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Abstract
The importance of photochemical reactions proceeding through the formation of 
spin-correlated radical pairs is becoming increasingly apparent, due to their roles in 
biological magnetic field sensing and optoelectronic devices. Here, we consider the 
spin-dynamics of triplet born radical pairs under varying weak magnetic field con-
ditions and in doing so provide a simplified model for understanding the low field 
effect by identifying triplet states that cannot undergo coherent mixing to singlet 
states in zero magnetic field.

1  Introduction

The Radical Pair Mechanism (RPM) was developed in the 1960s [1–3] to explain 
the anomalous line intensities observed in electron spin resonance (ESR) [4] and 
Nuclear Magnetic Resonance (NMR) experiments [5–7]. The RPM suggested that 
reactions involving spin correlated radical pairs (RPs) should show reaction rates 
and yields sensitive to the application of external magnetic fields, and such behav-
iour was subsequently observed experimentally in the mid-1970s [8, 9]. Subse-
quently, an entire field known as Spin Chemistry developed, based around phenom-
ena exhibited by RPs. The RPM has received significant attention in recent years 
due to its importance in potentially explaining the magnetoreception ability of many 
animals and its applications in photoactive solid state devices such as light emitting 
diodes and solar cells. With regard to the sensitivity of biological systems to very 
weak magnetic fields, including the geomagnetic field and environmental electro-
magnetic fields, a particular feature of RP behaviour, known as the low field effect 
(LFE) lies at the heart of the hypothesis of a RP-based interaction mechanism.

Almost all theoretical studies of RPs model the effects of magnetic fields on 
the time evolution of an initially singlet RP populations undergoing spin-selective 
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reaction to form products. Recently we have performed Liouville-state-based simu-
lations on reactions of both singlet and triplet born RPs. These simulations reveal 
interesting features, some of which we present here. Examination of the fates of dif-
ferent spin states of triplet born RPs provides a simpler way to visualise and explain 
the so-called low field effect (LFE) which is believed to be responsible for biological 
responses to the geomagnetic field.

2 � Triplet Eigenstates of Radical Pairs Under Varying Magnetic Field 
Conditions

In general, RPs generated in thermal processes from diamagnetic molecules are 
born in the singlet state, while photochemically generated RPs may be formed 
in an initially singlet or triplet state, depending on the photophysics of the RP 
precursor. Some molecules generate both singlet and triplet born RPs on photo-
excitation, e.g. [10] and many molecules can generate triplet RPs with an une-
qual distribution of the three triplet substates, T+1 , T0 and T−1 through the Triplet 
Mechanism (TM) [11]. Here, we consider only triplet born RPs with equal popu-
lations of the triplet substates (i.e. [T+1] = [T0] = [T−1] ). A common simplified 
model for a radical pair in zero and applied magnetic field due to the Zeeman 
effect is given in Fig.  1a. In this model, in zero field the S state can undergo 
coherent spin-state mixing with all three triplet states. However, in the presence 
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Fig. 1   a Common simple model used to represent the changes in singlet-triplet spin-state mixing for a 
RP in zero and applied field. b Simple reaction model used in the simulations in this work. As no relaxa-
tion processes are modelled, triplet eigenstates of the RP remain trapped. c Time dependence of the RP 
concentration for a RP with a single spin-1/2 nucleus in a magnetic field of 500 mT. d Magnetic field 
dependence of the RP concentration remaining after 10 microseconds. At zero field [RP] = 1/3, at 0.1 
mT, [RP] = 2/3 and at 50 mT, [RP]=1/3
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of a magnetic field, the T+1 state is raised and the T−1 state lowered in energy rela-
tive to the S and T0 states through the Zeeman interaction. When this energy sepa-
ration becomes large relative to the hyperfine couplings in the RP that drive S − T  
mixing, then the T+1 and T−1 states become isolated and so coherent S − T+1 and S 
− T−1 mixing becomes impossible. What this means is that for a singlet born RP, 
two thirds of the possible triplet states are inaccessible, and only mixing with the 
[T0] states is possible. For a (non-polarised) triplet born radical pair, two-thirds 
of the RPs are born in states ( [T+1] and [T−1] ) that are completely incapable of 
undergoing mixing to the singlet state and so remain trapped in the triplet state.

Based on this simple model, we can undertake a thought experiment. Let us 
imagine a (not realistic) scenario in which a RP ensemble is born in the triplet 
state and undergoes coherent spin-state mixing. We allow singlet pairs to react 
while triplet pairs undergo no reaction. We then wait until the reaction is com-
plete and the system undergoes no further change. According to the simple RP 
reaction model, if this process is performed in a sufficiently strong magnetic field, 
at the end of the reaction, we would expect to find one third of our initial ensem-
ble as singlet state products and two thirds of our ensemble still as unreacted 
radical pairs—half in the T+1 state and half in the T−1 state. For the zero field case, 
following the simple model, we might expect to find all the initial ensemble as 
singlet state product. We will see that this is not actually the case, but the existing 
model carries this implication. It is, however, a very simple and intuitive way of 
thinking about how the RPM leads to magnetic field effects, especially for non-
specialists and can be used in simple kinetic treatments of reactions proceeding 
through RPs.

In reality, it is also well known that the real picture is not this simple. In particu-
lar, there is an additional effect, known as the low field effect (LFE), which explains 
that the efficiency of singlet–triplet mixing is not optimal in zero field and can 
increase with the application of a very weak magnetic field. It is this phenomenon 
which is believed to be responsible for the magnetosensitivity of plants and animals 
to the geomagnetic field. Brocklehurst and McLauchlan [12] explained this effect 
based on the conservation of spin angular momentum, while the precise mechanism 
was corrected and detailed with great clarity recently by Lewis et al. [13]. In view of 
this, one can ask the simple question of whether our earlier prediction for the result 
of the thought experiment in zero field is correct or not, and what the result would 
be in a weak field where the maximum LFE is observed. Put another way, do zero 
and weak magnetic field conditions simply deplete the RP population and increase 
the singlet product populations at different rates, or are some triplet states unable to 
go undergo mixing to the singlet state, remaining trapped as triplet RPs, as is seen at 
higher fields due to the Zeeman effect?

To answer this question, the simplest approach is to perform the thought experi-
ment directly, by simulating the spin dynamics using the standard Liouville space 
density matrix approach. We create a density matrix containing two blocks, one 
which represents the RP state and the other the singlet product. We begin by popu-
lating only the RP state with a density matrix representing an even mixture of T+1 , 
T0 and T−1 states. The density matrix then evolves according to the Liouville von 
Neumann equation.
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This consists of a commutator constructed from the spin-Hamiltonian opera-
tor describing coherent spin-state mixing in the RP driven by the electron-nuclear 
hyperfine interaction and the electron Zeeman effect, and an anticommutator con-
structed from the Haberkorn operator [14] which is set up to allow reaction only 
from singlet RPs with a rate coefficient, kS and which transfers population from the 
RP block to the singlet product block. The code written to perform the simulations 
used functions from the Spinach [15] codebase.

No electron–electron exchange or dipolar interactions are included and the g values 
of both radicals in the pair are set equal for clarity. No relaxation term is included 
and so any triplet states that cannot undergo coherent singlet-triplet mixing remain 
trapped in the RP state. Figure  1b shows the reaction scheme described by the 
simulations.

Figure 1c shows the time dependence of the RP and singlet product state popula-
tions for a RP with a single spin-1/2 nucleus on radical 2, with a hyperfine coupling 
of (1 mT) in a magnetic field of 500 mT. At this field, the T+1 and T−1 states are com-
pletely isolated energetically from the S and T0 states and as predicted, the final distri-
bution is two thirds RP and one third singlet product. Table 1a shows the RP density 
matrix at the end of the reaction [the initial density matrix has values of 1/6 along the 
main diagonal for all 6 triplet states and 0 for the 2 singlet states (positions 3, 3 and 
4, 4)] and illustrates clearly that both T+1 states and both T−1 states are the ones that 
remain and that both initially T0 states have reacted.

Figure 1d shows the magnetic field dependence of the final RP population when the 
reaction is complete. It is apparent that under no magnetic field conditions do all the 
triplet born RPs react. In this particular case, at zero field, 2/3 of the population remains 
in the triplet state and most efficient reaction occurs at around 0.1 mT at which 1/3 of 
the population remains unreacted, which is a direct observation of the LFE. Let us now 
explain these observations. To do so, we begin by considering the spin eigenstates of 
this RP in zero field. These have been presented before by Timmel et al. [16] and in 
any arbitrary field by Lewis et al. [13] much more recently. Following the state order-
ing of the latter, the eigenstates in zero field can be written in the singlet-triplet basis as 
follows:

(1)i�
𝜕𝜌(t)

𝜕t
= [Ĥ, 𝜌(t)] + {K̂, 𝜌(t)}

(2)Ĥ = ĤZeeman + Ĥhyperf ine

(3)= 𝜇BB(geŜ1z + geŜ2z) +
∑

i

aiŜ1 ⋅ Î1i +
∑

j

aiŜ2 ⋅ Î2j

(4)K̂ =
kS

2
P̂S

(5)�1⟩ = �T+1�2n⟩
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(6)�2⟩ = 1√
2

(�T0�2n⟩ + �S�2n⟩)

(7)�3⟩ = 1

2
(�T0�2n⟩ − �S�2n⟩) +

1√
2

�T+1�2n⟩

(8)�4⟩ = 1

2
(�T0�2n⟩ − �S�2n⟩) −

1√
2

�T+1�2n⟩

Table 1   Density matrices presented in the singlet–triplet basis at the end of the spin-dynamic simulations 
for the single spin-1/2 nucleus RP with hyperfine coupling of 1 mT in (a) a 500 mT field, (b) a 0.5 mT 
field and (c) zero field

(a) |T + 1𝛼2n > |T + 1𝛽2n > |S𝛼2n > |S𝛽2n > |T0𝛼2n > |T0𝛽2n > |T − 1𝛼2n > |T − 1𝛽2n >

|T + 1𝛼2n > 0.16667 0 0 0 0 0 0 0
|T + 1𝛽2n > 0 0.16667 0 0 0 0 0 0
|S𝛼2n > 0 0 0 0 0 0 0 0
|S𝛽2n > 0 0 0 0 0 0 0 0
|T0𝛼2n > 0 0 0 0 0 0 0 0
|T0𝛽2n > 0 0 0 0 0 0 0 0
|T − 1𝛼2n > 0 0 0 0 0 0 0.16667 0
|T − 1𝛽2n > 0 0 0 0 0 0 0 0.16667

(b) |T + 1𝛼2n > |T + 1𝛽2n > |S𝛼2n > |S𝛽2n > |T
o
𝛼2n > |T

o
𝛽2n > |T − 1𝛼2n > |T − 1𝛽2n >

|T + 1𝛼2n > 0.16667 0 0 0 0 0 0 0
|T + 1𝛽2n > 0 0 0 0 0 0 0 0
|S𝛼2n > 0 0 0 0 0 0 0 0
|S𝛽2n > 0 0 0 0 0 0 0 0
|T0𝛼2n > 0 0 0 0 0 0 0 0
|T0𝛽2n > 0 0 0 0 0 0 0 0
|T − 1𝛼2n > 0 0 0 0 0 0 0 0
|T − 1𝛽2n > 0 0 0 0 0 0 0 0.16667

(c) |T + 1𝛼2n > |T + 1𝛽2n > |S𝛼2n > |S𝛽2n > |T
o
𝛼2n > |T

o
𝛽2n > |T − 1𝛼2n > |T − 1𝛽2n >

|T + 1𝛼2n > 0.16667 0 0 0 0 0 0 0
|T + 1𝛽2n > 0 0.05556 0 0 0.07857 0 0 0
|S𝛼2n > 0 0 0 0 0 0 0 0
|S𝛽2n > 0 0 0 0 0 0 0 0
|T0𝛼2n > 0 0.07857 0 0 0.11111 0 0 0
|T0𝛽2n > 0 0 0 0 0 0.11111 0.07857 0
|T − 1𝛼2n > 0 0 0 0 0 0.07857 0.05556 0
|T − 1𝛽2n > 0 0 0 0 0 0 0 0.16667
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where �2n indicates a nuclear spin in the alpha state attached to radical 2. These 
states are quite difficult to visualise and their form can easily cloud the rather 
straightforward changes in spin-state that define them. To shed a little more light on 
their interpretation, we take a step back and try to generate them intuitively. To do 
so, we consider the simplest possible representation of the eight states of a RP in the 
product basis.

4 of these 8 states are not eigenstates of the zero field Spin Hamiltonian. Electron 
spin 2 and nuclear spin 2 are capable of a simultaneous spin flip, driven by their 
hyperfine interaction, which serves to interconvert states �P2⟩ and �P3⟩ and states 
�P6⟩ and �P7⟩ . This is the only spin-state mixing process that can take place in zero 
field. Therefore, the eigenstates of the zero field Hamiltonian can be written by tak-
ing linear combinations of these pairs of states. The following states should thus be 
the zero-field eigenstates.

(9)�5⟩ = 1

2
(�T0�2n⟩ + �S�2n⟩) −

1√
2

�T−1�2n⟩

(10)�6⟩ = 1

2
(�T0�2n⟩ + �S�2n⟩) +

1√
2

�T−1�2n⟩

(11)�7⟩ = 1√
2

(�T0�2n⟩ − �S�2n⟩)

(12)�8⟩ = �T−1�2n⟩

(13)�P1⟩ = ��1e�2e�2n⟩

(14)�P2⟩ = ��1e�2e�2n⟩

(15)�P3⟩ = ��1e�2e�2n⟩

(16)�P4⟩ = ��1e�2e�2n⟩

(17)�P5⟩ = ��1e�2e�2n⟩

(18)�P6⟩ = ��1e�2e�2n⟩

(19)�P7⟩ = ��1e�2e�2n⟩

(20)�P8⟩ = ��1e�2e�2n⟩
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These look very simple but are actually exactly the same states as those presented 
earlier, which we can demonstrate by rewriting them in the singlet-triplet basis. This 
is simple using the substitutions for the electron spins:

Which produces the states:

(21)�P1⟩ = ��1e�2e�2n⟩

(22)
1√
2

(�P3⟩ − �P2⟩) = 1√
2

(��1e�2e�2n⟩ − ��1e�2e�2n⟩)

(23)
1√
2

(�P3⟩ + �P2⟩) = 1√
2

(��1e�2e�2n⟩ + ��1e�2e�2n⟩)

(24)�P4⟩ = ��1e�2e�1n⟩

(25)�P5⟩ = ��1e�2e�1n⟩

(26)
1√
2

(�P7⟩ − �P6⟩) = 1√
2

(��1e�2e�2n⟩ − ��1e�2e�2n⟩)

(27)
1√
2

(�P7⟩ + �P6⟩) = 1√
2

(��1e�2e�2n⟩ + ��1e�2e�2n⟩)

(28)�P8⟩ = ��1e�2e�1n⟩

(29)�S⟩ = 1√
2

(��1e�2e⟩ − ��1e�2e⟩)

(30)�T0⟩ =
1√
2

(��1e�2e⟩ + ��1e�2e⟩)

(31)�T+1⟩ = ��1e�2e⟩

(32)�T−1⟩ = ��1e�2e⟩

(33)�P1⟩ = �1⟩

(34)
1√
2

(�P3⟩ − �P2⟩) = �4⟩
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Here the states are identified with the corresponding labels prepared earlier. Clearly, 
the product basis description makes the spin-state mixing processes transparent 
while the singlet-triplet basis representation, while hard to visualise, is necessary to 
understand how the simultaneous nuclear and electron spin flips influence the sin-
glet-triplet character of the pair.

Let us consider first states �1⟩ and �8⟩ . These states are the so-called ’end states.’ 
The end states are always the two states with all electron and nuclear spins parallel, 
and are thus located at either end of the distribution. This means that while they 
constitute one quarter of the states for a RP with a single spin-1/2 nucleus, they 
become less and less important for RPs with more spin-active nuclei. They have 
different mJ from all other states and each other (here + 3/2 and − 3/2 respectively). 
As conservation of angular momentum always requires the conservation of mJ , these 
two states can never undergo coherent spin-state mixing and are thus always eigen-
states of the spin Hamiltonian under any magnetic field conditions. On this basis, 
we can understand why the most efficient reaction leads to a final RP population of 
1/3, as the two end states can never undergo singlet–triplet state mixing and always 
remain as triplet RPs. We can confirm that this is the case by examining the RP 
density matrix at the end of the simulation, corresponding to the peak of the LFE 
(Table 1b). The only populated states of the RP are indeed these states. This is a 
very old result and we only reconfirm it here. However, the result is not the same at 
zero field, which implies that there must be additional triplet eigenstates of this RP 
when the field is removed. Their identities are not readily apparent when examining 
states �2⟩ to �7⟩ , however.

In their paper, Lewis et al., revisited the original hypothesis made by Brocklehurst 
and McLauchlan that in zero field, conservation of angular momentum requires that 
J and mJ are both conserved, while the presence of a field removes the restriction on 
J , but keeps the restriction on mJ . Brocklehurst and McLauchlan believed that the 
removal of this restriction allowed mixing from S ( J = 1∕2 ) to T+1 and T−1 ( J = 3∕2 ) 

(35)
1√
2

(�P3⟩ + �P2⟩) = �3⟩

(36)�P4⟩ = �7⟩

(37)�P5⟩ = �2⟩

(38)
1√
2

(�P7⟩ − �P6⟩) = �5⟩

(39)
1√
2

(�P7⟩ + �P6⟩) = �6⟩

(40)�P8⟩ = �8⟩
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to be unlocked. Lewis et al. identified that this is not correct and demonstrated that 
it is actually mixing between S and T0 states that is unlocked when a small field is 
applied. An unfortunate consequence of this is the loss of the intuitive vector picture 
describing spin motion in zero and weak field that Brocklehurst and McLauchlan 
presented. In identifying the additional zero field triplet eigenstates, we will also aim 
to correct and update this model.

States �1⟩, �2⟩, �3⟩, �6⟩, �7⟩ and �8⟩ form a degenerate group in zero field ( E = +a∕4 ) 
and states �4⟩ and �5⟩ another degenerate group ( E = −3a∕4 ). To proceed, we take 
advantage of the fact that for degenerate states, linear combinations of those states 
are also eigenstates. Taking linear combinations of states 2 and 3 and also of states 6 
and 7 as follows, produces a new representation of these eigenstates:

The result of the simulations in zero field can now be explained. States 10 and 12 
are eigenstates of the zero-field Spin Hamiltonian but are also pure triplet states—
coherent superpositions of T+1  / T−1 and T0 . This means that they cannot undergo 
spin-state mixing and so are trapped as RPs in the zero field simulation. If we exam-
ine the RP density matrix remaining at the end of this simulation (Table 1c), it is 
easy to identify that it is composed of a mixture of the end states ( �1⟩, �8⟩ ) and the 
’new’ triplet states ( �10⟩, �12⟩).

It remains the case that mixing between these pairs of states (now �9⟩, �10⟩ 
and �11⟩, �12⟩ ) is not possible due to their degeneracy, and that this degeneracy is 
lifted with the application of a weak magnetic field. This provides a clear intuition 
about how the removal of this restriction leads to S − T0 mixing. Mixing between 
states 9 and 10 and between 11 and 12 is transparently an S − T0 mixing pro-
cess (the T+1 or T−1 component is unchanged), while this was far from clear upon 
examining the original eigenstates that became mixed when a field was applied 
(2, 3 and 6, 7). It is worth noting that in the vector model picture of S − T0 mix-
ing applied at high field, this mixing occurs, because the individual electron spins 
go in and out of phase with one another due to the difference in their Larmor 
frequencies. Clearly, in zero field, the states are degenerate and so such dephas-
ing/rephasing is not possible. We can now rescue Brocklehurst and McLauchlan’s 
vector picture, which was correct in almost all aspects. In zero field, the electron 

(41)�9⟩ = 1√
2

(�2⟩) − �3⟩ = �S�2n⟩ −
1√
2

�T+1�2n⟩

(42)�10⟩ = 1√
2

(�2⟩) + �3⟩ = �T0�2n⟩ +
1√
2

�T+1�2n⟩

(43)�11⟩ = �6⟩) − 1√
2

(�7⟩) = �S�2n⟩ +
1√
2

�T−1�2n⟩

(44)�12⟩ = �6⟩ + 1√
2

(�7⟩) = �T0�2n⟩ +
1√
2

�T−1�2n⟩
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spin and nuclear spin of radical two precess around their resultant. When consid-
ered along with the electron spin of radical 1, this process corresponds to coher-
ent mixing between S�2n and T+1�2n (in the case of state 9) as shown in Fig. 2a. 
Applying a weak magnetic field causes this resultant to precess around the field 
direction, which corresponds to S − T0 mixing. The vector model provides a very 
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Fig. 2   a Vector model for spin-state mixing in zero and weak magnetic fields. This is an updated and 
corrected version of that given by Brocklehusrt and McLauchlan [12]. In zero field, precession about the 
resultant magnetic moment of the electron and nuclear spins on radical 2 causes the electron spin of the 
pair to oscillate between S and T+1 states (an equivalent picture can be drawn for the oscillation between 
S and T−1 with the opposite electron spin). When a weak magnetic field is applied, the resultant begins to 
precess about the field direction and so the horizontal precession causes S − T0 mixing, while the verti-
cal precession now corresponds to both S − T+1 and T0 − T+1 mixing. b An update to the simple picture 
in Fig. 1a which correctly identifies the possible spin mixing pathways in zero, weak and strong (much 
greater than the average hyperfine coupling of the RP ( ̄a

RP
))
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effective picture of what happens when the degeneracies of states �9⟩, �10⟩ and �11⟩
, �12⟩ are lifted.

Figure 2a also allows us to achieve an intuitive understanding of why half of 
the T+1 / T−1 states only mix with T0 and the other half mix with S . There is always 
a phase relationship between the two electron spins, which is consequential in 
the case of S and T0 (indeed, it defines the difference between them) and initially 
appears inconsequential in the case of T+1 and T−1 . However, the phase difference 
in the latter two states is clearly not inconsequential, but indeed defines whether 
the result of a nuclear spin–electron spin flip-flop transition results in a S or T0 
state—i.e. the phase difference is preserved in the T+1  / T−1 states (for intuition, 
we can imagine that when both electron spins are on the same side of the preces-
sion cone in (for example) T+1 , the result is T0 , while it is S when they are on the 
same side).

In summary, at zero field, coherent singlet-triplet state mixing only occurs 
through simultaneous flipping of hyperfine coupled electron and nuclear spins, 
while in high field it only occurs through the electron spin dephasing/rephasing 
due to differences in the rate of precession about the applied field. The LFE exists 
because both mechanisms are possible in weak magnetic fields. With this under-
standing, and the identification of the zero field triplet eigenstates, it is now possible 
to ’update’ the simple kinetic representation of magnetic field effects as well, which 
is presented in Fig. 2b. It is hoped that this intuitive picture, which is not strictly cor-
rect (end-states are ignored), but captures the results of the key spin dynamics, will 
prove useful to non-specialists in need of a simple picture of the origin of the regular 
MFE and the LFE.

Finally, for states with increasing numbers of spin-active nuclei, the number of 
end states remains fixed at two, and so the size of the spin-space capable of singlet-
triplet mixing grows. It is useful to consider the number of (non end-state) zero-field 
triplet eigenstates as the number of spin-active nuclei increases. These are easily 
determined by performing the simulation in zero field for an increasing number of 
coupled nuclei. Such simulations demonstrate that the number of zero-field triplet 
eigenstates in the case of non-degenerate spin-1/2 nuclei is equal to the number of 
nuclear spins+1. This means that the fraction of zero-field triplet eigenstates drops 
rapidly as the number of nuclear spins increases, because the total eigenstate count 
increases by a factor of 2 with each additional spin-1/2 nucleus, while the zero-field 
triplet eigenstate count increases by only 1.

For example, in the case of a single spin-1/2 nucleus considered here, of the 8 eigen-
states, the zero field triplet eigenstate count is 2—i.e. one quarter of all states. For two 
spin-1/2 nuclei, there are only 3 zero-field triplet eigenstates from a total of 16. For 
three spin-1/2 nuclei, the fraction has already dropped to 4 in 32. The reasons for and 
implications of this phenomenon for the LFE in more realistic systems along with the 
case for nuclei with spin > 1∕2 will be presented in a future article. For the purposes 
of the overarching mechanism considered here, it is worth highlighting that none of the 
additional singlet-triplet mixing pathways available in larger spin systems arise from 
S − T0 mixing, but simply much more efficient S − T±1 mixing, so the models presented 
hold in such systems. In addition, it is clear that the maximum magnitude of the LFE 
drops rapidly with the number of hyperfine coupled nuclei, which is significant for the 
structure of a molecular magnetic compass optimised for sensing weak magnetic fields.
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3 � Conclusions

Through simple density matrix RP spin dynamic simulations with no triplet reaction 
channel, we have identified that there are zero-field triplet states of RPs that cannot 
undergo coherent spin state mixing. We have demonstrated that these states can readily 
be derived by taking suitable linear combinations of the known zero-field eigenstates 
and that the form of these linear combinations also reveal why a lifting of their degen-
eracies results in S − T0 mixing. Using these observations, we have constructed two 
different, simple visual representations of the low field effect, which we hope will make 
the LFE mechanism accessible to a much wider audience.
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