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Abstract
Semiclassical magnetization dynamics in presence of magnetic fluctuations (includ-
ing the quantum ones) is derived for a strongly correlated electronic system in the 
region of the linear magnetic response. Landau–Lifshitz (LL) and Gilbert (G) type 
equations are obtained with the effective parameters depending on the type of mag-
netic fluctuations and their magnitude and applied to evaluation of electron para-
magnetic resonance (EPR) problem in Faraday geometry. It is shown that in the 
studied systems LL and G equations may not be equivalent except the case of weak 
relaxation, where consistent Landau–Lifshitz–Gilbert (CLLG) equation may be con-
sidered. Whereas G equation is affected by quantum fluctuations solely, the LL and 
CLLG equations may be renormalized by magnetic fluctuations of any nature. In 
contrast to G equation, the LL and CLLG magnetization dynamics may be char-
acterized by the anisotropic relaxation term caused by anisotropic magnetic fluc-
tuations. A consequence of anisotropic relaxation is the unusual polarization effect 
consisting in strong dependence of the EPR line magnitude on orientation of vec-
tor h of the oscillating magnetic field with respect to the crystal structure, so that 
EPR may be suppressed for some directions of h. In the case of dominating quantum 
fluctuations, the LL and CLLG equations may lead to a universal relation between 
fluctuation induced contributions to the EPR line width ΔW and g-factor Δg in the 
form ΔW∕Δg = a

0
kBT∕�B , where a0 is a numerical coefficient of the order of unity 

and independent of the quantum fluctuation magnitude. The applicability of the 
proposed semiclassical magnetization dynamics models to the EPR in spin nematic 
phases and detection by EPR method of a new group of magnetic phenomena – spin 
fluctuation transitions is discussed.
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1 Introduction

In recent years, considerable progress was achieved in application of electron para-
magnetic resonance (EPR) for studying various systems with strong electronic cor-
relations. Accurate theoretical consideration of dynamical magnetic susceptibility 
in magnetic field was provided in several important cases, namely for heavy fer-
mion and Kondo systems [1–6], including those with the hidden order [3–6], and 
an antiferromagnetic (AF) S = 1/2 one dimensional (1D) quantum spin chains [7, 8]. 
The analysis of the experimental situation shows that the EPR may be successfully 
treated in the framework of the semiclassical equation for the magnetization motion, 
including reasonably good description of the EPR line shape in metallic strongly 
correlated electron systems (SCES) [9], although they are essentially quantum mate-
rials. This, at least in part, may be explained by the fact that Landau–Lifshitz equa-
tion of motion, in spite of its semiclassical nature, it may be used for accounting the 
quantum two-level system of non-interacting spins in magnetic field H described 
by the Hamiltonian Ĥ = −

�

2
(σ,ωH) ⋅ (1 − i𝜆) , where σ is Pauli vector operator, 

ħωH corresponds to the levels spacing in Zeeman splitting and λ denotes relaxation 
parameter responsible for the levels broadening [10]. Interesting, that even in the 
most model case like quasi 1D AF S = 1/2 quantum spin chains experiment shows 
appearance of the EPR modes with unusual polarization characteristics, which are 
not foreseen in theoretical treatment [7, 8] but may be quantitatively explained by 
application of semiclassical spin dynamics with the anisotropic g-tensor and relaxa-
tion time [12].

Apparently, consistent and rigorous consideration of the EPR in SCES will 
remain rare due to complexity of the systems with concentrated and strongly inter-
acting magnetic system. Thus, the semiclassical approach may have an advantage, 
because it merely describes the magnetization rotation around a magnetic field and 
does not require exact accounting of the spins and itinerant electrons (if any) interac-
tions, which form the magnetic state and control temperature and field dependence 
of the magnetization M(H,T) in SCES. However, the realistic use of semiclassical 
spin dynamics in the considered case requires accounting of the magnetic fluctua-
tions, characteristic for various SCES and affecting the EPR physical picture [1, 2].

There are numerous works, where stochastic terms are added to semiclassical 
equation of magnetization motion. In most cases, fluctuations are supposed to origi-
nate from random magnetic field [13–16]. For spintronic applications, the equation 
of motion may contain a torque related to a spin current with a stochastic compo-
nent [14]. A separate problem is accounting of quantum fluctuations, which may 
be considered by adding random torques of special form [17]. It should be noted 
that according to [17] quantum fluctuation effects may be observed in the diapa-
son T < T∗ ∼ �𝜔H∕kB , which may imply high-frequency EPR experiments. Indeed, 
for �H∕2� ∼ 100 GHz characteristic temperature is T * ~ 4.5 K and therefore liquid 
helium temperatures are sufficient to examine influence of quantum fluctuations.

A typical way of accounting semiclassical spin dynamics with random vari-
ables consists in transition from an equation describing magnetization dynam-
ics to some Fokker–Planck type equation for the probability of the direction of 
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magnetization [13–17]. This idea is apparent in theoretical sense but may not be 
directly applicable to calculation of EPR in SCES for several reasons. At first, 
this approach assumes that the magnetization of the described object is saturated. 
This is not the case in almost any experiment, where EPR is studied, as long as in 
particular SCES the oscillating magnetization may not be saturated for particular 
magnetic field and temperature [9]. Secondly, saturated magnetization rules out 
possible fluctuations of the magnetization, which will certainly results in deplet-
ing of the physical picture of EPR in SCES. Thirdly, it is not clear how derived 
Fokker–Planck equation should be used to compute EPR, and actually this calcu-
lation was never carried out within this ansatz [13–17].

An alternative way of accounting magnetic fluctuations in the semiclas-
sical spin dynamics was suggested in [18]. This approach is based on the fact 
that semiclassical equation of the magnetization motion, taken “as is”, may be 
successfully used for quantitative description of the EPR line shape and finding 
full set of spectroscopic parameters including g-factor (hyromagnetic ratio), line 
width (relaxation parameter) and oscillating magnetization at the resonance field 
for the temperature at which experiment is conducted [9]. Therefore, if EPR in 
some SCES is detected, it means that applied oscillating magnetic field causes 
precession of the magnetization around the steady magnetic field. However, in 
SCES, semiclassical spin dynamics may be disturbed by magnetic fluctuations 
superimposed on regular motion. In this situation, it is assumed that the equation 
for the regular motion may be obtained by averaging of the equation of the mag-
netization motion with respect to magnetic fluctuations. In this case, the modified 
equation will contain effective parameters following from the averaging proce-
dure, which will depend on magnetic fluctuation characteristics [18]. Physically, 
this means that fluctuations are treated as a fast process with respect to the time-
scale of regular spin precession 2π/ωH. As it is shown in [18] this approach may 
be applied for accounting of quantum fluctuations. The application of Heisenberg 
uncertainty principle suggests that in this case it is sufficient to take into account 
quantum fluctuations of the magnetization along the external magnetic field and 
fluctuations of spin precession frequency [18].

In the present work, we are aimed at analysis of the general case, when mag-
netization and magnetic field appearing in the equation of motion may fluctuate in 
any direction in space and may be of either of quantum or non-quantum nature. The 
paper is organized as follows. It turns out that the specification of exact form of the 
relaxation term is of crucial importance for the studied problem. For that reason, 
we are starting with the problem of equivalence of the Landau–Lifshitz and Gil-
bert equations. Our analysis shows that these equations in fact appear essentially 
different, but in the case of weak relaxation it is possible to suggest a new consistent 
equation possessing Landau–Lifshitz form. This consideration is followed by short 
description of possible way to implement quantum fluctuations in semiclassical 
magnetization dynamics. After that, the results of averaging of various equations of 
motion together with the EPR computations are provided. We show that account-
ing of magnetic fluctuations may lead to EPR problem with an anisotropic relaxa-
tion. Physical consequences of the proposed model including unusual polarization 
effect and universal relations linking g-factor and the line width are discussed. In 
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the concluding part, we consider several experimental results relevant to suggested 
approach for EPR description in strongly correlated electron systems.

2  Landau–Lifshitz and Gilbert Equations

There are two semiclassical equations describing magnetization vector M dynamics 
in external magnetic field H, namely Landau–Lifshitz (LL) and Gilbert (G) equa-
tions. In the LL equation

the relaxation torque RLL is given by the double vector product

Here γLL and λ denote hyromagnetic ratio and relaxation parameter respectively. 
The G equation was purposed as an alternative to LL equation and has the form [18]

where γG is the hyromagnetic ratio, and the relaxation torque

is written in an analogy with the mechanical torque [�,�f ] = −
1

�
[�,

d�

dt
] for the vis-

cous friction force �f = −
�

�
= −

1

�

d�

dt
 depending on the relaxation time τ. However, 

on the contrary to mechanics, the relaxation parameter η in Gilbert Eqs. (3)–(4) has 
dimension of time rather than inverse time. Both Landau–Lifshitz and Gilbert equa-
tions keep the length of the magnetization vector M = |�|.

Equations  (1)–(2) and (3)–(4) are claimed to be equivalent [10, 19] and often 
referred to as Landau-Lifshits–Gilbert equation. Nevertheless, there is a fundamen-
tal difference between LL and G equation, as it was realized long ago [20]. The 
comparison of the relaxation torques RLL and RG is shown in Fig. 1, panels a–b. In 
spherical coordinates, RLL depends on the polar angle θ between vectors M and H 
(Fig. 1a) whereas RG depends on both polar θ and azimuthal φ angles (Fig. 1b). As 
long as directions of RLL and RG may not coincide (Fig. 1b), magnetization dynam-
ics described by LL and G equations should be different in general case.

The thesis of equivalence of LL and G equations is based on simple formal trans-
formation. When the derivative dM/dt from Eq. (1) is substituted into Eq. (3), the 
Gilbert equation may be rewritten as

(1)
d�

dt
= �LL[�,�] + �LL

(2)�LL = −� ⋅ [�, [�,�]].

(3)
d�

dt
= �G

[
�,� − �

d�

dt

]
= �G[�,�] − �G� ⋅

[
�,

d�

dt

]
,

(4)�G = −�G� ⋅ [�,
d�

dt
]

(5)
d�

dt
= �G(1 − ��M2)[�,�] − �G�LL� ⋅ [�, [�,�]].
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Thus, depending on which equation is considered primary, the LL holds if

and, respectively, G equation is valid for the values

When the magnetization is saturated, M = const, Eqs.  (6)–(9) merely represents 
the links between constants in LL and G equations, and from the formal mathemati-
cal point of view it is possible to consider both descriptions of spin dynamics as 
equivalent [10, 19]. However, the parameters in Eqs. (1)–(2) and (3)–(4) have physi-
cal meaning and formal manipulation with them poses certain questions. Indeed, 

(6)�LL =
�G

1 + (��GM)2
,

(7)� =
��

2
G

1 + (��GM)2
,

(8)�G = �LL +
�
2M2

�
,

(9)� =
�

�
2
LL

+ �2M2
.

Fig. 1  a Landau–Lifshitz type of relaxation; b Gilbert type of relaxation; c Faraday geometry for excita-
tion of EPR; d EPR in Faraday geometry in presence of magnetic fluctuations
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in the LL and G equation, the parameters γLL and γG describe rotation of the mag-
netization and the parameters λ and η are responsible for relaxation. Rotation and 
relaxation are different physical processes and, consequently, it is difficult to imag-
ine a situation where the aforementioned parameters may be mixed as suggested by 
Eqs. (6)–(9). In addition, for a quantum mechanical system, which spin dynamics we 
are aimed to describing on semiclassical level, the spacing between energy levels is 
ℏ�H , where �H = �H depends on the hyromagnetic ratio γ. Therefore, the hyromag-
netic ratio is a fundamental constant for the considered problem. Thus, it is logical 
to have the same parameters γLL and γG in LL and G equations, so that �LL = �G = � . 
However, the equality �LL = �G may be valid only in the case when relaxation pro-
cess is missing [Eqs. (6)–(9)]. In any case, the effective character of either γG or γLL 
should follow from some strong arguments.

We see that even for saturated magnetization M = const the requirement of LL 
and G equations formal equivalence appears as a supposition, which may look con-
troversial in physical sense. The situation of linear response M(H, T) = �0(T) ⋅ H is 
considered in the present work. Thus, if LL and G equations are assumed as equiva-
lent, the relations between the hyromagnetic ratios γLL and γG as well as between 
relaxation parameters λ and η become dependent on temperature and magnetic field 
[Eqs. (6)–(9)]. This is hardly possible for any general reasons and may be kept as an 
ad hoc assumption. Therefore, the standard formal transformation of the LL and G 
equations, which is typically used for establishing their equivalence [10, 19], is at 
least insufficient for making this kind of conclusion in the studied case.

However, the above consideration does not rule out the possibility of equivalence 
but rather shows that the approach [10, 19] is unsatisfactory. There is another way 
to investigate possible equivalence of LL and G equations, when they are considered 
as semiclassical images of the same quantum mechanical system. Consequently, it is 
necessary to calculate some physical property (in our case EPR) using both types of 
semiclassical magnetization dynamics and compare results.

In calculation of the EPR problem, we assume Faraday geometry (Fig. 1c). The 
magnetization vector M(t) and external magnetic field H(t) are given by

Equilibrium static magnetization M0 and steady magnetic field H0 are aligned 
along the z-axis. Forced magnetic oscillations occur in the x–y plane, where vec-
tors �(t) = � ⋅ mx(t) + � ⋅ my(t) and �(t) = � ⋅ hx(t) + � ⋅ hy(t) are located. Hereafter 
we assume that excitation magnetic field h(t) is linearly polarized that, for example, 
corresponds to the case of EPR in cylindrical cavity operating at  TE011 mode [9]. 
Static magnetization M0 and steady magnetic field H0 are linked via static magnetic 
susceptibility

and, as usual [21], the relations m(t) << M0 and h(t) << H0 hold, so that the 
problem is treated in the linear in m approximation. For harmonical excitation at 

(10)�(t) = �0 +�(t),

(11)�(t) = �0 + �(t).

(12)�0 = �0�0,
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frequency ω the excitation field and magnetic response may be taken in the form: 
�(t) ∼ exp(−i�t) , �(t) ∼ exp(−i�t) . Then the LL equation may be written as

where �H = �LLH0 . The relaxation frequency ν in Eq.  (13) depends on magnetic 
field

Here the characteristic frequency �0 = �
2∕� is introduced. When the system 

Eq.  (13) is solved, it is possible finding the radiation power absorbed in EPR: 
P = Im{� ⋅ �

∗} [21]. The result may be presented as a function of the dimensionless 
variable x = �∕�H and relaxation parameter �LL = �0�∕�0

The analogue of the system Eq. (13), which follows from the G equation, is essen-
tially different

as long as relaxation described by �G = �0�� is added not to the diagonal elements, 
but to the off-diagonal elements. In Eq.  (16) the frequency ωH equals �H = �GH . 
Thus, in Landau–Lifshitz equation, the relaxation is accounted by introducing com-
plex frequency of radiation, whereas the complex magnetization rotation frequency 
is characteristic to Gilbert variant of the magnetization dynamics. The solution of 
the system (16) gives

where x = �∕�H . In Eqs. (15) and (17) h0 is the magnitude of the oscillating mag-
netic field: h2

0
= h2

x
+ h2

y
.

In the limit of weak relaxation 𝛼LL, 𝛼G << 1 , the Eqs. (15) and (17) may be written 
in the same Lorentz form

(13)
(
−i� + � −�H

�H −i� + �

)
⋅

(
mx

my

)
= �0�H

(
−hy
hx

)
,

(14)� = �0�
2
H
∕�0.

(15)
PLL(x) = �0h

2
0

2�LL
(
1 − x2 +

�
2
LL

x2

)2

+ 4�2
LL

.

(16)
(

−i� −�H(1 − i�G)

�H(1 − i�G) −i�

)
⋅

(
mx

my

)
= �0�H

(
−hy
hx

)
,

(17)PG(x) = �0h
2
0

�G + �
3
G
+ �Gx

2

(x2 − 1 + �
2
G
)2 + 4�2

G

,

(18)PL(x) =
1

2�
⋅

�0h
2
0

(
1−x

�

)2

+ 1

,



1098 S. V. Demishev 

1 3

with α = αLL or α = αG. Therefore, if �LL = �G and �LL = �G = � Landau–Lifshitz and 
Gilbert equations may be considered as giving the same description of EPR. The 
direct matching of Eqs. (15), (17), (18) is presented in Fig. 1 for � = �LL = �G = 0.1 . 
It is visible that Landau–Lifshitz and Gilbert variants of semiclassical magnetization 
dynamics provide almost the same EPR line shape of nearly Lorentz type, with the 
weak difference at the wings of the P(x) function.

This coincidence breaks when the relaxation parameter α is increased. For α = 0.5 
the EPR line shape is essentially different in the LL and G cases and there is no sense to 
use Lorentz approximation at all (see inset in Fig. 2). The discrepancy between two 
types of semiclassical magnetization dynamics may be easily seen from comparison of 
the EPR absorption maximum position xmax dependence on the relaxation parameter α. 

Equation (15) suggests that in the LL case xmaxLL =

√
1

2
+

√
1

4
+ �

2
LL

 and for weak 

relaxation xmaxLL ≈ 1 + �
2
LL
∕2. At the same time, the EPR line obtained for Gilbert 

type semiclassical spin dynamics has maximum at xmaxG =

√
2

√
1 + �

2
G
− (1 + �

2
G
) . 

The expansion of the latter expression at low �G starts from �4
G
 rather than �2

G
 and gives 

xmaxG ≈ 1 − �
4
G
∕8 . It is apparent that in both LL and G cases the enhancement of 

relaxation parameter causes the increase of the EPR line width W ∼ �LL, �G , but the 
corresponding shift of the resonance position is different: the xmaxLL increases with 
�LL , whereas the xmaxG decreases with �G . Moreover, the position of the resonance 
maximum for the Gilbert-type magnetization dynamics reaches zero xmaxG(�G) = 0 at 
�G =

√
3 and therefore resonance EPR absorption may be completely destroyed by 

damping in contrast to LL case.

Fig. 2  Comparison of the solutions for EPR provided by Landau–Lifshitz (LL) and Gilbert (G) equations 
for two damping parameters α = 0.1 (main panel) and α = 0.5 (inset). The approximation of the EPR line 
by Lorentz function (L) is also shown
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The above consideration is illustrated by Figs. 3 and 4, where the evolution of 
the EPR line shape in the interval �LL, �G ≤ 1.5 for the Landau–Lifshitz and Gilbert 
equations is shown in Figs. 3, 4 respectively. The plot of the P(x, �) function normal-
ized on maximal absorption value Pmax(�) suggests that in the LL case, the enhance-
ment of relaxation causes the resonance shift and broadening, while the resonant 
form of P(x) is kept (Fig. 3). However, in the G case, the main effect is the EPR line 
broadening rather than shift of the resonance position. Additionally, the effect of the 
αG increase is more pronounced and for αG the P(x) function given by Eq. (17) trans-
forms into a broad non-resonant feature (Fig. 4). Therefore, the evolution with the 
relaxation parameter of the EPR line shape modeled by LL or G equations is indeed 

Fig. 3  Evolution of the EPR line shape by relaxation parameter for Landau–Lifshitz equation of mag-
netization motion (3D plot and contour map). The EPR line is normalized by the maximal absorption 
amplitude

Fig. 4  Evolution of the EPR line shape by relaxation parameter for Gilbert equation of magnetization 
motion (3D plot and contour map). The EPR line is normalized by the maximal absorption amplitude
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qualitatively different and, consequently, it is not possible to treat these descriptions 
of the semiclassical magnetization dynamics as equivalent, except the limit of weak 
relaxation. The EPR lines are broad in strongly correlated materials [9], i.e. the rela-
tion 𝛼LL, 𝛼G << 1 corresponding to a narrow resonance may not be applicable. Thus, 
it is possible to expect that for the EPR in SCES, Landau-Lishitz and Gilbert equa-
tions become different models, serving semicalassical images of different quantum 
systems providing an alternative description of the EPR line shape and resonance 
shift. As long as g-factor is proportional to the ratio �∕H , the Landau–Lifshitz 
type systems corresponds to the simultaneous increase of the g-factor and EPR line 
width W, whereas in the Gilbert type systems the enhancement of W is accompa-
nied by decrease of g-factor. Therefore, the most adequate model may be obtained 
by comparison with experiment. Below we will show that the discrepancy between 
LL and G equation is even deeper with respect to accounting of effect of magnetic 
fluctuations.

The above consideration allows suggesting an additional way for description of 
semiclassical magnetization dynamics in the case 𝛼 << 1 . In the absence of relaxa-
tion, Eqs. (1)–(2) and (3)–(4) are equivalent if the equalities �LL = �G = � hold. The 
adding of the relaxation may be done in an iteration manner by substituting dM/dt in 
the right part of Eq. (3) by �[�,�] , which lead to LL form

with the relaxation parameter � = �
2
� and �LL = � . Formally Eq. (19) corresponds 

to �LL = �G = �0�� and is valid if 𝛼2
LL
∕2 << 1 . Practically, the consistency between 

LL and G approaches may be kept for �LL, �G ≤ 0.1 (Fig. 2), and in this limit the 
“viscous friction type” relaxation introduced by Gilbert is kept.

Below we will consider Eq. (19) as a specific type of Landau–Lifshitz one with 
the special λ value without direct linking to the case 𝛼 << 1 and precise associa-
tion with the Gilbert type of relaxation. It will be shown in the next section that the 
choice of the relaxation parameter dependence on the hyromagnetic ratio γ is impor-
tant when quantum fluctuations are included in a semiclassical description. Follow-
ing its origin, the Eq. (19) is referred below as consistent Landau–Lifshitz–Gilbert 
equation (CLLG) and will be analyzed together with the Landau–Lifshitz and Gil-
bert equations.

3  The Accounting of Quantum Fluctuations

Following the idea proposed in [18] we suppose that Heisenberg uncertainty rela-
tions can be used to describe quantum fluctuations. Since magnetization dynam-
ics of a semiclassical system is considered, it is necessary to consider Heisenberg 
uncertainty principle in a semiclassical limit [22–24]. In this case, the Heisenberg 
inequalities must correspond to the minimum value of the product of uncertainties 
and therefore degenerate into equalities [22–24].

(19)
d�

dt
= �[�,�] − �

2
� ⋅ [�, [�,�]]
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In the considered semi-classical case, the uncertainty relation for the physical 
quantity � has the form [23]

where ΔE is the uncertainty of the energy of the system E. Taking φ as the angle of 
rotation around the magnetic field direction, we get

Uncertainty of the angle Δφ is connected with the uncertainty of related 
mechanical moment L [23]

where the system is assumed to rotate around the z-axis and ΔL stands for the uncer-
tainty of the z-component of the mechanical moment. Multiplication of both sides of 
expression (22) by e∕2mc links uncertainties of magnetic moment Mz and angle φ,

Here e and m are charge and mass of electron, c is light velocity. After exclud-
ing Δφ from Eqs. (21) and (23) and using expression ΔE = ħΔωH it is possible to 
obtain a relation linking ΔωH and ΔMz

In above consideration, the magnetic moment and its fluctuations are con-
sidered per magnetic ion. Thus, in the case of quantum fluctuations, the uncer-
tainties of the rotation frequency and the magnetic moment turn out to be pro-
portional to each other and quantum fluctuations of the magnetization ΔMz 
and the frequency ΔωH will be interconnected, as a result of which the aver-
age < Δ𝜔HΔMz > will be different from zero [18]. The quantum nature of the 
Eqs.  (20)–(24) suggests that the uncertainty ΔωH will be valid even in the case 
H = const. As long as �H = �H , frequency fluctuations will be taken into account 
by replacing γ → γ + Δγ in a semiclassical equation of motion, where Δγ corre-
sponds to fluctuations of the gyromagnetic ratio, which have a quantum nature. It 
follows from the above analysis that in the considered EPR geometry, the correla-
tor < ΔγΔM >  =  < ΔγΔMz > k may represent quantum fluctuation effects in the 
averaged equation of motion [18]. Apparently, the correlator < ΔγΔMz > is pro-
portional to the mean square of quantum fluctuations of magnetization < ΔMz

2 > , 
so that < Δ𝛾ΔMz >= 2𝛾 < ΔM2

z
> ∕𝜇B [18].

(20)ΔE ⋅ Δ� = ℏ
��

�t
,

(21)ΔE ⋅ Δ� = ℏ�H .

(22)ΔL ⋅ Δ� =
ℏ

2
,

(23)ΔMz ⋅ Δ� =
�B

2
.

(24)
Δ�H

�H

=
2ΔMz

�B

.
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4  Averaged Equations for the Magnetization Motion

4.1  The Model

Now fluctuations of the magnetization ΔM and magnetic field ΔH should be intro-
duced and therefore the Eqs. (10)–(11) are replaced by

In calculation of CW EPR we will keep in mind Faraday geometry as above. It 
is supposed that fluctuations represent fast motion with respect to magnetization 
rotation. For that reason, it is possible to perform averaging first and then apply 
time differentiation operation to m(t) representing relatively slow magnetization 
motion. This physical picture is shown in Fig. 1d schematically.

Following [18], the averaging procedure is performed under assump-
tion < ΔM >  = 0, < ΔH >  = 0 and postulated independence of the spatial direc-
tions. Therefore, the correlators < ΔPiΔQj > take the form: < ΔPiΔQj >∼ 𝛿ij , 
where ΔPi = ΔMi,ΔHi, dΔMi∕dt , ΔQj = ΔMj,ΔHj, dΔMj∕dt and �ij is Kronecker 
symbol. To simplify the problem, the correlators < ΔP

p

i
ΔQ

q

j
> for p, q, > 1 and 

< ΔP
p

i
ΔQ

q

j
ΔLl

k
> for p,q,l ≥ 1 are taken zero, which means that further calculation 

is limited by square corrections. Hereafter, we assume that any non-zero correla-
tor is an independent on time parameter of the model. In order to present the 
results in more compact form, the linear relations between M0, ΔM and H0, ΔH 
are supposed

Here χ0 is static susceptibility as above and χf is some effective parameter 
which is discussed later.

In the general case, the fluctuation of magnetization ΔM may include quan-
tum fluctuation. Quantum effects are taken into account by adding fluctuations of 
hyromagnetic ratio Δγ as described in Sect.  3. Thus, the average and following 
correlators < Δγ > ,< Δ𝛾ΔMx >,< Δ𝛾ΔMy > are equal zero, whereas the correlator 
< Δ𝛾ΔMz >≠ 0 is finite if ΔMz originates from quantum fluctuations [18]. In the 
present work, we additionally assume < Δ𝛾ΔHz >≠ 0 if �s ≠ 0 and keep square 
corrections only.

As in usual accounting of magnetic resonance [21], the case close to equilibrium 
||� −M0�

|| << M0 and the case of weak excitation h(t) <  < H0 are considered. 
Therefore, further calculations are done in linear in m approximation and the relaxa-
tion term is considered as independent of the oscillating magnetic field h. The aver-
aging of the Eq. (1) gives a solution for averaged oscillating magnetization m(t), and 
the absorbed power related to periodic motion in EPR experiment P may be 

(25)� = M0� + Δ� +�(t),

(26)� = H0� + Δ� + �(t).

(27)M0 = �0H0,

(28)Δ� = �fΔ�.
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estimated as P ∼
�H

2�

2�∕�H

∫
0

�(t)�(t)dt , where ωH is the magnetization rotation fre-

quency for averaged magnetization dynamics. For the harmonic excitation 
�(t) ∼ exp(−i�t) , it is possible to use the method of complex amplitudes as above 
and find P from the scalar product P ∼ Im{(�,�∗)} . It is worth noting that in the 
case χf ≠ 0 the baseline will contain fluctuation induced contribution of the order 
< Δ�2

> ∕𝜒f .

4.2  Averaged Magnetization Dynamics Without Relaxation

In the case λ, η = 0 all semiclassical equations of the magnetization motion are iden-
tical and the averaging of the left and right parts of the Eqs. (1), (3) and (19) gives 
accordingly:

Here and after the index QF underlines that corresponding correlators are non 
zero for quantum fluctuations only. The modified equation of motion follows from 
the Eqs. (29)–(30)

with the renormalized by quantum effects rotation frequency and excitation torque. 
The parameters a and b are given by

In expression (33) ΔMz represents contribution from quantum fluctuations solely. 
As before, the magnetization M0 is measured in units of Bohr magneton per mag-
netic ion.

(29)<
d�

dt
>=

d�

dt
= �

dmx

dt
+ �

dmy

dt
,

(30)

< (𝛾 + Δ𝛾)[�,�] >=

[
𝛾H

0

(
1 +

< Δ𝛾ΔHz >QF

𝛾H
0

)
my − 𝛾M

0

(
1 +

< Δ𝛾ΔMz >QF

𝛾M
0

)
hy

]
⋅ �

+

[
−𝛾H

0

(
1 +

< Δ𝛾ΔHz >QF

𝛾H
0

)
mx + 𝛾M

0

(
1 +

< Δ𝛾ΔMz >QF

𝛾M
0

)
hx

]
⋅ �.

(31)
dmx

dt
= �H(1 + b)my − �M0(1 + a)hy,

(32)
dmy

dt
= −�H(1 + b)mx + �M0(1 + a)hx,

(33)a =
< Δ𝛾ΔMz >QF

𝛾M0

= 2
< ΔM2

z
>QF

𝜇BM0

= 2
M0

𝜇B

< ΔM2
z
>QF

M2
0

,

(34)b =
�0

�f

a.
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4.3  Averaged Gilbert Equation

The result of the relaxation term averaging in Gilbert equation [formula (4)] can be 
easily foreseen. Indeed, vector product (4) mixes different projections of ΔM and 
dΔM/dt on the coordinate axes. For that reason the only possible effect may orig-
inate from replacement γ → γ + Δγ, i.e. from quantum fluctuations. The correlator 
< Δ𝛾 ⋅ dΔMz∕dt > , which may be written as < Δ𝛾 ⋅ dΔ𝛾∕dt > 𝜇B∕2𝛾 with the help 
of Eq. (24), requires some discussion. The above supposition that time differentia-
tion corresponds to a “slow variable” and non-zero correlators are not functions of 
time leads to an estimate < Δ𝛾 ⋅ dΔMz∕dt >≈ (𝜇B∕4𝛾)d < Δ𝛾2 > ∕dt = 0 . Finally, 
Gilbert equation for Faraday geometry in linear approximation reduces to the aver-
aged system

Application of the complex amplitudes method for harmonic excitation 
�(t) ∼ exp(−i�t) gives the solution of the Eqs. (35)–(36) for EPR absorbed power 
PG (x) in a form similar to that provided by Eq. (17) with the variable x renormal-
ized by quantum fluctuations x = �∕�H(1 + b) , and replacements 𝜒0 → 𝜒0 and 
𝛼G → 𝜂𝜔𝜒0 , where 𝜒0 = 𝜒0(1 + a)∕(1 + b).

4.4  Averaged Landau–Lifshitz and Consistent Landau–Lifshitz‑Gilbert Equation

For the averaging of the double vector product in the expression for the LL relaxa-
tion term, it is useful to consider transverse fluctuations Δ�

⊥
 , Δ�

⊥
 in x–y plane and 

the longitudinal ones along z-axis Δ�|| = ΔMz� and Δ�|| = ΔHz� . The result may 
be presented in the form

where �
⊥
= mx� + my� and �|| = mz� . The terms in the right part of Eq.  (37) are 

given by

(35)
dmx

dt
= �H(1 + b)my − �M0(1 + a)hy + ��M0(1 + a)

dmy

dt
,

(36)
dmy

dt
= −�H(1 + b)my + �M0(1 + a)hx − ��M0(1 + a)

dmx

dt
.

(37)�LL(�) = �
⊥
(�

⊥
) + �||(�||) + �0,

(38)�
⊥
= −𝜆H0M0

(
1 +

< Δ� ⋅ Δ� >

H0M0

)
�

⊥
+ 𝜆 < Δ�

⊥
(Δ�

⊥
,�

⊥
) >

(39)�|| = −𝜆 < Δ�
⊥
⋅ Δ�

⊥
> �||

(40)�0 = −𝜆M0 < Δ�2
⊥
>

(
1

𝜒f

−
1

𝜒0

)
⋅ �.
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The consistency of the proposed model requires R0 = 0, which is possible if either 
�f = �0 , or < Δ�2

⊥
>= 0 . Therefore, the LL relaxation term strongly depends on 

the spatial characteristics of magnetic fluctuations. When fluctuations occur solely 
along the external magnetic field direction (z-axis), i.e. the only projection ΔMz is 
non-zero, the relations R0 = 0 and R||= 0 hold simultaneously and the fluctuation 
contribution to R⊥ depends on the ΔMz mean square

The Eq.  (41) is valid for any χ  f, which means that in this case the considered 
model may have an additional parameter controlling the effect of magnetic fluctua-
tions, which may be enhanced or suppressed depending on the relation between χ0 
and χf.

In the transverse case Δ�
⊥
,Δ�

⊥
≠ 0 and the requirement R0 = 0 may be fulfilled 

the case �f ≡ �0 only. Than, the Eq. (38) is reduced to

It is visible that anisotropic fluctuations in x–y plane with < ΔM2
x
>≠< ΔM2

y
> 

may induce magnetization dynamics with anisotropic relaxation. This results in new 
effects in EPR described in the next section.

Averaging of the relaxation term in CLLG Eq. (19) results in appearance of the 
additional terms in Eqs.  (41, 42) which may originate from quantum fluctuations 
due to replacement γ → γ + Δγ and accounting the correlator < Δ𝛾ΔMz >QF and 
average < Δ𝛾2 > . The modified Eq. (42) acquires the form

with �̃� = 𝜂𝛾
2 and

for the longitudinal case when the fluctuations in x–y plane are missing. The trans-
verse fluctuations give accordingly

(41)�
⊥
= −𝜆H0M0

(
1 +

𝜒0

𝜒f

< ΔM2
z
>

M2
0

)
�

⊥
.

(42)

�
⊥
= −𝜆H

0
M

0

[(
1 +

< ΔM2

z
> + < ΔM2

y
>

M2

0

)
mx ⋅ �

+

(
1 +

< ΔM2

z
> + < ΔM2

x
>

M2

0

)
my ⋅ �

]
.

(43)�
⊥
= −�̃�H0M0[

(
1 + cx

)
mx ⋅ � +

(
1 + cy

)
my ⋅ �]

(44)cx,y =
< Δ𝛾2 >

𝛾2
+

𝜒0

𝜒f

(
2
< Δ𝛾ΔMz >QF

𝛾M0

+
< ΔM2

z
>

M2
0

)

(45)cx,y =
< Δ𝛾2 >

𝛾2
+ 2

< Δ𝛾ΔMz >QF

𝛾M0

+
< ΔM2

z
> + < ΔM2

y,x
>

M2
0

.
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Note that the averages < ΔM2
z
> , < ΔM2

x
> and < ΔM2

y
> in the above formu-

lae include all possible magnetic fluctuations including quantum ones. At the same 
time, the correlator < Δ𝛾ΔMz >QF depends on the “quantum part” of ΔMz only.

The averaging of the relaxation term allows finding averaged LL and CLLG 
equations for the semiclassical magnetization dynamics, which may be applied for 
the case of EPR in Faraday geometry

Here �0 = ��0�
2
H
∕�2 for LL equation and �0 = ��0�

2
H

 for CLLG equation.

5  Electron Paramagnetic Resonance with the Anisotropic Relaxation 
Term

The computation of the absorbed power in CW EPR with the help of the system 
Eqs. (46)–(47) for a harmonic excitation at frequency ω and linearly polarized vector 
h gives

where

and α0 equals ��0�∕�
2 or ��0� for LL and CLLG equations respectively. In Eq. (48) 

� is the angle between x-axis and vector h, so that hx = h0 cos� and hy = h0 sin� . 
In EPR oscillation mode, the corresponding amplitudes for the projections of the 
vector m are

(46)
dmx

dt
= �H(1 + b)my − �M0(1 + a)hy − �0(1 + cx)mx,

(47)
dmy

dt
= −�H(1 + b)my + �M0(1 + a)hx − �0(1 + cy)my.

(48)P(x) = P0

�(1 + z){[�(1 − z)∕2] sin 2� + 1}

(1 − x2 + �2z2∕x2)2 + �2(1 + z)2
,

(49)P0 = �0

1 + a

1 + b
h2
0
,

(50)x = �∕�H(1 + b),

(51)z =
1 + cy

1 + cx
,

(52)� = �0

1 + cx

(1 + b)2
,
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Here m0 = �0h0(1 + a)∕(1 + b).
We see that for the anisotropic relaxation term and LL or CLLG magnetiza-

tion dynamics the EPR line may depend on the angle � if z ≠ 1 , i.e. the averages 

(53)mx = m0Re

{
sin� − (z�∕x − i ⋅ x) cos�

(�∕x − i ⋅ x)(z�∕x − i ⋅ x) + 1

}
,

(54)my = m0Re

{
sin� + (�∕x − i ⋅ x) cos�

(�∕x − i ⋅ x)(z�∕x − i ⋅ x) + 1

}
.

Fig. 5  Polarization effect in EPR following from Landau–Lifshitz equation and consistent Landau–Lif-
shitz-Gilbert equation with anisotropic relaxation (3D plot and contour map). The case of relatively nar-
row EPR line (α = 0.3) and moderate anisotropy (z = 0.5)

Fig. 6  Polarization effect in EPR following from Landau–Lifshitz equation and consistent Landau–Lif-
shitz-Gilbert equation with anisotropic relaxation (3D plot and contour map). The case of broad EPR line 
(α = 3) and moderate anisotropy (z = 0.5)
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< ΔM2
x
> and < ΔM2

y
> are different. In the isotropic case, when transverse fluctua-

tions are identical ( < ΔM2
x
>≡< ΔM2

y
> ), or in the longitudinal case, the parameter 

z equals 1 and dependence on the orientation of vector h in x–y plane is lifted in 
Eq. (48). Thus, for z = 1 the P(x) has the same functional form as PLL(x) given by 
Eq. (15).

The dependence on � constitutes a new polarization effect in EPR, which may 
become pronounced for a broad EPR lines characteristic for SCES (Figs. 5, 6). It is 
visible, that for z = 0.5 and relaxation parameter α = 0.3 only weak modulation of the 
EPR line magnitude and width induced by the change of location of vector h occurs 
(Fig. 5). However, when α is increased up to α = 3 and EPR line becomes broad, it 
is possible expecting strong polarization effect with 180° symmetry for the same 
anisotropy parameter z = 0.5. According to Fig. 6 the EPR line may be almost sup-
pressed for certain angle �.

Sometimes it is stated that magnetic resonance probes eigen modes of magnetic 
oscillations, which are often described as a circular rotation of the magnetization 
around an external field [21]. This is correct for the modes without damping, but in 
SCES damping can never be neglected. Additionally, the EPR problem is a prob-
lem of forced oscillations rather than eigen modes problem. Therefore, it may be 
important to take into account that real magnetic oscillation mode may be far from 
round precession. The solution given by Eqs.  (53)–(54) is visualized in Figs. 7, 8 
for the two cross-sections of the P(x) plot in Fig. 6, illustrating x dependence cor-
responding to the fixed angle � at which EPR line is the biggest (Fig. 7) and show-
ing angle dependence for the x = const corresponding to the position of the P(x) 
maximum (Fig. 8). The trajectory of the vector M in x–y plane has a complicated 

Fig. 7    Evolution of the magnetic oscillations mode by the parameter x = �∕�H
0
(1 + b) for the angle 

� = 45
o between vector h and x-axis corresponding to the maximal amplitude of EPR in Fig. 6. The val-

ues of relaxation α and anisotropy z parameters are the same as in Fig. 6
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quasi-elliptical shape with noticeable elongation and, for certain values of param-
eters, become almost linear.

6  Fluctuation Induced Universal Relations Between EPR Parameters

In the framework of LL or CLLG magnetization dynamics, special links between 
the EPR line parameters may appear. For example, let us consider a situation when 
quantum fluctuations dominate and relaxation is weak. Then the resonance condi-
tion is � ≈ �H(1 + b) and, as long as g-factor proportional to the ratio �∕H , the 
fluctuation induced correction to this parameter will be Δg ≈ g0 ⋅ b . In the case of 
an isotropic relaxation term, the correction to EPR line width may be estimated as 
ΔW = W0cx,y . Here, g0 and W0 denotes the g-factor value and EPR line width unper-
turbed by magnetic fluctuations. If the CLLG magnetization dynamics is assumed, 
it is possible to estimate < Δ𝛾2 > ∕𝛾2 ≈ (Δg∕g0)

2 . Assuming small corrections to 
the g-factor, it is possible to neglect this term in Eqs.  (44)–(45). In this situation, 
the Eqs.  (33)–(34), (41)–(42) and (44)–(45) suggest that either for longitudinal or 
transverse fluctuations the ratio ΔW/Δg is independent of χf and χ0, and does not 
include possible temperature dependence caused by these parameters. Combining 
the aforementioned equations and Eq. (27) it is possible to come to the formula link-
ing magnetic fluctuation induced corrections

Fig. 8   Evolution of the magnetic oscillations mode by angle � between vector h and x-axis. The param-
eter x = �∕�H

0
(1 + b) = 1.5 corresponds to the section of EPR absorption in Fig. 6 passing trough max-

ima. The values of relaxation α and anisotropy z parameters are the same as in Fig. 6
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where the coefficient n equals 2 for CLLG equation and equals 1 for LL equa-
tion. The coefficient k is the same for CLLG and LL equations and acquires the 
values k = 2 for the longitudinal fluctuations and k = 1 for transverse fluctuations. 
The simplest estimate can be done assuming Curie–Weiss magnetic susceptibility 
�0 = (g0J�B)

2∕kBT  for a magnetic ion with a quantum number J and level broad-
ening of the order ~ kBT corresponding to ΔW ∼ 2kBT∕�B in the units of magnetic 
field. After that we get

The second term in brackets may be neglected if temperature is low enough and 
in this diapason a universal relation should hold

where dependence of the material type appears via unperturbed g-factor g0 only. It 
is worth noting that the relation (57) does not depend on the fluctuations magnitude 
and is characterized by numerical coefficient a0 of the order of unity.

Landau–Lifshitz magnetization dynamics may lead to another type of universal 
relation between the EPR line width and g-factor. In the intermediate range of α, the 

dependence xmaxLL =

√
1

2
+

√
1

4
+ �

2
LL

 may be close to linear one, xmaxLL ∼ �LL , 

whereas W ∼ �LL as usual. This case may correspond to the case

when line width and g-factor shift are proportional to each other and it is reasonable 
to expect that the proportionality coefficient is almost independent of temperature.

7  Conclusions: The Averaged Magnetization Dynamics 
and Experiment

The result of the present work may be formulated as obtaining simple analytical 
relations for relaxation parameters containing contribution of the magnetization 
fluctuation magnitude in the cases of Gilbert, Landau–Lifshitz and consistent Lan-
dau–Lifshitz–Gilbert equations for semiclassical magnetization dynamics in the 
region of linear magnetic response. In spite of the common belief, for noticeable 
relaxation leading to broad EPR lines the solutions provided by Landau–Lifshitz 
and Gilbert equations are essentially deviate and therefore various phenomenologi-
cal equations for magnetization dynamics may reflect different physical situations 

(55)
ΔW

Δg
≈

W0

g0

(
n +

�B

k�0H0

)
,

(56)
ΔW

Δg
∼

2

g0

(
n +

kBT

k(g0J)
2�BH0

)
kBT

�B

.

(57)
ΔW

Δg
∼ a0 ⋅

kBT

�B

, a0 =
2n

g0
,

(58)
W

Δg
≈ const,
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in EPR in strongly correlated materials. We may expect that whereas Gilbert equa-
tion is fully controlled by quantum fluctuations only, Landau–Lifshitz and consistent 
Landau–Lifshitz–Gilbert equations depends on magnetic fluctuations of any nature. 
Therefore, the right choice of semiclassical spin dynamics description in a strongly 
correlated system with the magnetic fluctuations may be of crucial importance.

This means that the final judgment depends on experiment, as usual. For that rea-
son, the available to date EPR experiments probably relevant to considered mod-
els should be considered. We wish to mark, that the Gilbert equation is intuitively 
expected in the paradigm of the damped resonance, because in this model the EPR 
line broadening accompanied by negative g-factor shift, i.e. by an increase of the 
resonance magnetic field measured at ω = const. From that point of view, a vari-
ety of various systems (not necessarily the strongly correlated ones) should display 
such behavior [25]. In this sense, the opposite behavior provided by Landau–Lifshitz 
and consistent Landau–Lifshitz-Gilbert equations may look controversial. However, 
there is a variety of strongly correlated systems which seems following predictions 
for these type of models.

Firstly, the variant of the averaged LL model with the relaxation parameter λ 
proportional to the hyromagnetic ratio γ and dominating quantum fluctuations sug-
gested in [18] was successfully applied for description of high frequency (60 GHz) 
EPR in spiral magnet MnSi [26]. However, as we see, the assumed proportional-
ity λ ~ γ is a formal result of making LL and G equations equivalent     [10], which 
hardly has proper justification. In view of more rigorous treatment in the present 
work, the case studied in [26] corresponds to either G or CLLG equation with quan-
tum fluctuations of magnetization and missing fluctuations of magnetic field, i.e. 
with the parameter b = 0 [Eqs. (30)–(34)].

When magnetization dynamics of Landau–Lifshitz type is chosen, several inter-
esting opportunities emerge. For example, an anisotropic relaxation may appear as 
a consequence of the broken equivalence between the fluctuations < ΔM2

x
> and 

< ΔM2
y
> . The model predicts new polarization effect, when excitation of EPR may 

depend on the direction of oscillating magnetic field as described in the Sect. 5. This 
unusual behavior is reported for a quasi one dimensional quantum spin chain sys-
tem  CuGeO3 doped with Co impurity long ago [27, 28] and has been quantitatively 
explained by formal introducing of the anisotropic relaxation frequency and g-tensor 
in the recent work [12]. The present study suggests a possible physical reason for 
appearance of an anisotropic relaxation.

It should be added that the considered polarization effect may serve as a marker 
of spin nematic state in the systems with the hidden quadrupole order [29]. In 
this case, the paramagnetic phase is isotropic with respect to magnetic fluctua-
tions: < ΔM2

x
>=< ΔM2

x
> , whereas the phase with the quadrupole order is char-

acterized by different magnetic fluctuation magnitude along x and y axes so that 
< ΔM2

x
>≠< ΔM2

x
> [29]. Probably the best study of spin nematic effect is car-

ried for strongly correlated metal  CeB6, where it was predicted in theory [29] and 
observed experimentally [30, 31]. The phase with hidden order in this material is 
characterized for T < 3 K by an anisotropic line width depending on the orientation 
of steady magnetic field with respect to the crystal axes [29] which may be explained 
by the complex interplay between ferromagnetic and antiferromagnetic correlations 
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affecting magnetization fluctuation amplitude [5, 6, 9]. However, the possibility of 
the polarization effect in EPR spectra was not investigated in  CeB6.

For the  CuGeO3:Co the EPR mode with pronounced polarization effect devel-
ops below T ~ 40 K and, like in  CeB6, depends on the steady magnetic field direc-
tion [26, 27]. At the same time, the theoretical supposition that the unusual proper-
ties of the magnetic resonance in  CuGeO3:Co may be related to spin nematic effect 
was never done even at qualitative level. Thus, in our opinion, the situation with the 
polarization effect in spin nematic phases requires clarification and further experi-
ments in this direction may be rewarding. Nevertheless, it is possible to point out 
that in  CuGeO3:Co the EPR lines are strongly broadened [26, 27] and in  CeB6 the 
EPR lines are relatively narrow [30] at low temperatures. According to our analysis 
in Sect. 5, the narrow EPR line is less sensitive to orientation of the oscillating mag-
netic field (Figs. 5, 6) and therefore the proposed model at least does not contradict 
to experimental data available to date.

The universal link between some contributions to the line width and to the g-fac-
tor were first obtained as a consequence of Oshikawa–Affleck theory [7, 8] in the 
Refs. [32, 33]. The ratio of the corrections ΔW to Δg caused by presence of stag-
gered field in one dimensional antiferromagnetic S = 1/2 shin chain has the form 
(57) with the proportionality coefficient equal to 1.99 [32, 33]. Interesting that for 
CLLG magnetization dynamics and  g0≈2 the coefficient in Eq.  (57) is almost the 
same as in Oshikawa-Affleck theory: 2n∕g0 ≈ 2 . However, physical reasons causing 
the universal relations in [7, 8] and in the present study are essentially different. In 
Oshikawa-Affleck theory the EPR line width appears in exact solution for particular 
spin chain system as a result of symmetry breaking caused by anisotropic terms in 
spin Hamiltonian [7, 8] and consequently has a regular nature. In our model, the 
universal relation (57) is completely quantum magnetic fluctuation driven and is 
not confined by one dimensional systems and thus being more general. At the same 
time, both “sources” of universal relations may lead to close proportionality coeffi-
cients, thus making interpretation of experimental data ambiguous.

It is possible to add that relation W/Δg = const [Eq.  (58)], which may be 
expected in LL model, was observed in the paramagnetic phase of  GdB6 [34]. 
Therefore, further look for universal relations between EPR parameters may 
become interesting topic for future experimental and theoretical investigations.

As a concluding remark, it is possible to say that the relation between relaxation 
parameter giving EPR line width and magnitude of magnetic fluctuations is charac-
teristic for any type of magnetization dynamics considered. This justifies the applica-
bility of EPR for studying of a new group of magnetic phenomena – spin fluctuation 
transitions [9, 35, 36]. A spin-fluctuation transition is a change in the characteristics 
of magnetic fluctuations (in many cases having an abrupt character) under the influ-
ence of control parameters (for example, temperature or material composition) that 
is not directly related to the formation of phases with long-range magnetic order [9, 
35]. At present, spin fluctuation transitions are observed in helical magnets MnSi 
and  Mn1-xFexSi, magnetic semiconductors  Hg1–xMnxTe, doped compensated semi-
conductors Ge:As(Ga), and strongly correlated metal with hidden order  CeB6 [35, 
36]. The results of the present work show that EPR is the powerful and direct tool 
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for investigation of these interesting magnetic phenomena as long as parameters of 
magnetic resonance contains direct information about magnetic fluctuations.
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