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Abstract
Golden-angle radial sparse parallel (GRASP) magnetic resonance imaging (MRI) is 
a recent MR image reconstruction technique which integrates parallel imaging, com-
pressed sensing and golden-angle radial scheme to reconstruct the dynamic contrast-
enhanced MRI (DCE-MRI) data. Conventionally, GRASP exploits non-uniform fast 
Fourier transform to grid and de-grid the golden-angle radial data and employs non-
linear conjugate gradient method to recover the unaliased images. GRASP performs 
gridding and de-gridding operations of golden-angle radial data in every iteration 
which increases the computational complexity of the conventional GRASP and 
takes a long image reconstruction time. In this paper, self-calibrated GRAPPA oper-
ator gridding (SC-GROG) followed by iterative soft thresholding (IST) is proposed 
for faster GRASP reconstruction of the golden-angle radial DCE-MRI data. In the 
proposed method, firstly SC-GROG maps the undersampled golden-angle radial 
data to a Cartesian grid and then reconstructs the solution image using the IST tech-
nique. The proposed method does not require gridding and de-gridding in each itera-
tion; therefore, it is computationally less expensive as compared to the conventional 
GRASP reconstruction approach. The proposed method is tested for undersampled 
DCE golden-angle radial liver perfusion data (at acceleration factors 11.8, 19.1 and 
30.9). The reconstruction results are assessed visually as well as using mean square 
error, line profiles and reconstruction time. The reconstruction results are compared 
with the conventional GRASP reconstruction. The results show that the proposed 
method provides better quality reconstruction results in terms of reconstruction time 
and spatio-temporal resolution than the conventional GRASP approach.
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1  Introduction

The main objective of dynamic contrast-enhanced (DCE) MRI is to perceive 
the enhancement pattern of the contrast agent in tissues to identify tumors and 
malignant tissues [1]. DCE-MRI requires quick data acquisition to offer a suit-
able balance of spatio-temporal resolution and volumetric coverage for clinical 
studies, e.g., in cardiac/liver perfusion MRI. In parallel magnetic resonance imag-
ing (pMRI), undersampled Cartesian and non-Cartesian trajectories are used to 
accelerate the DCE-MRI data acquisition process while maintaining the spatio-
temporal resolution; but the resultant image may have aliasing artifacts [2–4]. 
A variety of pMRI Cartesian and non-Cartesian reconstruction techniques have 
been developed in the recent past to remove these artifacts while maintaining the 
image quality, e.g., k-t SENSE [6], k-t GRAPPA [7] and SPEAR [8], etc.

Compressed sensing (CS) is another promising technique for rapid DCE-MR 
imaging [9]. CS methods use spatio-temporal sparsity constraint and reconstruct 
the unaliased images using nonlinear reconstruction techniques, e.g., nonlinear 
conjugate gradient [6], iterative soft thresholding [10] and projection over the 
convex set (POCS) [11].

DCE-MRI data acquisition in a non-Cartesian fashion is more advantageous 
than the Cartesian acquisition scheme. Non-Cartesian trajectories are less sensi-
tive to motion artifacts and offer efficient exposure of the k-space in lesser time 
with high spatio-temporal resolution which makes it perfect for DCE-MRI [5]. 
A major limitation of the non-Cartesian trajectories is that they require a fur-
ther processing step called “gridding” [14]. Gridding translates the acquired non-
Cartesian data points to a Cartesian grid before employing fast Fourier transform 
(FFT) for image reconstruction [12]. Many methods have been presented in the 
recent past to re-sample the acquired non-Cartesian data onto a Cartesian map 
which include SC-GROG [14] and non-uniform fast Fourier transform (NUFFT) 
[13].

NUFFT was proposed by Jeffrey A. Fessler et al. [13] and is based on min–max 
interpolation to translate non-Cartesian data onto a Cartesian grid. NUFFT grid-
ding requires appropriate kernel size, shape, and density compensation function 
(DCF) to re-sample the non-Cartesian data onto a Cartesian grid.

Self-calibrated GRAPPA operator gridding (SC-GROG), a recent gridding 
technique, maps the non-Cartesian points in k-space onto adjacent Cartesian 
points using self-calibrated weight sets. SC-GROG does not map all the points 
to Cartesian locations, and therefore leaves a few empty spaces in the gridded 
k-space data [14]. Furthermore, SC-GROG performs only local averaging upon 
the Cartesian grid rather than calculating and applying DCF like NUFFT [15].

Golden-angle radial scheme [5] is used for fast DCE-MRI data acquisition. 
In GRASP approach, each radial spoke is attained at a continuously increasing 
angle called golden angle, i.e., 111.246°. Golden-angle sampling allows a high 
degree of freedom in the imaging experiments because temporal resolution is 
selected retrospectively by combining a certain number of spokes in a single time 
frame. The trajectory formed for each time frame using this technique is unique 
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as adjacent spokes are not repeated in any time frame. This results in incoher-
ent streaking artifacts which makes the golden-angle radial trajectory particularly 
suitable for compressed sensing (CS) [16] reconstruction.

Golden-angle radial sparse parallel MRI (GRASP) [17] is a blend of parallel 
imaging (pMRI), compressed sensing (CS) and the golden-angle radial sampling 
scheme for DCE-MRI reconstruction. Acquired golden-angle radial data cannot 
be directly used for image reconstruction, as the radial data do not lie on a regular 
Cartesian map, and therefore it requires gridding. Conventionally, GRASP [8] uses 
NUFFT [13] to grid the golden-angle radial data, followed by nonlinear conjugate 
gradient (NLCG) algorithm [9] to reconstruct the solution (unaliased) image.

A major disadvantage of NLCG reconstruction scheme is its computational com-
plexity, because it requires many iterations to find the solution image. Conventional 
GRASP performs gridding and de-gridding of the golden-angle radial data using 
NUFFT in each iteration to update the data consistency value [8]. This process is 
repeated until the consistency value meets the specified threshold cost. Gridding 
and de-gridding of the golden-angle radial data increase the reconstruction time and 
computational complexity of NLCG, thus making this type of reconstruction unsuit-
able for clinical applications, especially where the reconstructed data are required 
immediately after acquisition [5].

This paper proposes to use self-calibrated GRAPPA operator gridding (SC-
GROG) [14] with iterative soft-thresholding (IST) technique [10] to reconstruct the 
golden-angle radial DCE-MRI data. The proposed method does not require gridding 
and de-gridding operations in each iteration and therefore it is computationally less 
complex as compared to conventional GRASP reconstruction approach.

2 � Theory

2.1 � Self‑Calibrated GRAPPA Operator Gridding

Nicole et  al. proposed a novel gridding technique named SC-GROG [19] which 
maps the acquired non-Cartesian k-space points onto a Cartesian grid. SC-GROG 
employs self-calibrated coil-by-coil weight sets to place the non-Cartesian data onto 
the Cartesian grid. SC-GROG maps the non-Cartesian data s

(
kx, ky

)
 to the adja-

cent Cartesian position s
(
kx + nΔkx, ky + nΔky

)
 with a small shift in the x-direction 

( nΔkx) and y-direction (nΔky) , i.e.,

In Eq.  (1), Gn represents coil-by-coil weight sets which can be expressed as a 
function of Gx and Gy with dimensions Nc × Nc as:

Here, a and b , respectively, represent the random shifts along kx and ky direc-
tions to place the acquired non-Cartesian points to the adjacent Cartesian positions. 

(1)s
(
kx + nΔkx, ky + nΔky

)
≈ Gn.s

(
kx, ky

)
.

(2)Gn = Ga
x
.Gb

y
.



980	 I. Shahzadi et al.

1 3

SC-GROG is incapable of finding all the probable adjacent moves in the x- and 
y-directions; thus, some empty positions are left in the gridded k-space data [15]. 
SC-GROG effectively grids the non-Cartesian k-space data onto the Cartesian 
places without any need of DCFs or other gridding parameters, e.g., window widths, 
convolution shapes or oversampling factors, while sustaining a low computational 
complexity [15].

2.2 � Iterative Soft Thresholding (IST)

The vital concepts underlying the CS theory are sparsity and nonlinear reconstruc-
tion [8]. In the recent past, iterative soft-thresholding (IST) technique has been 
presented in CS MRI to recover the unaliased images from the undersampled MRI 
k-space data.

A simple iterative soft-thresholding algorithm used by Xiaobo [10] for CS-MRI 
reconstruction is defined as:

where x is a sparse complex MR image and xi is the ith element in x . Since x is 
complex, a complex thresholding operator � is used. Iterative soft-thresholding tech-
nique solves the problem when the solution is sufficiently sparse. The optimization 
problem with the regularization term for the IST algorithm is given as:

Here, Fu represents the Fourier transform with sampling mask, the solution image 
is represented by x and y is the acquired k-space data, � is the sparsifying transform 
and � represents the regularization parameter. IST provides a fast and robust method 
in CS-MRI to reconstruct the MR images from the acquired highly undersampled 
data.

2.3 � SC‑GROG with IST (Proposed Method)

In this work, SC-GROG [14] in conjunction with IST [10] is proposed to recon-
struct the GRASP DCE-MRI data. Figure 1 shows a block diagram of the proposed 
method (SC-GROG with IST).

Initially, the GRASP DCE-MRI data is fixed into time frames by adjusting the 
Fibonacci number of the consecutive spokes into time frames. The resulting tem-
poral frames are incoherent and enforce sparsity, as no two spokes are repeated in 
any time frame. The resulting sorted golden-angle radial data are gridded frame by 
frame using SC-GROG. SC-GROG has a property of mapping the non-Cartesian 
data to the adjacent Cartesian places and some empty spaces are left in the gridded 

S𝜆
�
xi
�
=

⎧
⎪⎨⎪⎩

xi + 𝜆, xi ≤ −𝜆

0, ��xi�� < 𝜆

xi − 𝜆, xi ≥ 𝜆

,

(3)min
x

1

2
‖Fux − y‖2

2
+ �‖�x‖1
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Fig. 1   GRASP reconstruction 
using the proposed method: 
Golden-angle radial data are 
first sorted into time frames 
and then gridded in a frame-by-
frame manner using SC-GROG. 
The receiver coil sensitivity 
maps are estimated from the 
gridded data. Finally, image 
reconstruction is performed 
by combining the receiver coil 
sensitivity profiles and the 
gridded data using iterative soft 
thresholding
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k-space where the exact Cartesian values cannot be estimated. The resulting SC-
GROG gridded data have incoherent artifacts that make GRASP DCE-MRI suitable 
for CS reconstruction.

Since GRASP exploits the joint sparsity in multi-coil images, the receiver coil 
sensitivity profiles estimated from SC-GROG gridded data using Walsh method are 
used to enhance the sparsity of the gridded data.

Finally, IST [10] is used to remove the artifacts from the SC-GROG gridded 
DCE-MRI golden-angle radial data to provide the solution image.

The proposed method has less computational complexity as compared to con-
ventional GRASP because it uses SC-GROG to map the GRASP DCE-MRI data 
instead of NUFFT [14], which does not require some extra computations, e.g., den-
sity compensation function (DCF), convolution shapes and windows sizes. Also, the 
use of iterative soft thresholding to solve the convex regularized optimization prob-
lem without the need of gridding and de-gridding makes the SC-GROG with IST 
more efficient than the conventional GRASP approach.

3 � Materials and Methods

The validity of the proposed method is examined on free breathing dynamic con-
trast-enhanced liver perfusion golden-angle radial MRI data downloaded from 
“http://cai2r​.net/resou​rces/softw​are/grasp​-matla​b-code”. The data set was acquired 
using 12 channel receiver coils with 256 readouts and 600 spokes. In the golden-
angle radial DCE-MRI data acquisition, multiple frame data are usually acquired 
to quantify the contrast agent uptake by the tissues. Golden-angle radial trajecto-
ries have the advantage of continuous data acquisition in 3D space and retrospec-
tive sorting into time frames to form 3D + t data. This is particularly possible if the 
number of spokes in each time frame belongs to a Fibonacci series which is defined 
as: F(n + 2) = F(n) + F(n + 1)where n ≥ 0 . The golden-angle radial data sorted in 
time frames using Fibonacci series introduces incoherent artifacts that make golden-
angle radial data suitable for CS recovery [18].

In the proposed method, firstly the acquired golden-angle radial DCE-MRI 
data are sorted into time frames according to the Fibonacci series [i.e., 1, 2, 3, 5, 
8, 13, 21, 34….]. For example, if 600 spokes with 256 readouts are acquired at a 
golden-angle increment, then by selecting 21 spokes (a Fibonacci number) in each 
time frame, this will generate 28-time frames, i.e., 600/21 = 28 frames. The result-
ing frames are incoherent, as even not a single spoke is repeated in any sorted time 
frame. The Nyquist sampling requirement for this case is 256 ∗

�

2
≈ 402 projections, 

conforming to a simulated acceleration rate of 19.1, i.e., 402/21 = 19.1 [15].
After sorting the golden-angle radial DCE-MRI data, SC-GROG gridding is per-

formed for each time frame individually until all the frames have been gridded on 
the Cartesian grid. SC-GROG maps each acquired golden-angle radial data point to 
the neighboring Cartesian position and leaves some empty spaces in the resulting 
Cartesian grid.

GRASP exploits multi-coil joint sparsity constraints to get the solution image. 
It has already been shown by Li. Feng et  al. [5] that combining CS with parallel 

http://cai2r.net/resources/software/grasp-matlab-code
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imaging enables a higher acceleration rate than CS or parallel MRI (pMRI) alone. 
In pMRI, the data are acquired using various receiver coils. Optimal SNR images 
can be reconstructed from the coil data when receiver coil sensitivity profiles are 
known [8]. In typical MR studies, the receiver coil sensitivity profiles are unknown 
and can be estimated from the acquired data. In the proposed method, the receiver 
coil sensitivity profiles are obtained using the Walsh method by temporal averaging 
of the GROG gridded data. Finally, the IST technique [10] is applied to get the solu-
tion image.

The value of the regularization parameter “ � “ in Eq. 3 affects the quality of the 
reconstructed images [4, 5, 17]; hence, the value of “ � “ for CS reconstruction is 
often determined empirically by trial and error. The value of the regularization 
parameter is adjusted until noise-like artifacts that arise due to undersampling are 
removed and the fine details in images are preserved. In this paper, the value of 
�  = 0.001 has been chosen empirically.

The proposed algorithm is implemented in MATLAB R2014a via Intel Core 
i7-4790, 3.70 GHz processor having 16 GB RAM.

4 � Results and Discussion

This work presents an SC-GROG-based IST approach to get the solution image 
form the golden-angle radial dynamic contrast-enhanced MRI data. The reconstruc-
tion results using the proposed method are compared with the conventional GRASP 
[13] approach which uses NUFFT with NLCG to find the solution image.

The reconstruction of the golden-angle radial DCE-MRI liver perfusion data is 
performed at acceleration factors (AF) of 11.8, 19.1 and 30.9 that correspond to 34, 
21 and 13 radial spokes per frame, respectively.

The reconstruction results are assessed visually as well as by mean square error 
(MSE) and comparing the line profiles of the arterial and venous phases. In this 
work, MSE and line profiles are used to find the difference between the images 
reconstructed using the conventional GRASP and the proposed method. Also, a 
comparison of the reconstruction time is performed for different acceleration factors.

Golden-angle fully sampled data cannot be acquired, as some empty spaces are 
always left between spokes due to golden-angle increment; therefore; no fully sam-
pled reference images are available. The conventional GRASP reconstructed images 
(reconstructed with NUFFT with NLCG) are taken as a reference to calculate the 
mean square error.

Figure 2 presents the reconstruction results of the proposed method and conven-
tional GRASP at AF = 11.8, 19.1 and 30.9. In Fig. 2a–c, the upper row demonstrates 
the reconstruction results using the proposed method (SC-GROG with IST) and the 
bottom row displays the reconstruction results of conventional GRASP [13]. The 
resultant images show a contrast enhancement in the arterial and venous phases of 
liver perfusion.

Figure  2a shows the reconstruction results of GROG with IST (the proposed 
method) and conventional GRASP (NUFFT with NLCG) obtained at acceleration 
factor 11.8 with 34 golden-angle radial spokes per frame with 17 temporal frames. 
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Figure  2b shows the simulation results of the SC-GROG with IST (the proposed 
method) and conventional GRASP at acceleration factor 19.1 with 21 golden-angle 
radial spokes per frame and 28 temporal frames. Figure 2c displays the reconstruc-
tion results of the proposed method and conventional GRASP at acceleration factor 

Fig. 2   Reconstruction results for the proposed method and conventional GRASP at different acceleration 
factors (AF): (a) AF = 11.8 with 17 temporal frames having 34 radial spokes/frame; (b) AF = 19.1 with 
28 temporal frames having 28 radial spokes/frame; (c) AF = 30.9 with 46 temporal frames having 13 
radial spokes/frame of DCE-MRI golden-angle radial data in pre-contrast, arterial and venous phases of 
liver perfusion
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30.9 with 13 golden-angle radial spokes per frame and 46 temporal frames. The 
results illustrate that the proposed method reconstructs the DCE-MRI golden-angle 
radial liver perfusion data without any degradation in the image quality in the pre-
contrast, arterial and venous phases.

Figure  3 shows the line profile comparison between the conventional GRASP 
reconstruction and the proposed method in arterial and venous phases of the liver 
perfusion data at AF = 11.8. The line profile displays the pixel intensity values taken 
from regularly spaced points along a line in an image. The line profiles of the images 
reconstructed via conventional and the proposed method show a high degree of 

Fig. 3   a A line profile comparison of the conventional GRASP reconstruction (top row) and the pro-
posed method (bottom row) in the arterial and venous phases of liver perfusion data. There is no visual 
difference between the reconstruction results with the two methods. b The line profiles in the arterial 
phase (top row) and venous phase (bottom row) show a high degree of temporal correlation that confirms 
our findings in visual analysis
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similarity in terms of pixel intensity distribution which confirms that the proposed 
method reconstructs the solution images without degrading the image quality.

Table  1 provides a comparison of the reconstruction results for the proposed 
method and conventional GRASP in terms of MSE and reconstruction time at accel-
eration factors of 11.8, 19.1 and 30.9. All the reconstructions have been performed 
in MATLAB R2014a with Intel Core i7-4790, 3.70 GHz processor having 16 GB 
RAM.

Reconstruction time for 17 frames with the conventional method is 18.7  min, 
while with the proposed method, i.e., GROG-IST, the reconstruction time is 1.5 min, 
i.e., ≈ 12 × faster than the conventional GRASP. Reconstruction time for 28 frames 
with the conventional method is 22.3 min, while with the proposed method recon-
struction time is 2.1 min, i.e., ≈ 10× faster. Similarly, the reconstruction time for 46 
frames with the conventional method is 29.3 min, while with the proposed method 
the reconstruction time is 3.3 min, i.e., ≈ 9× faster than the conventional method.

MSE values given in Table 1 show that the proposed method efficiently recon-
structs the solution image in lesser time without any quality degradation. The MSE 
values at AF = 11.8, 19.1 and 30.9 are 1 × 10−5 , 2 × 10−5 and 2 × 10−5 , respectively. 
Small MSE values in Table 1 show that the proposed method accurately reconstructs 
the solution image in lesser time without any quality degradation.

The results given in Figs. 2, 3 and Table 1 prove that the proposed method suc-
cessfully recovers the solution image with contrast enhancement in the arterial and 
venous phases of the golden-angle radial DCE-MRI liver perfusion data at different 
acceleration factors.

A limitation of the current work is that the gridding performed via NUFFT (in 
conventional GRASP) leads to sharp images, while the gridding performed with 
GROG (in the proposed method) leads to slightly blurred images, especially at 
higher acceleration factors. This is due to the fact that the signal-to-noise ratio is 
preferred over resolution in GROG density compensation filter [19]. This issue can 
be addressed by decreasing the acceleration factor that subsequently increases the 

Table 1   Reconstruction results with the proposed method and conventional GRASP in terms of MSE 
and reconstruction time for acceleration factors 11.8, 19.1 and 30.9 with 17, 28 and 46 temporal frames, 
respectively

Accel-
eration 
factor

Num-
ber of 
frames

Method Gridding method Optimi-
zation 
technique

Reconstruc-
tion time 
(Min)

Mean square 
error (MSE)

11.8 17 Proposed GROG IST 1.5 1 × 10−5

Conventional 
GRASP

NUFFT NLCG 18.7 –

19.1 28 Proposed GROG IST 2.1 2 × 10−5

Conventional 
GRASP

NUFFT NLCG 22.3 –

30.9 46 Proposed GROG IST 3.3 2 × 10−5

Conventional 
GRASP

NUFFT NLCG 29.3 –
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number of spokes per frame. In the current work, the images reconstructed with the 
proposed method at lower acceleration factors, i.e., 11.8 and 19.1, offer high resolu-
tion (Fig. 2a, b), while the images get slightly blurred at acceleration factor 30.9, as 
can be seen in Fig. 2c.

The validity of the proposed method has been tested on a golden-angle radial 
liver perfusion data set. The proposed method shows an improvement in image 
reconstruction time than the conventional GRASP method by ≈ 12×, ≈ 10× and ≈ 
9× at acceleration factors 11.8, 19.1 and 30.9 with 17, 28 and 46 temporal frames 
having 34, 21 and 13 radial spokes per frame, respectively. If the radial data is 
acquired with a sufficient number of receiver coils and the signal-to-noise ratio is 
adequate, then GROG can be effectively used as a preprocessing step before iterative 
reconstruction methods for radial MRI [12]. Thus, the improvement in reconstruc-
tion performance via GROG is independent of a particular data set and therefore 
it can be easily extended to other applications such as prostate, neck perfusion and 
cardiac MRI [18].

5 � Conclusion

In this paper, a new method (GROG with IST) is proposed as an alternative to con-
ventional GRASP (NUFFT with NLCG). The proposed method efficiently recovers 
the solution image with high spatio-temporal resolution in lesser computational time 
as compared to conventional GRASP approach, as it does not require gridding and 
de-gridding in each iteration. The results show that the proposed method provides 
≈ 12×, ≈ 10× and ≈ 9× faster reconstructions at acceleration factors 11.8, 19.1 and 
30.9 with 34, 21 and 13 radial spokes per frame, respectively. The proposed method 
successfully recovers the solution image with proper contrast enhancement in the 
arterial and venous phases of the golden-angle radial DCE-MRI liver perfusion MR 
data.
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