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Abstract
Random fluctuations in the g̃ and Ã matrices of a spin system due to thermal motion 
of a molecule are specifically considered to calculate the relaxation matrix for the 
four-level electron-nuclear spin-coupled system ( S = 1∕2 ; I = 1∕2 ) in a malonic 
acid crystal, using the formalism outlined by Lee et al. (J Chem Phys 98:3665–3689, 
1993). The correlation time, τc, and the value of the parameter λ, characterizing the 
harmonic-oscillator restoring potential of the small-amplitude fluctuation of the 
director of the malonic-acid molecule due to thermal motion are estimated from the 
knowledge of the experimental values of (τc, λ). The four electronic, T2e, and the two 
nuclear, T2n , spin relaxation times are calculated to be functions of (τc, λ) governing 
the fluctuations. The values of (τc, λ), evaluated with these expressions, when fitted 
to the experimental values of T2e and T2n , assuming the molecule to be in the ground 
state (n = 0) in the harmonic-oscillator potential, a rather narrow region of (τc, λ) 
values about τc = 0.081 μs and � = 4.4 is found. These values are then used to calcu-
late the time-dependent echo-ELDOR signal by the relevant Liouville von-Neumann 
(LVN) equation. The resulting Fourier transform is found to be in excellent agree-
ment with the experimental data. The (τc, λ) values for the excited states described 
by n = 1, 2 have also been calculated, although these states are unlikely to be popu-
lated at room temperature.
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1 Introduction

The dynamics of spin probes embedded in diamagnetic systems can be exploited 
in detail by pulsed electron paramagnetic resonance (EPR). In particular, one can 
use echo-ELDOR (electron–electron double resonance) signal, which is sensitive 
to the details of the relaxation of spin systems. In order to consider relaxation rig-
orously, one needs to solve Liouville von Neumann (LVN) equation, which is an 
exact quantum–mechanical equation of motion for the density matrix.

In the experimental study by Lee et al. [1] on a γ-irradiated single crystal of 
malonic acid, the theory of two-dimensional (2D)-EPR with nuclear modulation, 
as described by Gamliel and Freed [2], was extended to treat the combined effect 
of nuclear modulation and spin relaxation to calculate SECSY (spin echo correla-
tion spectroscopy) and echo-ELDOR signals, defining the elements of the relaxa-
tion matrix in a phenomenological manner, fitting to the relative intensities of the 
experimental peaks.

It is  the purpose of this paper to treat relaxation due to thermal fluctuation 
of the spin-Hamiltonian parameters (SHP), i.e., the elements of g̃ and Ã-matri-
ces, for the coupled electron-nuclear spin system with electron spin S = 1∕2 and 
nuclear spin I = 1∕2 in a γ-irradiated malonic acid crystal more quantitatively. 
Here the stochastic fluctuating parts of the spin Hamiltonian are defined explic-
itly in terms of the time-dependent interaction constants, �(SHP) s, i.e., �g , �a , 
etc., following the outline given in [1] in (Table IV). To this end, the fluctuations 
of �(SHP) due to thermal motion, governed by a restoring harmonic-oscillator 
potential, are considered. On the average, the fluctuations of the tip of the director 
axis of the malonic acid then take place within a cone about the symmetry axis. 
Knowing the experimental values of the electronic and nuclear spin-relaxation 
times, T2e and T2n, respectively, one can estimate the values of the motional cor-
relation time, τc, as well as the strength of the restoring potential, λ. It is noted 
that information on correlation time of a given system is important to calculate 
time averages of physical quantities. The memory of a system to retain a certain 
property is dependent on the value of its correlation time, e.g., the magnetiza-
tion due to a microwave pulse, as produced in a pulsed EPR experiment, such as 
SECSY, echo-ELDOR. The longer is the correlation time the longer is the physi-
cal property retained by the system.

The organization of this paper is as follows: Section 2 deals with the calcula-
tion of the changes in the diagonal elements of g̃ and Ã matrices due to thermal 
fluctuations. These are then used to calculate the various terms in the consequent 
time-dependent spin Hamiltonian, which are listed in Table IV of [1]. The matrix 
elements of the relaxation matrix are explicitly calculated in this section as out-
lined in Appendix B of [1], which depend on the relevant auto-correlation func-
tions. These, in turn, are found to depend on the average value of the square of 
the angular spread of the cone, governed by the restoring harmonic potential, as 
described in Sect. 3. Estimations of the values of the correlation time (τc) and the 
strength of the restoring potential, λ, by exploiting the experimental values of the 
nuclear and electronic spin-relaxation times, T2e and  T2n, respectively, are carried 
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out in Sect. 4. The details of calculation of the average parameters of fluctuation 
in the presence of a strong restoring potential are given in Sect. 5. The conclud-
ing remarks are made in Sect. 6. In Appendix A, the static Hamiltonian and the 
eigenvalue basis used to calculate the relaxation matrix are included. The proce-
dure to exploit Liouville von-Neumann equation to calculate echo-ELDOR signal 
is briefly explained in Appendix B.

2  Spin Hamiltonian Due to Thermal Fluctuation

The time-dependent matrix elements for the four-level S = 1∕2;I = 1∕2 spin sys-
tem of the Hamiltonian, Ĥ1(t) , causing relaxation, can be written in general form, 
in the eigenvalue basis, as follows [1]:

where a, b, c, d refer to the four energy levels of the spin system, as described in 
Appendix A, Ap are the spin operators in the laboratory frame that appear in the spin 
Hamiltonian, which are orientation dependent and are listed in Table 4 of [1], and 
Fp(t) are functions of spatial variables, which are, in fact, the time-dependent fluc-
tuating parts of the spin-Hamiltonian,�(SHP) , as listed below for the various Fp(t) 
terms in the spin Hamiltonian Eq. (1):

It is noted that in the above expressions the interaction constants (δg, δa, δF, 
δD, δF(2), δD(2)) are time dependent, representing the deviations from the respec-
tive average values, e.g., δg = g(t) − g.

The diagonal elements of the  T2-type relaxation in Liouville space are 
expressed as [1]follows:

(1)Ĥ1(t)𝛾𝛿 =
∑
p

Fp(t)A
p

𝛾𝛿
;𝛾 , 𝛿 = a, b, c, d;p = 1, 10,

(2)

F1(t) =
�eB0

ℏ
�g;

F2(t) = �F
1

2

(
3 cos2 � − 1

)
+ �F(2) sin2 � cos (2�);

F3(t) = �F
3

8
sin (2�) − �F(2) 1

4
sin (2�) cos (2�);

F4(t) = −
�e

ℏ
�a;

F6(t) = �D
1

2

(
3 cos2 � − 1

)
+ �D(2) sin2 � cos (2�);

F8(t) = �D
3

8
sin (2�) − �D(2) 1

4
sin (2�) cos (2�);

F10(t) = �D
3

8
sin2 −�D(2) 1

4

(
1 + cos2 �

)
cos (2�);

F5(t) = F7(t) = F9(t) = 0.
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where the time-dependent values of �
��
(t) = H1(t)�� − H1(t)�� , are stochastic, and 

thus only their time-correlation values can be estimated, as shown below. The relax-
ation matrix elements, R

����
 , are defined by the Redfield equation. They are valid for 

fast relaxation, given as follows [1, 3]:

The procedure to solve the above equation is outlined in Appendix B. The inte-
gral and the transition probabilities W

��
 in Eq. (3) are [1] the following:

Calculation of the non-zero elements of the relaxation matrix, R
����

, in Eq. (3) 
due to the fluctuating perturbation can be carried out by considering the auto-cor-
relation function, Fq(t)Fr∗(t + �) , between the fluctuating parts of the spin Ham-
iltonian at times t = 0 and t = �. According to Eq. (2), all required autocorrelation 
functions can be expressed in terms of the �(SHP) s: δg, δA, δD. δD(2), δF. δF(2), 
which are calculated here using the conical model of fluctuation, wherein one 
considers small thermal fluctuations of the director of the malonic-acid molecule 
in the plane transverse to the average director axis as shown in Fig. 1. The proce-
dure to calculate �(SHP) is described in Sect. 3 below.

(3)
(
T−1
2

)
��

= −R
����

=

∞

�
0

d��
��
(t)�

��
(t + �) +

1

2

(∑
�≠�

W
��

+
∑
�≠�

W
��

)
,

(4)
d�

���

dt
= −i�

���
�
���

+
∑
���

R
������

.

(5)

∞

∫
0

d��
��
(t)�

��
(t + �) =

∑
q,r

(Aq
��

− A
q

��
)
(
Ar
��

− Ar
��

)
×

∞

∫
−∞

d�Fq(t)Fr∗(t + �),

(6)W
��

= R
��,�� =

∑
q,r

Aq
��
Ar
��

×

∞

∫
−∞

d�Fq(t)Fr∗(t + �)e−i���
� .

Fig. 1  Figure to show the fluc-
tuations of the ensemble-average 
director of the molecules. The 
tip of the director indicated by 
the arrow fluctuates within the 
circular periphery of the cone. 
Here x axis represents the sym-
metry axis of malonic molecule
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3  Conical Fluctuation: Symmetry of Molecules in Malonic Acid 
Crystal

The principal values of the g-matrix show that it possesses axial symmetry 
( gyy ≈ gzz > gxx ; gxx = 2.0026, gyy = 2.0035, gzz = 2.0033 within the experimental 
error of 0.0001). Thus, in the absence of any thermal fluctuations, the directors of 
the molecules in the crystal are oriented along the x axis, their symmetry axis, as 
shown in Fig. 1. One can then assume that that the spatial fluctuation due to ther-
mal vibrations of the malonic acid molecules in the crystal exhibit axial symmetry 
about their x-axes. In the presence of a restoring potential, as assumed in this work, 
and described in detail in Ref. [6], the molecules tend to return to their equilibrium 
positions, to become oriented along their symmetry axis. The thermal fluctuations, 
which change the instantaneous orientations of the molecules on the one hand, and 
the presence of a restoring potential, on the other hand, lead to motions of the direc-
tors of malonic acid molecules within a cone about their symmetry axes as shown in 
Fig. 1.

In our earlier publication, exploiting cylindrical fluctuations [5] of the director, 
the restoring potential was assumed to operate only in the plane perpendicular to the 
symmetry axis, i.e., the yz plane, without considering any specific restoring poten-
tial. The resulting model possessed cylindrical symmetry, wherein the tip of the 
director moved in the yz plane. In the conical fluctuation model, on the other hand, 
the restoring potential is assumed to restore the director along the x-axis, the axis of 
symmetry, subsequent to its fluctuation by an angle �  (Fig. 1) about the x axis, so 
that random fluctuations will cause the director to execute the surface of a cone with 
the semi conical angle � . It is noted that the conical model of fluctuation is more 
sophisticated than the cylindrical model in that it is based on a realistic potential 
well, amenable to quantum mechanical treatment [6], as described here in Sect. 4 
below.

3.1  Fluctuation of SHP Due to Thermal Motion

To calculate the effect of thermal vibrations, the problem can be treated in a statisti-
cal manner as an ensemble of a large number of malonic-acid molecules. Of these, 
consider a molecule representing the average of all the molecules in the ensemble 
undergoing the low amplitude orientational motion about its equilibrium position 
due to thermal fluctuations. The resulting changes in the SHP due to the fluctuations, 
δ (SHP), caused by thermal motion, cause relaxation. This is taken into account as 
follows:

In the magnetic frame, the average of g̃ and Ã matrices, assumed to have the same 
principal axes, is

(7)�̃ =

⎛⎜⎜⎝

𝜎xx 0 0

0 𝜎yy 0

0 0 𝜎zz

⎞⎟⎟⎠
,
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where �̃� stands for g̃ , or Ã. Due to thermal motion of the molecule, its director exe-
cutes infinitesimal random fluctuations about the symmetry axis of the molecule, 
assumed to be along the x axis, as shown in Fig. 1. These fluctuations can be seen to 
be equivalent to infinitesimal rotations of the director of malonic acid molecules by 
angles α, about axes randomly distributed in the yz plane. Now the matrix for rota-
tion by angle α about an axis in the yz plane, oriented at an angle θ from the y axis, 
is

Using Mathematica, the diagonal elements of the transformed �̃� matrix, for 
either g̃ , or Ã matrices: �̃��

= L ⋅ �̃� ⋅ L−1 are calculated to be

The random fluctuations of the director are now taken into account by consid-
ering all possible values of � in the yz plane. Although a crystal contains mol-
ecules with random orientations of their directors due to random thermal fluc-
tuations with respect to the symmetry axis, the director in Fig. 1 represents the 
ensemble average of motion of all molecules in the crystal, confined to a cone, 
with the tails of all the directors made coincident. To calculate the average of all 
possible orientations of the director, one needs to integrate Eq. (9) over � from 0 
to 2�, and then dividing it by 2� . The average diagonal elements of the resulting 
(��)avg are as follows:

Since � is infinitesimal, the above expressions can be expanded in a series in � . 
Keeping only the lowest order terms in � , one obtains

(8)L =

⎛
⎜⎜⎝

cos � − sin � sin � cos � sin �

sin � sin � cos2 � + cos � sin2 � (1 − cos �) cos � sin �

− cos � sin � (1 − cos �) cos � sin � sin2 � + cos � cos2 �

⎞
⎟⎟⎠
.

(9)

�
�
xx
= �xxCos

2
� + Sin2�

(
�zzCos

2
� + �yySin

2
�
)

�
�
yy
= �yy

(
Cos2� + Cos�Sin2�

)2

+ �zz(1 − Cos�)2Cos2�Sin2� + �xxSin
2
�Sin2�

�
�
zz
= �zz

(
Cos�Cos2� + Sin2�

)2
+ �xxCos

2
�Sin2�

+ �yy(1 − Cos�)2Cos2�Sin2�.

(10)

(��
avg

)xx = �xxCos
2
� +

1

2

(
�yy + �zz

)
Sin2�

(�
�

avg
)yy =

1

16
�yy(9 + 4Cos � + 3Cos(2�)) +

1

4
�xx(1 − Cos(2�))

+
1

16
�zz(3 − 4Cos � + Cos(2�))

(�
�

avg
)zz =

1

16
�zz(9 + 4Cos � + 3Cos(2�)) +

1

4
�xx(1 − Cos(2�))

+
1

16
�yy(3 − 4Cos � + Cos(2�)).
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The changes in the diagonal elements of ∼� , i.e. those of 
∼
g and 

∼

A matrices, due to 
thermal motion of the director, δ

∼
�=

∼
�

�

−
∼
� , are as follows:

The above expressions are consistent with the results obtained in [4, 5]. δ(SHP) 
are then calculated to be, in terms of the fluctuating diagonal elements of the g̃ and Ã 
matrices, as follows:

Substituting the above expressions in Eq.  (2), the auto-correlation functions 
Fq(t)Fr∗(t + �) can be calculated. They are needed to obtain the relaxation matrix ele-
ments given by Eq. (3). Since all δ(SHP)s in Eq. (13) are linear in ��, which are pro-
portional to �2(t) , according to Eq. (12), the correlation functions Fq(t)Fr∗(t + �) can 
be expressed in terms of �2 as follows:

Here f i represents the amplitude of fluctuation of Fi(t) , and h(= �4) is the parameter 
that represents the average fluctuation of the director in the transverse (yz) plane. The 
procedure of how to calculate h is described in Sect. 4 below.

4  Calculation of the Average of the Fluctuation Angle in a Strong 
Restoring Potential

As the malonic acid molecule fluctuates around its symmetry axis, it is brought back 
to its equilibrium position by the restoring potential acting on it. This can be treated 
by a quantum mechanical equation for the spherical top as described in [6]. Assuming 
that the malonic acid molecule in the crystal experiences a strong harmonic-oscillator 
restoring potential, for which the wave function is [6]

(11)

(��
avg

)xx = �xx +
1

2

(
−2�xx + �yy + �zz

)
�
2;

(��
avg

)yy = �yy +
1

2

(
�xx − �yy

)
�
2;

(��
avg

)zz = �zz +
1

2

(
�xx − �zz

)
�
2.

(12)
δ�xx =

1

2

(
−2�xx + �yy + �zz

)
�
2;δ�yy =

1

2

(
�xx − �yy

)
�
2;δ�zz =

1

2

(
�xx − �zz

)
�
2.

(13)

�g =
1

3

(
�gxx + �gyy + �gzz

)
; �a =

1

3

(
�Axx + �Ayy + �Azz

)
;

�F =
2

3

(
�gzz −

1

2

(
�gxx + �gyy

))
; �D =

2

3

(
�Azz −

1

2

(
�Axx + �Ayy

))
;

�F(2) =
1

2

(
�gxx − �gyy

)
;�D(2) =

1

2

(
�Axx − �Ayy

)
.

(14)Fq(0)Fr∗(�) = f qf r∗
⟨
�2(0)�2(�)

⟩
= f qf r∗he−|�|∕�c .

(15)�
n
K,M

(�, �, �) = exp (iK�)yn(�) exp (iM�),
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where (�, �, �) are the Euler angles that relate the orientation of the director to the 
magnetic frame, with � assumed to be a small deviation from the equilibrium posi-
tion of the molecule, as shown in Fig. 1, and K, M, n are the quantum numbers that 
characterize the harmonic-oscillator wave functions in a restoring potential [6]. Here 
the function yn(�) is the following:

In the above, � = −
χ

kBT
 , is the dimensionless parameter of the restoring potential, 

with � being the strength of the restoring potential, kB is Boltzmann’s constant; Hn 
in Eq. (16) are Hermite polynomials and Nn are the normalization coefficients:

The average fluctuation of the director axis, h = �4, appearing in Eq. (14), needed 
to calculate the relaxation matrix elements in Eq.  (3), can be estimated, using the 
wave function of the spherical top in a strong restoring potential, as follows:

Note that the choice of the limits of the above integral from −∞ to +∞ instead of (
−

�

2
,
�

2

)
 is justified in the case when 𝜆 ≫ 1 . With h = �4 calculated above and using 

Eqs. (12)–(14), one can calculate the elements of the relaxation matrix expressed by 
Eq. (3).

5  Estimation of the Correlation Time (τc) and the Strength 
of the Restoring Potential (λ)

Exploiting the procedure described in Sects. 3 and 4 above, the elements of the 
relaxation matrix, R

����

(
�c, λ

)
 , can be calculated in the eigenvalue basis, denoted 

by a, b, c, d (also denoted equivalently hereafter as 1,2,3,4) as functions of the 
correlation time, τc, and the strength of the restoring potential λ. According to 
Eq.  (3),  T2-type relaxation elements for the various electron and nuclear spin 
transitions are related to the relaxation matrix elements as follows: (T2)ac = 1

R1313

, 
(T2)bd = 1

R2424

, (T2)ad = 1

R1414

, (T2)bc = 1

R2323

, (T2)ab = 1

R1212

, (T2)cd = 1

R3434

 , where the 
energy levels a, b, c, d are defined in appendix B below. Having the experimental 
values of electron spin-relaxation times (T2e)exp and nuclear spin-relaxation times 
(T2n)exp available from [1], one can now solve for (�c, λ) by assuming the four cal-
culated T2e��

(
�c, �

)
= (T2e)exp, and the two calculated T2n��

(
�c, λ

)
= (T2n)exp; for 

�, � = a, b, c, d . Note that from [1], only two experimental values, T2e and T2n , 

(16)yn(�) = Nn exp

(
−|�|�2

2

)
Hn

(|�|1∕2�).

(17)Nn =

� √
�√

�2nn!

�1∕2

.

(18)�4 = ∫ �
n
K,M

(�, �, �)∗�4
�

n
K,M

(�, �, �)d�d� d� =

∞

∫
−∞

y∗
n
�
4ynd�.
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were estimated, so it is assumed here that (T2)ac = (T2)bd = (T2)ad = (T2)bc = T2e and 
(T2)cd = (T2)ab = T2n In fact, these relaxation times are slightly different from each 
other as shown in Fig. 2. If an experiment is performed in which only one transi-
tion between the four levels is involved, e.g., a → c, then one can measure the 
electronic relaxation time 

(
T2e

)
ac

 for that specific transition. However, when the 
experiment is not sensitive to individual transitions, one can replace the relaxa-
tion times for the various transitions by a single, average, relaxation time.

In Fig.  2, all values of (T2)�� ;� ≠ � corresponding to the four different elec-
tron spin transitions ( (T2)ac , (T2)bd , (T2)ad, (T2)bc) and two different nuclear spin 
transitions ( (T2)cd,(T2)ab) are plotted for the first three lowest energy states (n = 0, 
1, 2) of the malonic acid molecule as functions of �c, � , using the experimental 
values, reported in [1]: T2e = 900 ns and T2n = 22 �s . For each energy state, n, 
of the harmonic oscillator one then obtains six lines as shown in Fig.  2 in the 
(τc,� ) plane. The average values of (τc,� ), i.e., those lying at the center of this 
area are then chosen to calculate the elements of the relaxation-matrix. The val-
ues of 

(
�c, �

)
 that correspond best to the experimental values of  T2e and  T2n are 

found to be (τc = 8.1 × 10–8  s and � = 4.43), (τc = 8.0 × 10–8  s and � = 9.93) and 
(τc = 7.9 × 10–8 s and � = 15.85) for the molecule in the ground state (n = 0), first 
excited state (n = 1) and second excited state (n = 2), respectively. (For compari-
son, it is noted that the value of the parameter � , in NO crystal was |�| = 7.5 [6]). 
It is further noted that at the temperature ( T  ) the experiment was performed [1] 
(T ~ 77  K), the molecule is predominantly in the ground state, since the vibra-
tional energy level differences due to the restoring potential are presumably much 
higher than kBT, where kB is Boltzmann’s constant and T  is 77 K. The relaxation 
matrix, consistent with the ground state, is then used to simulate the time-domain 
echo-ELDOR signal and its Fourier transform (FT), as shown in Fig. 3, using the 
procedure outlined in Appendix B. Comparing the calculated and experimental 
FTs, as reported in [1], an excellent agreement is found.

Fig. 2  Contour plots of (T2)ac, (T2)bd, (T2)ad, (T2)bc for the experimental value T2e = 900 ns and those for 
(T2)ab, (T2)cd for the experimental value T2n = 22 μs as a function of the correlation time τc and λ for the 
ground state (a), first excited state (b) and second excited state (c) of the harmonic oscillator. The red 
circle in the overlapping region represents the average of (τc, λ) values used for simulation of the echo-
ELDOR signal representing the best average which are found to be a (8.1 ×10−8 s, 4.43), b (8.0 × 10−8 s, 
9.93) and c (7.9 ×10−8 s, 15.85)
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5.1  Expected Temperature Variation of Relaxation Times

The most likely process that affects the electronic spin S = 1∕2 system in 
malonic acid in the temperature region around 77 K, for which the experimental 
data are being interpreted in this paper, is the direct process of relaxation [7, 8]. 
This arises due to spin-phonon modulation, whose temperature dependence for 
non-Kramers ions is described by 1/T1 ∝ �

3
0
coth

(
ℏ�0∕2kBT

)
, which, at higher 

temperatures ( T ≫ �𝜔0∕kB) is proportional to B2T  , i.e. linear in temperature, 
where ℏ�0 = g�BB so that at resonance the spin system exchanges its energy of 
the Zeeman splitting, g�BB , with the phonon vibrations of energy ℏ�0. (Here �B 
is the Bohr magneton, ℏ is Planck’s constant (h) divided by 2 � , B is the inten-
sity of the external magnetic field, and g ~ 2.0 is the average electronic g factor 
for the spins.) As for the spin–spin relaxation times, T2e, T2n , they are assumed 
not to change significantly over the temperature range about liquid-nitrogen tem-
perature considered here.

Fig. 3  Fourier transform of the simulated echo-ELDOR spectrum for a second excited state (n = 2), 
b first excited state (n = 1), c ground state (n = 0), and d the experimental Fourier transforms of the 
echo-ELDOR signal. The simulations are done for the orientation of the external magnetic field 
(�, �, �) = (0,−30◦, 0) , with the mixing times Tm = 40 μs. The same best fit values of the correlation time 
�c and λ, as determined in Fig. 2 are used in these simulations. An inhomogeneous Gaussian broadening 
along the f2 axis with the width Δ = 5 MHz is used in the simulations. All simulated figures, drawn using 
the best fit values, show excellent agreements with the experiment (d), but (c), the one for n = 0 (ground 
state), represents the most populated state at room temperature. The experimental (d) is reproduced with 
the permission of the authors of [1]
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6  Conclusions

The salient features of the present work dealing with the calculation of the matrix 
elements of the relaxation matrix due to fluctuation of spin-Hamiltonian parame-
ters caused by thermal motion in a γ-irradiated malonic acid crystal of an electron-
nuclear spin-coupled system ( S = 1∕2 ; I = 1∕2 ) are as follows:

 i. A model is presented of how to calculate, under a restoring harmonic-oscillator 
potential, the relaxation matrix due to changes in the spin-Hamiltonian param-
eters, characterizing an electron-nuclear spin-coupled system of a malonic-acid 
molecule, due to thermal fluctuations of the director axes of the molecules in 
the transverse plane to the symmetry axis.

 ii. The correlation time (τc) and the strength of the restoring potential, λ, have 
been estimated, using the experimental values of the electronic and nuclear spin 
relaxation times T2e and  T2n, respectively, considering the ensemble average of 
the fluctuations of the director axis of the molecule to be within an infinitesimal 
cone about the symmetry axis of the molecule.

 iii. When the four calculated T2e and the two calculated T2n (Sect. 4) are plotted as 
functions of the correlation time (τc) and the strength of the restoring potential 
(λ) (Fig. 2), the values of 

(
�c, �

)
 that correspond best to the experimental values 

of T2e and T2n are found to be (τc = 8.1 × 10–8 s and � = 4.43) for the molecule 
in the ground state (n = 0) of the restoring harmonic-oscillator potential. With 
the elements of the relaxation matrix calculated, using these values, the Fourier 
transform of the simulated echo-ELDOR signal using the LVN equation turns 
out to be in excellent agreement with the experimental echo-ELDOR signal [1] 
as seen from Fig. 3.

Appendix A: Spin Hamiltonian

For the specific case of a single nucleus ( I = 1∕2 ) interacting with an unpaired elec-
tron ( S = 1∕2 ) by hyperfine (HF) interaction, where the HF matrix has the same 
principal axes as those of the g matrix, the total Hamiltonian is

where

In Eq. (20) the coefficients are expressed as follows:

(19)Ĥ = Ĥ0 + Ĥ1,

(20)Ĥ0 = CSz − 𝜔nIz + ASzIz +
1

2
BSzI+ +

1

2
B∗SzI−.
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where

Here Ω(�, �, �) = (0,−Θ, 0) are the Euler angles, which describe the orientation 
of the g̃ and Ã matrices with respect to the static magnetic field, with Θ being the 
angle between the z axis of the magnetic frame and the Z-axis of the laboratory fixed 
frame.

The eigenvalues of the Hamiltonian, Ĥ0 , as given by Eq. (20) are [1]

where �
�
 , �

�
 are

The eigenvectors are

where the superscript T denotes the transpose. The coefficient ci, i = 1,… , 4 , in the 
above expressions are

Here �n is the nuclear Larmor frequency.

(21)

C =
�eB0

h

[
g + F

1

2

(
3 cos2 � − 1

)
+ F(2) sin2 � cos (2�)

]

A = −2�
[
a + D

1

2

(
3 cos2 � − 1

)
+ D(2) sin2 � cos (2�)

]

B = −4�
{
D
3

4
sin � cos � − D(2) 1

2
sin �[cos � cos (2�) − i sin (2�)]

}
,

(22)

g =
1

3

(
gxx + gyy + gzz

)
; a =

1

3

(
Axx + Ayy + Azz

)
;F =

2

3

(
gzz −

1

2

(
gxx + gyy

))
;

D =
2

3

(
Azz −

1

2

(
Axx + Ayy

))
; F(2) =

1

2

(
gxx − gyy

)
;D(2) =

1

2

(
Axx − Ayy

)
.

(23)Ea =
C

2
+

1

2
�
�
; Eb =

C

2
−

1

2
�
�
; Ec = −

C

2
−

1

2
�
�
; Ed = −

C

2
+

1

2
�
�
,

(24)�
�
=

[(
�n −

A

2

)2

+
(
B

2

)2
]1∕2

; �
�
=

[(
�n +

A

2

)2

+
(
B

2

)2
]1∕2

.

(25)
|a =

[
c1 −c2 0 0

]T
;|b =

[
c2 c1 0 0

]T

|c =
[
0 0 c3 −c4

]T
;|d =

[
0 0 c4 c3

]T
,

(26)

c1 =
1√
2

�
1 ±

(A∕2) − �n

�
�

�1∕2
;c2 = −

1√
2

�
1 ∓

(A∕2) − �n

�
�

�1∕2
;

c3 =
1√
2

�
1 +

(A∕2) + �n

�
�

�1∕2
;c4 = −

1√
2

�
1 −

(A∕2) + �n

�
�

�1∕2
.
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Appendix B: Solution of Liouville von Neumann (LVN) equation

The equation of motion of the reduced density matrix, �(t) = �(t) − �0 , applicable 
during free evolution, i.e. in the absence of any time-dependent part in the Hamilto-
nian, is expressed as Liouville von Neumann (LVN) equation in Liouville space as 
follows [9–15].

where �̂𝜒 is the column vector in Liouville space corresponding to �(t) in Hilbert 
space as defined above, �̂R is the relaxation superoperator and �̂L

′ is the Liouvillian, 
which is defined as

with Ĥ0 being the spin Hamiltonian in Hilbert space and In is a 4 × 4 identity matrix. 
The formal solution of Eq. (27) for �̂𝜒(t) after time t is expressed as

with the initial time being t0.During the application of a pulse, the relaxation is 
neglected since the duration of the pulses, tp , is much smaller than the relaxation 
times T2e and T2n . The solution of the LVN equation after a pulse of duration tp is 
given by

where the pulse, �̂� , is expressed, in the rotating frame, as

In Eq. (31) �e , � and B1 are the gyromagnetic ratio of the electron, the phase angle 
and amplitude of the pulse magnetic field, respectively,

The two-dimensional (2D) time-domain signal is calculated from �f as follows:

The Fourier transform (FT) of the time domain signal S
(
t1, t2

)
 is the correspond-

ing 2D-FT signal, S
(
�1,�2

)
.

Both during a pulse and free evolution the calculations are carried in the rotating 
frame. At resonance, so that the effective magnetic field Beff =

(
B −

ℏ�

g�B

)
 becomes 

zero. The echo-ELDOR calculations are made for the pulse sequences shown in 
Fig. 4 for the coherent pathway Sc− in accordance with that used in [1]. There are 
used two times, t1 and t2, which are stepped in the experiment (Fig.  4) for time-
domain signals.

(27)d�̂𝜒

dt
= −i�̂L�̂𝜒 − �̂

R�̂𝜒 = −�̂L
�
�̂𝜒 ,

(28)�̂
L

�

≡ i
[
I4 ⊗ Ĥ0 −

(
Ĥ0

)T
⊗ I4

]
+ �̂
R,

(29)�̂𝜒(t) = e−(t−t0)
�̂
L

�

�̂𝜒
(
t0
)
,

(30)𝜌
(
t0 + tp

)
= e−I(Ĥ0+�̂�)tp𝜌

(
t0
)
eI(Ĥ0+�̂�)tp ,

(31)�̂� = B1𝛾e

(
Sx cos𝜙 + Sy sin𝜙

)
.

(32)S
(
t1, t2

)
= Tr(S+�f) = Tr

((
Sx + iSy

)
�f

)
.
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The signal is calculated over the coherent pathway Sc− The val-
ues of the Spin-Hamiltonian parameters and the external magnetic 
field 

(
B0

)
 used are as follows [1]: the �∕2 pulse is of duration ∼ 5 ns 

[1];�n = 14.5 MHz ; g̃ =
(
gxx, gyy, gzz

)
= (2.0026, 2.0035, 2.0033) ; 

Ã =
(
Axx,Ayy,Azz

)
= (−61.0 MHz,−91.0 MHz,−29.0 MHz) . The Gaussian inho-

mogeneous broadening effect in the frequency domain along the axis �2 (= 2��) , 
corresponding to the step time t2 , as depicted in Fig. 3, is considered [1] by multiply-
ing the time-domain signal with e−2(�Δt2)

2

.
Full details of how to solve the LVN equation in the present case are described in 

[9, 10].
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