeneity in the distribution of mGluR
subtypes. All the mGluRs are expressed in the stria-
tum (Testa et al., 1994). MGluR1 is abundantly
co-expressed with the mGluR5 subtype on striatal
cholinergic and GABAergic interneurons (Pisani et
al., 2001; Tallaksen-Greene et al., 1998); mGluR1,
mGluR5 and mGluR4 have been found in
GABAergic striatopallidal and striatonigral neurons
(Bradley et al., 1999; Hanson and Smith, 1999; Testa
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Introduction

Glutamate is a primary neurotransmitter in excitatory
synaptic pathways of the central nervous system.
Glutamate-mediated neurotransmission takes part
in numerous neuronal functions, and an excess of
glutamatergic stimulation may be involved in the
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et al., 1995, 1998), whereas mGluR2/3 are present on
corticostriatal glutamatergic terminals (Testa et al.,
1998). Outside the striatum, mGluR1, mGluR5 and
mGluR3 are expressed in the substantia nigra pars
reticulata, whereas dopaminergic cells in the substan-
tia nigra pars compacta contain mGluR1 and sparse
mGluR5 isoforms (Testa et al., 1994, 1998; Kosinski et
al., 1998; Hubert et al., 2001). Considerable amounts
of mGluR4 and mGluR7 mRNA were found in tha-
lamic nuclei (Bradley et al., 1999; Neto et al., 2000).
The subthalamic nucleus, whose activity is altered in
Parkinson’s disease exhibited mGluR2 located presyn-
aptically and postsynaptic mGluR5 (Testa et al., 1994;
Awad et al., 2000; Bradley et al., 2000). Evidence of
the presence of group II and III mGluRs on descend-
ing glutamatergic inputs to midbrain dopamine neu-
rons has also been presented (Wigmore and Lacey,
1998). Hence the location of mGluRs subtypes on
dopaminergic, glutamatergic and GABAergic neurons
may play a regulatory role in the complex function of
the basal ganglia.

Modulation of dopamine release by agonists and
antagonists of mGluRs

A number of data show that the brain dopamine sys-
tem is under regulatory glutamatergic influence. By
activation of ionotropic receptors, glutamate exerts
excitatory or inhibitory actions on DA release (Keefe
et al., 1992; Westerink et al., 1992; Wu et al., 2000).
The abundance of mGluRs in the basal ganglia
sugggests that they may play a role in the modulation
of dopamine function in the brain. It was found that
local application of the group I and II mGluR agonist
1S,3R-1-aminocyclopentane-trans-1,3-dicarboxylic
acid ((1S,3R)-ACPD) to dopamine terminals in
the striatum increased dose-dependently dopamine
release (Verma and Moghaddam, 1998). That in-
crease was in part TTX-insensitive, which indicates a
direct presynaptic mechanism of the later effect.
On the other hand, (1S,3R)-ACPD attenuated the
depolarization-induced stimulated striatal dopamine
release (Verma and Moghaddam, 1998), suggesting
that under activation conditions mGluRs reduce ex-
cessive dopamine release. The group I mGluR agonist
DHPG (3,5-dihydroxyphenylglycine) also enhanced
dopamine release, which was then antagonized by the
non-selective mGluRs antagonist alpha-methyl-4-
carboxyphenylglycine ((�)-MCPG) (Bruton et al.,
1999). Distinct subtypes of mGluRs with diverse cellu-

lar localization may be involved in the modulation of
dopamine release. Indeed, evidence is available that
the mGluR5 subtype may be located on striatal
dopamine terminals (Yu et al., 2001), and that its
direct activation with DHPG induces dopamine re-
lease. On the other hand, expression of mGluR1
and mGluR5 subtypes on striatal cholinergic inter-
neurons has been documented (Pisani et al., 2001). It
was shown that activation of those receptors with
DHPG or the selective mGluR5 agonist 2-chloro-5-
hydroxyphenylglycine (CHPG) resulted in excitation
of cholinergic interneurons and, – as an intermediate
response –, in activation of dopaminergic terminals
(Pisani et al., 2001).

The aim of our study was to further characterize
the role of mGluR subtypes in the modulation of
dopamine release. Systemic administration of the
selective, non-competitive mGluR5 antagonist MPEP
in a dose of 5mg/kg resulted in a decrease in basal and
veratridine (100 µM)-stimulated dopamine release in
rat striatum. Intrastriatal perfusion of MPEP (100 µM)
did not affect the veratridine-stimulated dopamine
release, but its high concentration (500 µM) increased
basal dopamine levels. Intrastriatal perfusion with
a low concentration of the less specific group II
mGluR agonist 2-(2,3-dicarboxycyclopropyl)glycine
(DCG-IV, 100µM) inhibited the veratridine-
stimulated dopamine release in rat striatum. It is likely
that the MPEP-induced alteration of the activity of
dopamine neurons depends on the route of adminis-
tration of the mGluR5 antagonist. Attenuation of
basal or stimulated dopamine release may be an
indirect effect due to the blockade of excitatory trans-
mission in the substantia nigra pars reticulata, or in
the subthalamic nucleus mediated by the mGluR5
subtype. Instead, the blockade of mGluR5 on striatal
GABAergic interneurons by freeing striatal neuronal
terminals from the inhibitory GABAergic tone may
be responsible for the enhancement of extracellular
dopamine levels after local administration of a higher
concentration of MPEP. Our preliminary experiments
with the non-selective mGluR2/3 agonist DCG-IV in-
dicate that the supression of cortical glutamatergic in-
put to the striatum by DCG-IV (Wigmore and Lacey,
1998) may presynaptically regulate dopamine release.
The effect of group II mGluR agonists on the stimula-
tion-induced increases in DA release precludes a tonic
role of glutamate in maintaining basal dopamine re-
lease. The reduction in extracellular dopamine, elic-
ited only by a low concentration of DCG-IV, may be
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due to the fact that DCG-IV has low selectivity as an
agonist of group II mGluR (Ishida et al., 1993). Thus
stimulation of NMDA receptors by higher concen-
trations of DCG-IV possibly masks the reduction of
extracellular dopamine, produced by selective stimu-
lation of group II mGluRs.

The role of mGluRs in the neurotoxicity of
dopaminergic neurons

Three main mechanisms of neuronal cell death: a
metabolic compromise, excitotoxicity and oxidative
stress, which work separately or jointly, cause neuro-
degeneration that occuring in acute or chronic disor-
ders in the central nervous system, such as stroke,
hypoglycemia, epilepsy, Parkinson’s disease, Alzheim-
er’s and Huntington’s diseases (for review see: Alexi
et al., 2000). An overactivation of the excitatory
synaptic neurotransmission mediated by amino acids,
and an excessive activation of ionotropic glutamate
receptors resulting in large increases in the concentra-
tion of neuronal cytosolic Ca2� produce neuronal
death during a pathological process defined as excito-
toxicity (Olney, 1971).

Glutamate plays an integrative role in the function-
ing of the basal ganglia, yet the balance between gluta-
mate and dopamine is disturbed when dopaminergic
nigrostriatal neurons degenerate in the course of
Parkinson’s disease (Starr, 1995). Nigral dopaminergic
neurons possess glutamate receptors (Chatha et al.,
2000; Testa et al., 1994) and they degenerate when are
exposed to an excitiotoxic impact of glutamate (Alexi
et al., 2000; Tapia et al., 1999). The antagonizing of
excitotoxicity has been regarded as a potential therapy
in Parkinson’s disease. Antagonists of ionotropic
glutamate receptors, especially antagonists of the
NMDA receptor and its modulatory glycine site,
improve parkinsonian symptoms (for review see
Ossowska, 1994), but severe side-effects associated
with their use during chronic therapy limit their
efficacy as potential drugs. Recent evidence has
shown that mGluRs may play an important role in
excitotoxicity. Some members of group II and III
mGluRs are likely to function as autoreceptors and
may inhibit glutamate release, whereas activation of
group I mGluRs increases the excitability and release
of glutamate (Glaum and Miller, 1994). Activation of
group II and III mGluRs is generally thought to pro-
tect cells against glutamate toxicity. Although antago-
nists of group I mGluRs are neuroprotective, agonists

of these receptors have been found to be either
neuroprotective or neurotoxic.

Several studies showed that the selective agonists of
group II mGluRs, (�)-2-aminobicyclo[3.1.0] hexane-
2,6-dicarboxylate (LY354740), LY379268 and the less
selective DCG-IV, slowed down death in some models
of glutamate toxicity in cortical cells in vitro, or attenu-
ated cerebral ischemia in rat hippocampus in vivo
(Allen et al., 1999; Bond et al., 1999, 2000; Kingston et
al., 1999). Similarly, activation of group III mGluRs
with (R,S)-4-phosphonophenylglycine ((R,S)-PPG)
or L-2-amino-4-phosphonobutyrate (L-AP4) was
protective against hypoxic/hypoglycemic injury in rat
hippocampus or against the NMDA-mediated excito-
toxicity in cultured mouse cerebellar granule neurons
(Sabelhaus et al., 2000; Lafon-Cazal et al., 1999). The
slowed down neuronal cell death, induced by glutamate
and quinolic acid, as well as the oxygen-glucose depri-
vation in cerebellar neurons and hippocampal slices or
rat striatum, were observed upon administration of the
non-selective mGluRs agonist (1S,3R)-ACPD (Kalda
et al., 2000; Montoliu et al., 1997; Adamchik and
Baskys, 2000; Colwell et al., 1996). On the other hand,
the (1S,3R)-ACPD – enhanced hippocampal damage
was observed in the model of global ischemia in gerbils
(Henrich-Noack and Reyman, 1999). These contradic-
tory results can be explained by activation of group II
or III mGluRs by (1S,3R)-ACPD, which leads to
neuroprotection, whereas enhancement of the neuro-
toxicity is likely to be mediated by activation of group I
mGluRs. Interstingly, some data showed a neuropro-
tective effect of the selective agonist of group I mGluR
DHPG against hypoxic/hypoglycemic injury in rat hip-
pocampus, and against glutamate toxicity or oxygen-
glucose deprivation toxicity in cultures of cerebellar
neurons (Schroder et al., 1999; Montoliu et al., 1997;
Kalda et al., 2000). It is thus speculated that the neuro-
protection achieved using the selective group I mGluR
agonist is caused by its antiapoptotic action which – in
turn – is mediated by protein kinase C activation
(Kalda et al., 2000). The results obtained with
mGluR antagonists are more consistent. Thus, the
group I mGluR antagonists 1-aminoindan-1,5-
dicarboxylic acid (AIDA) and (S)-(�)-2-(3�-
carboxybicyclo[1.1.1]pentyl)-glycine (CBPG), with a
preferential activity towards the mGluR1 subtype,
showed neuroprotection in an oxygen-glucose depriva-
tion rat model and in a model of global ischemia in
gerbil hippocampus (Pellegrini-Giampietro et al.,
1999). The blockade of mGluR1 with (�)-2-methyl-
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4carboxyphenylglycine (LY367385) was sufficent to
achieve neuroprotection against global ischemia in
gerbils, or against the NMDA-induced toxicity in
rat hippocampus and striatum, respectively (Bruno
et al., 1999). In turn, the selective mGluR5 antagonist
MPEP was effective in protecting cortical cells against
NMDA toxicity and mechanical injury in vitro (Bruno
et al., 2000; O’Leary et al., 2000; Movsesyan et al.,
2001), against ischemia in gerbil hippocampus in vivo
(Rao et al., 2000) or the neuronal damage induced by
NMDA and quinolic acid in rat striatum (Bruno et al.,
2000).

In order to carry on with our studies into the role
of mGluR antagonists in the neuroprotection of
dopamine neurons, we performed experiments with
the selective antagonist of mGluR5 MPEP in the rat
neurotoxicity model using methamphetamine. Meth-
amphetamine acts as a potent dopamine neurotoxin in
rodents, non-human primates and humans. Multiple
administration of methamphetamine causes a rapid,
partially reversible decrease in dopamine transporter
activity in rat striatum (Sandoval et al., 2000).
Dopamine, which is released in large quantities by
methamphetamine, is the source of reactive oxygen
species (ROS) (Giovanni et al., 1995; Hirata et al.,
1996). In a cascade of neurodegenerative events, the
increased concentration of ROS and dopamine-
derived quinones (Cadet and Brannock, 1998) causes
a disruption of mitochondrial functions (Burrows
et al., 2000), depletion of the antioxidant glutathione
(Moszczynska et al., 1998; Harold et al., 2000), induc-
tion of microglisis (Escubedo et al., 1998) and lipid
peroxidation (Acikgoz et al., 1998). Exposure to
high doses of methamphetamine eventually results in
depletion of striatal dopamine and its metabolites,
3,4-dihydroxyphenylacetic acid (DOPAC) and homo-
vanillic acid (HVA), as well as in a decrease in the
activity of tyrosine hydroxylase, dopamine transporter
(DAT) and vesicular monoamine transporter
(Fleckenstein et al., 2000; Ricaurte et al., 1982).
Glutamatergic excitotoxicity has also been implicated
in diverse mechanisms of methamphetamine toxicity
(Sonsalla et al., 1989, 1991). In our study, metham-
phetamine (5 � 10mg/kg sc in 2 h intervals) induced
significant hyperthermia and depletion of dopamine,
DOPAC and HVA in the striatum 72h after the treat-
ment. MPEP in a dose of 5mg/kg, which was effective
in reversing the haloperidol-induced rigidity in rats
(Ossowska et al., in press), given before every meth-
amphetamine injection, attenuated dopamine deficit

in rat striatum. In our additional experiments, MPEP
(5 mg/kg) was able to diminish the methamphetamine
(10mg/kg)-induced dopamine outflow in rat striatum
in a microdialysis in vivo model. Thus the data dis-
cussed above, together with our findings revealing an
inhibitory effect of MPEP on basal dopamine release
after peripheral administration, as well as anatomical
data showing brain distribution of mGluRs incline us
to link the effect of an mGluR5 antagonist with at-
tenuation of the excitatory input to dopaminergic cells
through mGluR5 blockade in the subthalamic nucleus
and/or substantia nigra. Methamphetamine produces
an increase in extracellular dopamine and glutamate,
hence both these neurotransmitters are involved in its
neurotoxic mechanism (Cadet and Brannock, 1998;
Nash and Yamamoto., 1992; Stephans and Yamamoto,
1994; Abekava et al., 1994). However, some recent
data gathered by Wallace et al. (2001) indicate that the
mechanism of the methamphetamine-induced deple-
tion of dopamine may not depend on a delayed
increase in the extracellular concentration of gluta-
mate. Thus a decrease in the excitotoxic impact of
glutamate, caused by mGluR5 blockade, may be irrel-
evant to the protection against methamphetamine
neurotoxicity. It is assumed that the primary action of
methamphetamine is a reversal of dopamine trans-
porter function, which leads to rapid inhibition of
dopamine uptake (Fleckenstein et al., 2000). The de-
crease in DAT function is due to modification of the
transporter protein per se, or to a change of factors
that regulate DAT functioning. Interestingly, it has
recently been found that MPEP prevents the inhibi-
tion of dopamine uptake, produced by activation of
mGluR5 receptors, in the striatum (Page et al., 2001).
Hence the decrease in dopamine deficit observed in
our study, or the dopamine outflow induced by meth-
amphetamine may be related to the restored function-
ing of DAT by MPEP, previously disrupted by that
neurotoxin. This finding seems to be of great impor-
tance and provides a valuable therapeutic approach to
neuroprotection, especially as regards disorders in-
volving the dopamine carrier protein.

A selective loss of dopaminergic nigrostriatal cells
in Parkonson’s disease is unlikely to dependent exclu-
sively on the overactivity of glutamatergic pathways
in the basal ganglia. Excitotoxicity may possibly be a
secondary factor in neurodegeneration. Nevertheless,
depression of the excitatory synaptic activity with
mGluRs ligands may be a target in the therapy of
neurodegenerative diseases. Other cellular processess
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mediated by mGluRs, such as regulation of the
generation of free radicals which promotes oxi-
dative stress, regulation of glutathione metabolism
(Cambonie et al., 2000; Sagara and Schubert, 1998),
BDNF expression (Matarredona et al., 2001), voltage-
gated calcium channels (Colwell and Levin, 1999), or
preservation of DNA integrity by inhibiting the activ-
ity of caspase and other proteins in the cellular mecha-
nism of apoptosis (Maiese et al., 2000) may account for
the neuroprotection provided by mGluRs.

Although elucidation of the entire neuroprotective
mechanism mediated by mGluRs is far from being
resolved, the data discussed above open up a possibil-
ity that mGluRs are promising candidates for the
therapy of degenerative disorders.

Conclusions

In summary, the data presented above indicate that
mGluRs are involved in the regulation of dopa-
minergic transmission. Group I mGluRs stimulate,
whereas group II/III ones have an inhibitory effect on
dopamine release. These effects are mediated directly
by receptors on dopaminergic cells, or indirectly via
supression of glutamate release from neuronal termi-
nals in the subthalamic nucleus or substantia nigra
pars reticulata, and from corticostriatal terminals.
The selective mGluR5 antagonist MPEP seems to be
a neuroprotective agent in an animal model of
neurotoxicity after multiple administration of meth-
amphetamine. Reversal of the methamphetamine–
induced depletion of striatal dopamine by MPEP
may be due to its regulatory effect on the dopamine
transporter.
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