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Abstract
Respiratory motion in abdomen generates motion artifacts during Dynamic Con-
trast Enhanced MRI (DCE-MRI) data acquisition and it is clinically challenging to 
minimize the motion artifacts. Extraction of self-gated respiratory signal from the 
acquired k-space data is one of the methods to deal with the respiratory motion arti-
facts. The literature shows that non-Cartesian trajectories are less sensitive to motion 
artifacts than Cartesian trajectories. Golden-angle data acquisition in radial trajec-
tory is preferred to extract the self-gated signal that splits the free-breathing data 
into different respiratory phases; also called motion states or bins. Conventionally, 
XD-GRASP (eXtra-Dimension golden-angle-radial Sparse Parallel MRI) recon-
structs the binned data, but this method has limitations such as it does not preserve 
noise like texture (MR images have noise like artifacts) and it is a computationally 
intensive method. This research work proposes the use of a dedicated Convolutional 
Neural Network (CNN) architecture to remove motion artifacts from the binned 
(using uniform and adaptive binning) DCE golden-angle-radial liver perfusion data. 
The results of the proposed method are compared with XD-GRASP reconstruction. 
The results demonstrate that the proposed method takes significantly less compu-
tation time and provides similar quality of the reconstructed images as compared 
to the XD-GRASP method. Furthermore, receiver coil sensitivity information is 
required in XD-GRASP to reconstruct the MR image that may be difficult to esti-
mate in some applications, whereas the proposed method does not require any such 
information.
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1 Introduction

Magnetic Resonance Imaging (MRI) is a medical imaging procedure that is safe 
but has long scan time. MRI examinations are sensitive to motion (due to long 
scan time) and artefacts may originate because of the patient motion, cardiac 
motion or respiratory motion [1]. Therefore, it is often desirable to introduce 
motion correction techniques to deal with the motion artifacts.

Dynamic Contrast-Enhanced MRI (DCE-MRI) [1–3] is an imaging method 
where MRI scans are acquired after the injection of a contrast agent. The move-
ment of the contrast agent helps to differentiate between the healthy and defec-
tive tissues [2]. Respiratory motion in abdominal DCE-MRI creates clinical 
challenges. Prospective motion management in MRI requires breath-hold acqui-
sition or external sensors [4] that involve high cost and complex setup. Another 
approach to deal with motion is the extraction of self-gated respiratory signal [5] 
from the raw k-space data. This self-gated signal helps to analyze the respira-
tory motion in free breathing acquisition without breath-hold or external sensors 
for motion management [4]. The self-gated signal is extracted by taking one-
dimensional (1D) Fourier Transform (FT) of central k-space for each acquired 
spoke that provides the projection profiles of the entire imaging volume. Principal 
Component Analysis (PCA) is applied on these projection profiles to get the most 
common signal variation among all the elements that depicts existing signal, e.g., 
respiratory motion [5].

The literature shows that non-Cartesian trajectory is more beneficial than Carte-
sian trajectory as it is less sensitive to motion artifacts [6–8]. In Cartesian sampling, 
the center of the k-space is covered by only a few phase encoding steps, whereas 
in radial sampling, the center of the acquired k-space is oversampled as each pro-
file incorporates data from the center of the k-space [8], therefore, the center of 
the k-space carries more information. There are two ways to acquire radial data: 
(i) Uniform sampling and (ii) Golden-angle sampling [9, 10]. The angle between 
the acquired spokes is constant in both cases. Uniform sampling is distributed uni-
formly between [0, π]. In golden-angle-radial sampling, angle between the acquired 
spokes is ϑ ≈ 111.25° [9]. Radial trajectory acquired with Golden angle has several 
advantages [10] e.g., every radial spoke fills the largest gap between the previously 
acquired spokes, no two spokes are acquired twice, and the spokes will be uniformly 
distributed if they belong to a Fibonacci number [6, 7].

In DCE-MRI, the target volume is imaged before, during and after the injec-
tion of contrast agent. The major challenge in DCE-MRI is its long scan time 
(about 30–40 min in DCE-MRI of abdomen) [6]. The long scan time makes MRI 
examinations sensitive to patient motion causing motion artifacts. Golden-angle-
radial data are used to extract the self-gated signal that divides the acquired free-
breathing data into different respiratory phases also called motion states or bins 
[5]. Different types of binning techniques have been used in literature such as 
uniform binning and adaptive binning [9–11].

Feng et  al. used uniform binning [10] in which the range of respiratory sig-
nals is divided into fixed intervals such that each interval has an equal number of 
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samples/spokes. Usman et al. [11] used adaptive binning where instead of divid-
ing spokes in equal number in each bin like uniform binning, there are overlap-
ping spokes in each bin; overlapping the spokes decreases the under-sampling 
factor (i.e., fewer aliasing artifacts expected in the solution image).

Feng et  al. [10] proposed XD-GRASP, a reconstruction framework for free-
breathing DCE golden-angle-radial MRI. XD-GRASP sorts the acquired dynamic 
data into extra motion-state dimensions using the self-navigation properties of radial 
trajectory and reconstructs the multi-dimensional dataset using Compressed Sensing 
[12]. This technique has some limitations such as it is a time-consuming method, 
and it cannot preserve noise-like textures and fine-scale details that may hold diag-
nostically important information for clinicians.

In recent years, deep learning has made significant developments in many fields 
such as image processing, speech recognition and natural language processing 
[13–29]. Initially, deep learning was used for image segmentation [15] and clas-
sification [16] but recently different deep learning-based architectures have been 
designed for image reconstruction [19, 20]. In case of MR image reconstruction 
using deep learning, the performance of deep neural networks was limited due to 
the size of the available data set [18] as it is not possible to train the network with 
a smaller number of images. Transfer learning [18, 21, 22] has been introduced in 
literature to deal with this problem. In transfer learning, the weights of a pre-trained 
network are updated based on new data set and it overcomes the limitation of avail-
ability of a large dataset.

The literature shows that deep learning can be used to reconstruct MR image 
from the under-sampled MRI data acquired from MRI scanner [19, 22–29]. Chang 
Min Hyun [19] presented a deep learning method for brain MR image reconstruc-
tion by reducing the k-space data with sub-Nyquist sampling strategies. This work 
shows a remarkable performance, retaining only 29% of the original data and pro-
duces good reconstruction results. Emmanuel Ahishakiye [20] presented an over-
view of the deep learning methods used in medical image reconstruction. The analy-
sis of the authors [20] shows that Convolution Neural Network (CNN) is the most 
common network used for MR image reconstruction, but it requires a large set of 
training data [20].

Deep learning is also used to reduce the computation time to reconstruct the MR 
image. Christopher M. Sandino et al. [13] used deep CNN to accelerate MRI. In this 
paper [13], the results are compared with CS reconstruction algorithm that show 
that CNN is approximately 150 × faster without losing quality of the image.

Deep learning is a set of algorithms that parse data, learn from it, and then apply 
what has been learnt to make intelligent decisions. CNN is a class of deep, artificial 
neural networks that is applied to analyze visual imagery. The architecture of CNN 
comprises of different specific layers; each layer performing a different function.

In this paper, a dedicated CNN architecture is proposed to remove motion arti-
facts from MR images. Following layers are present in the CNN architecture used in 
this research work:

Convolutional layer: In the proposed CNN architecture, the first layer is convolu-
tion layer. This layer takes an image matrix and a kernel (filter) as input and provides 
convoluted image as output. The kernel size used in first 17 layers of the proposed 
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method is 3 ×3 and in the 18th layer is 1 ×1 . This kernel size is selected empirically. 
This layer determines the important features (such as information of different tis-
sues) in the input image.

Activation layer: Rectified Linear Unit (ReLU) is used as an activation function 
(in the proposed CNN) that performs pixel wise operation. It replaces all the non-
negative values by zero. The activation layer acts as a “gate” between the two convo-
lutional layers. It can be a simple function that turns the output on and off, depend-
ing on a rule or threshold.

Batch normalization: Batch normalization layer [26] normalizes the activations of 
each layer to zero-mean and a constant standard deviation. This has the effect of sta-
bilizing the learning process and reducing the number of training epochs required to 
train deep networks [19, 20]. In the proposed architecture, batch normalization layer 
significantly reduces the number of epochs.

Regression layer: Regression layers are widely employed to solve tasks where the 
goal is to predict output (solution image) values based on the estimated weights. In 
the proposed architecture, regression layer predicts responses (solution image) of a 
trained regression network using weights at the final stage.

The results of the proposed method are compared with the state-of-the-art XD-
GRASP reconstruction [10]. The rest of the paper is organized as follows: materi-
als and methods used in this work are mentioned in Sect. 2, whereas Sects. 3 and 
4 summarize the results and discussion respectively. Finally, the conclusion is pre-
sented in Sect. 5.

2  Materials and Methods

2.1  Methodology

In this research work, a dedicated CNN architecture is proposed to reconstruct MR 
images from the under-sampled binned golden-angle-radial liver perfusion data. 
Figure 1 shows the architecture of the proposed CNN, where 18 convolution layers 
are used to estimate the weights followed by Rectified linear unit (ReLU) as an acti-
vation function and Batch Normalization (BN) to avoid over-fitting. The last layer is 
regression layer that provides the final reconstructed image. The number of layers 
is empirically chosen to be 18; lesser number of layers provide less accurate image, 
and no significant improvement was achieved in the output image with more than 18 
layers.

All the experiments and analysis have been performed using MATLAB (2019a) 
on Intel(R) core (TM) i7 4th generation CPU with 16 GB RAM and NVIDIA Titan 
XP GPU with 3840 CUDA cores and 12GB Memory.

The availability of golden-angle-radial liver perfusion data is limited, therefore, 
initial CNN training is performed on cardiac data [30] at the first stage and transfer 
learning is applied in the second stage which uses golden-angle radial liver perfu-
sion data. Figure 2 shows the main steps of the initial training.

The initial training is performed using 1600 images obtained from an open-
source database [10, 30]. Each label image (402 spokes in each image) is first 
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converted into golden-angle-radial k-space data using golden-angle (111.25°) 
radial sampling and retrospectively under-sampled with Acceleration Factor (AF) 
equals to 4 for the training purposes. Total number of spokes in each image of the 
under-sampled data is 101. The under-sampled golden-angle-radial k-space data 
are first gridded with non-Uniform Fast Fourier Transform (NUFFT) [30–32] to 
get the Cartesian k-space followed by inverse FFT (iFFT) operator [31] to obtain 
the aliased MR images. The proposed CNN architecture is based on supervised 
learning and is trained using the label (fully-sampled) MR images and the aliased 
MR images. For the training purpose, “rmsprop” [14] optimizer with a learning 

Fig. 1  Proposed architecture of the CNN to reconstruct the binned (with Uniform and Adaptive binning) 
DCE-MRI data

Fig. 2  Flowchart for the first 
stage of the proposed method 
for Initial training of CNN with 
cardiac data
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rate of 0.0001 (empirically selected) is used. We have used “mean square error” 
loss function in this work.

In the second stage of the proposed method, the CNN is fine-tuned with binned 
golden-angle radial liver perfusion data separately for the uniform and adaptive bin-
ning [5, 9]. Figure 3 shows a flow diagram for the reconstruction of binned data. 
To reconstruct the uniformly binned data, the trained network is fine-tuned (transfer 
learning) with the uniform binned liver data i.e., transfer learning [18, 21, 22] is 
applied on the initially trained CNN architecture with cardiac MR images.

The golden-angle-radial liver perfusion data used in this work have 1100 spokes 
with 502 sampling points along each spoke. Firstly, 1100 spokes are distributed into 
11 contrast enhancement phases called frames, so the number of spokes in each 
frame are 1100/11 = 100. The frames are formed to track contrast enhancement 
changes. For 100 spokes in each contrast enhancement phase of the liver perfusion 
data, 4 bins are created (the number of bins chosen heuristically). Therefore, the 
number of spokes in each bin is 25 in our experiments. More than four bins reduce 
the number of spokes in each bin, and do not provide good reconstruction results 
whereas less than four bins do not provide correct information about the motion. 
The binned data cannot be directly used for image reconstruction, as the radial data 
are not sampled on a regular Cartesian grid, therefore, it requires gridding. NUFFT 
[32] is applied to grid the golden-angle-radial data onto Cartesian grid and then 
iFFT is applied on the gridded data to obtain the aliased MR images. The weights 
of the trained CNN are updated with the aliased and the labelled MR images. The 

Fig. 3  Flow chart for the 
transfer learning [18, 21] part 
of the proposed method for the 
reconstruction of uniform and 
adaptively binned data
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updated CNN network is used to reconstruct MR images from the uniformly binned 
liver data.

For adaptive binning, all steps are the same as for uniform binning but instead of 
having four bins, five bins are formed that makes the number of spokes in each bin 
equal to 20. Different experiments have been performed that show the number of 
spokes less than 25 do not give good reconstruction results; therefore, 5 spokes are 
overlapped in each bin that makes total number of spokes equals to 25 in each bin. 
Similarly, we can take 6 bins, in that case the number of overlapped spokes will be 9 
that makes total number of spokes equal to 25 in each bin.

The MR dataset used (both cardiac and golden-angle-radial Liver perfusion data) 
is complex, therefore two networks are used for reconstruction. Using first network, 
the magnitude part of the complex data sets is trained and reconstructed, and using 
the second network, the imaginary part of the complex data sets is trained and 
reconstructed in the proposed method using CNN. In the final stage, results of both 
the networks are combined to obtain the final reconstructed MR image.

2.2  Dataset

For initial training of the CNN, cardiac data are used that have been obtained from 
an open-source database [30]. It has 1600 fully sampled cardiac images that are con-
verted to golden-angle-radial data and under-sampled with AF = 4 retrospectively to 
train the CNN.

The dataset with golden-angle-radial sampling is obtained from “Center for 
Advanced Imaging Innovation and Research  (CAI2R)” [30], NYU school of Medi-
cine, USA. Two 3D axial liver perfusion MRI datasets have been used in this work 
downloaded from  CAI2R [30]: The acquisition parameters for both the dataset-1 
and dataset-2 are 512 readouts, 1100 spokes, and 20 receiver coils. In this data, 100 
adjacent spokes are grouped into one time point, resulting in 11 contrast enhance-
ment phases. Each phase is then subdivided into further respiratory motion states or 
bins (using adaptive binning and uniform binning).

2.3  Quantifying Parameters

The quality of the reconstructed images is assessed visually and using different 
quantifying parameters i.e., Mean Signal-to-Noise Ratio (mean SNR), Central line 
profile and computation time.

Signal-to-noise ratio is defined as the ratio of the power of a signal to the power 
of background noise. The mean SNR [33] can be found as:

where, �R is the mean and �R is the standard deviation of the reconstructed image 
containing both the signal and noise. Mean Signal-to-Noise Ratio is calculated using 
pseudo multiple replica method [33].

MeanSNR = 20log
10

�R

�R
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Central line-profiles of the CNN based reconstructed image and the XD-GRASP 
based reconstructed images are compared. Liver edge sharpness, clarity of hepatic ves-
sel and streaking artifacts are examined visually. Comparison of computation time is 
performed between XD-GRASP reconstruction and the proposed method.

Fig. 4  Reconstruction of the uniformly binned DCE golden-angle-radial liver perfusion data using CNN-
based Reconstruction (proposed method) and XD-GRASP method for dataset-1. The red circles show the 
contrast agent uptake by hepatic vessels

Fig. 5  Reconstruction of uniformly binned DCE golden-angle-radial liver perfusion data using CNN-
based Reconstruction (proposed method) and XD-GRASP method for dataset-2. The red circles show the 
contrast agent uptake by hepatic vessels
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3  Results

Two datasets (dataset-1 and dataset-2) [30] have been used in this work to verify 
the results of the proposed method. Figures 4 and 5 show the results of the recon-
structed uniformly binned DCE golden-angle-radial liver perfusion DCE-MRI using 
the proposed method and using the XD-GRASP method for dataset-1 and dataset-2, 
respectively. The red circles indicate that resolving an image into respiratory phases 
helps to identify the change of the contrast agent.

Table  1 shows the mean SNR of the reconstructed images of the uniformly 
binned DCE golden-angle-radial liver perfusion data using the proposed method 
and XD-GRASP method at different motion states for both dataset-1 and data-
set-2. The proposed method and XD-GRASP method show similar results in terms 
of mean SNR values as shown in Table  1. The averaged mean SNR value of the 
reconstructed images for dataset-1 using the proposed method is 21.19 and using 
XD-GRASP method is 21.99. Similarly, the averaged mean SNR value of the recon-
structed images for dataset-2 using the proposed method is 30.56 and using XD-
GRASP method is 31.02 as shown in Table 1.

Figures  6 and 7 compare the central-line profiles of the reconstructed images 
(uniformly binned) obtained by XD-GRASP method and the proposed method for 
dataset-1 and dataset-2, respectively. It can be seen in Figs. 6 and 7 that both meth-
ods provide almost comparable central line profiles.

Table  2 shows a comparison of the computation time between the proposed 
method and the XD-GRASP method. Table 2 shows that there is a significant dif-
ference in reconstruction time of the two algorithms. The proposed method took 
approximately 99.95% less computation time for dataset-1 and 99.92% lesser time 
for dataset-2 as compared to XD-GRASP reconstruction.

Figures 8 and 9 show the results of the reconstructed adaptively binned DCE 
golden-angle-radial liver perfusion data using the proposed method and XD-
GRASP method for dataset-1 and dataset-2, respectively. The averaged mean 
SNR value of the reconstructed images for dataset-1 using the proposed method 
is 28.23 and using XD-GRASP method is 28.50. Similarly, the averaged mean 
SNR value of the reconstructed images for dataset-2 using the proposed method 

Table 1  Mean SNR values of the reconstructed uniformly binned DCE golden-angle-radial Liver perfu-
sion data using the proposed method and XD-GRASP method at different motion states for dataset-1 and 
dataset-2

Motion state Mean SNR using the 
proposed method

Mean SNR using 
XD-GRASP

Mean SNR using the 
proposed method

Mean SNR 
using XD-
GRASP

Dataset-1 Dataset-2
1 21.02 22.15 30.71 31.39
2 20.91 21.93 30.08 30.82
3 21.88 21.88 30.51 30.68
4 20.96 21.99 30.93 31.20
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is 42.42 and using XD-GRASP method is 42.66. The red circles indicate that 
resolving an image into respiratory phases helps to identify the change of the 
contrast agent.

Table  3 shows the mean SNR of the reconstructed images for the adaptively 
binned DCE golden-angle-radial liver perfusion data (dataset-1 and dataset-2) using 
the proposed method and XD-GRASP method at different motion states. Table  3 
demonstrates that both the methods show almost similar mean SNR values.

Figures  10 and 11 provide a comparison of the central-line profiles of the 
reconstructed images using XD-GRASP method and the proposed method for the 
adaptively binned DCE golden-angle-radial liver perfusion dataset-1 and data-
set-2, respectively. The results show that both the methods provide almost similar 
line profiles.

Table 4 shows a comparison of the computation time for the proposed method 
and XD-GRASP method. It can be seen from Table 4 that the proposed method 

Fig. 6  Central-line profile comparison for the reconstructed images using the XD-GRASP method and 
proposed method for uniform binning (dataset-1). a Central-line profiles of the reconstructed images 
from XD-GRASP and proposed method, respectively, for motion state-1, b Central-line profiles of the 
reconstructed images from XD-GRASP and proposed method respectively for motion state-2, c Central-
line profiles of the reconstructed images from XD-GRASP and proposed method respectively for motion 
state-3, d Central-line profiles of the reconstructed image from XD-GRASP and proposed method, 
respectively, for motion state-4
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took approximately 99.95% less computation time for dataset-1 and 99.61% less 
computation time for dataset-2 as compared to XD-GRASP reconstruction.

Our experiments show that both methods (XG-GRASP and proposed method) 
provide almost similar reconstruction results; however, the proposed method 
takes significantly less computation time as compared to XD-GRASP. The pro-
posed method can be used as an alternative method for reconstructing the binned 

Fig. 7  Central-line profile comparison using the XD-GRASP and the proposed method for uniform bin-
ning (dataset-2). a Central-line profiles of the reconstructed images from XD-GRASP and proposed 
method respectively for motion state-1, b Central-line profile of the reconstructed image from XD-
GRASP and proposed method respectively for motion state-2, c Central-line profile of the reconstructed 
image from XD-GRASP and proposed method, respectively, for motion state-3, d Central-line profile of 
the reconstructed image from XD-GRASP and proposed method, respectively, for motion state-4

Table 2  Comparison of the computation time for the proposed method and XD-GRASP method for the 
uniformly binned DCE golden-angle-radial liver perfusion data (dataset-1 and dataset-2)

Dataset Reconstruction time for CNN 
(proposed) method

Reconstruction time for XD-
GRASP algorithm

Improvement (%)

1 0.29s 742.39s 99.95
2 0.36s 500.04s 99.92
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Fig. 8  Reconstruction of the adaptively binned DCE golden-angle-radial liver perfusion data using CNN 
(proposed method) and XD-GRASP method for dataset-1. The red circles show the contrast agent uptake 
by hepatic vessels

Fig. 9  Reconstruction results of the adaptively binned DCE golden-angle-radial liver perfusion data 
using CNN (proposed method) and XD-GRASP for dataset-2. The red circles show the contrast agent 
uptake by hepatic vessels

Table 3  Mean SNR of the reconstructed adaptively binned dynamic contrast enhanced golden-angle-
radial liver perfusion data using proposed method and XD-GRASP method at different motion states for 
dataset-1 and dataset-2

Motion State Mean SNR (Pro-
posed
Method)

Mean SNR (XD-
GRASP)

Mean SNR (Proposed 
Method)

Mean SNR 
(XD-GRASP)

1 28.38 28.65 42.48 42.73
2 28.26 28.47 42.64 42.87
3 28.00 28.32 42.44 42.67
4 28.27 28.57 42.24 42.59
5 28.37 28.56 42.34 42.49
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golden-angle-radial perfusion data with significantly less computation time. Moreo-
ver, the proposed method does not require receiver coil sensitivity information (as 
required in the XD-GRASP method).

Fig. 10  Central-line profile comparison for the reconstructed images using XD-GRASP and proposed 
method for adaptive binning for dataset-1: a central-line profiles of the reconstructed image using XD-
GRASP and proposed method for motion state-1, b central-line profiles of the reconstructed image using 
XD-GRASP and proposed method for motion state-2, c central-line profiles of the reconstructed image 
using XD-GRASP and proposed method for motion state-3, d central-line profiles of the reconstructed 
image using XD-GRASP and proposed method for motion state-4, e central-line profiles of the recon-
structed image using XD-GRASP and proposed method for motion state-5
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Fig. 11  Central-line profile comparison using XD-GRASP and proposed method for adaptive binning 
for dataset-2. a Central-line profiles of the reconstructed image using XD-GRASP and proposed method 
for motion state-1, b Central-line profile of the reconstructed image using XD-GRASP and proposed 
method for motion state-2, c Central-line profile of the reconstructed image using XD-GRASP and pro-
posed method for motion state-3, d Central-line profile of the reconstructed image using XD-GRASP and 
proposed method for motion state-4, e Central-line profile of the reconstructed image using XD-GRASP 
and proposed method for motion state-5
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4  Discussion

Golden-angle-radial acquisition detects and removes blurring artifacts caused by 
respiratory motion. In this work, self-gated signal is extracted from the center 
of k-space of golden-angle-radial data. This self-gated signal is divided into dif-
ferent respiratory phases using two binning techniques: uniform binning and 
adaptive binning. The proposed CNN architecture reconstructs the binned data, 
and the results are compared with the gold standard XD-GRASP reconstruction 
algorithm.

The results show that the proposed method successfully removes blurring arti-
facts and helps to visualize the information embedded in different motion states. 
The mean SNR values of the reconstructed images by the proposed method are 
comparable with the XD-GRASP results but the proposed method takes signifi-
cantly less computation time as compared to XD-GRASP. The results in Tables 2 
and 4 show that the proposed method takes significantly less computation time 
as compared to the XD-GRASP reconstruction. Furthermore, the receiver coil 
sensitivity information [12, 34–36] is required in the XD-GRASP method to 
reconstruct the MR image that may be difficult to estimate in some applications, 
whereas the proposed method does not require any such information.

The number of bins in both the binning (uniform and adaptive) techniques are 
selected heuristically. The number of bins should be optimal for better recon-
struction e.g., for fewer bins, the respiratory motion may not be resolved properly, 
and the motion blurring artifacts will remain in the reconstructed images. On the 
other hand, if the number of bins is too many then lesser numbers of spokes go 
into each bin and the final images will have under-sampling artifacts.

In this research work, it is observed that adaptive binning outperforms the uni-
form binning because adaptive binning contains some overlapping spokes in each 
bin (this is not possible in uniform binning) that increases the reconstruction data 
and reduces the artifacts that makes the reconstruction of the binned images easy. 
More bins can be formed using adaptive binning that reduces intra-bin motion in 
the final reconstructed images.

The proposed CNN architecture has eighteen layers, and the learning rate 
equals to 0.0001. Number of layers and learning rate are selected empirically to 
get good quality MR images. However, the results of the proposed method can be 
further improved with the availability of more data as the weights will be learned 
with more accuracy.

Table 4  Comparison of the computation time for the proposed method and XD-GRASP method for 
adaptively binned DCE golden-angle-radial liver perfusion data for dataset-1 and dataset-2 respectively

Dataset Reconstruction time for pro-
posed method

Reconstruction time for XD-
GRASP

Improvement (%)

1 0.34s 739.57s 99.95
2 0.39s 100.58s 99.61
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5  Conclusion

In this research, a deep learning algorithm based on transfer learning approach 
has been proposed to reconstruct the free breathing Golden-angle-radial liver 
perfusion data. As a proof-of-concept, a dedicated CNN architecture was imple-
mented to provide solutions to the complex problems. The results demonstrate 
that the proposed method provides almost similar reconstructed image quality 
as of XD-GRASP method; moreover, the proposed method shows significant 
improvement in computation time (up to 99% in our experiments) as compared to 
XD-GRASP method. The receiver coil sensitivity information is required in the 
XD-GRASP reconstruction which may be difficult to estimate in some applica-
tions, however, the proposed method does not require any such information.
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