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Abstract Magnetic resonance imaging (MRI) is widely adopted for clinical diag-

nosis due to its non-invasively detection. However, acquisition of full k-space data

limits its imaging speed. Compressed sensing (CS) provides a new technique to

significantly reduce the measurements with high-quality MR image reconstruction.

The sparsity of the MR images is one of the crucial bases of CS-MRI. In this paper,

we present to use sparsity averaging prior for CS-MRI reconstruction in the basis of

that MR images have average sparsity over multiple wavelet frames. The problem is

solved using a Fast Iterative Shrinkage Thresholding Algorithm (FISTA), each

iteration of which includes a shrinkage step. The performance of the proposed

method is evaluated for several types of MR images. The experiment results

illustrate that our approach exhibits a better performance than those methods that

using redundant frame or a single orthonormal basis to promote sparsity.

1 Introduction

Magnetic resonance imaging (MRI) iswidely adopted for the clinical diagnosis due to its

non-invasively detection technique. However, the imaging speed of MRI is often

limited. One of the most important influence factors is the amount of k-space data that

need to be acquired. Therefore, accelerating the acquisition of MRI is still a great

challenge for certain clinical applications. To address this issue, numerous research

works have been reported, such as designing imaging sequences for fast acquisition and
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maintaining reconstruction image quality with the acquisition data as few as possible

[1–5].Among them, parallel imaging (PI) emerged as themostwidely used technique in

clinical routine [5], including sensitivity encoding (SENSE) [2], simultaneous

acquisition of spatial harmonics (SMASH) [6], generalized auto calibrating partially

parallel acquisitions (GRAPPA) [7], and iterative self-consistent parallel imaging

reconstruction (SPIRiT) [8]. However, the PI techniques are typically limited by

Nyquist sampling rate and the achieved acceleration is limited to low factor values [9].

The compressed sensing (CS) [10, 11] is a new techniquewhich has recently emerged

as powerful approach for both acquiring data and reconstructing signals with high

quality from highly under-sampled measurements (with respect to the traditional

Shannon–Nyquist sampling theorem required). CS is a new promising method which is

able to reconstruct high-quality MR images from highly under-sampled k-space data,

called theCS-MRI,which assumes thatMR images canbe represented sparsely in image

or transform domain. Consequently, CS-MRI allows to reconstructing the images from

much less measurements compared with the conventional methods, and to reducing

MRI scanning time efficiently without degrading image quality [9, 12, 13]. The first

work of CS-MRI was proposed in [12], which employed two commonly sparsifying

transforms as sparsity constraint, namely total variation (TV) and discrete wavelet

transform (DWT).According to structured sparsity theory, thewavelet tree structure has

been proposed in [14] for CS-MRI, which can be further improved the reconstruction

MR image quality than standard wavelet sparsity prior. However, MR images usually

have more sparse representation in a redundant dictionary, such as redundant wavelet

transform [15], contourlet [16], framelets [17], and shearlet [18]. Instead of predefined

transforms, much ongoing work for CS-MR image reconstruction is based on data-

adaptive sparsifying transform, such as singular value decomposition (SVD) [19],

dictionary learning [20–23], and patch-based adaptive kernel methods [24, 25].

In this study, we present to use sparsity averaging prior for CS-MRI in the basis

of that MR images have average sparsity over multiple wavelet frames. The

problem is solved using a fast iterative shrinkage thresholding algorithm (FISTA),

each iteration of which includes a shrinkage step. The performance of the proposed

approach was evaluated for several types of MR images. The experiment results

illustrate that our method exhibits better performance than those methods that using

redundant frame or a single orthonormal basis to promote sparsity.

2 Methodology

2.1 CS-MRI

Compressed sensing (CS) [10, 11] methods are able to reconstruct MR images with

high quality from much fewer k-space data, consequently, which make it possible to

reduce MRI acquisition time efficiently [13]. Given an observation vector y in k-

space domain and the sensing matrix U, the purpose of CS-MRI is to reconstruct the

MR image x with y ¼ Ux by solving an optimization problem as follows:

min
x2Rn

xk k0 s:t: y ¼ Ux: ð1Þ
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However, the problem in Eq. (1) involves the l0 norm which requires combinatorial

optimization. Fortunately, if the potential image x is sufficiently sparse in some domain

[11], it is possible to replace the l0 norm by the l1 norm (represents the sum of absolute

values of each element in a vector) in Eq. (1) without degrading reconstruction image

quality. Then, the minimization problem Eq. (1) is reformulated as:

min
x2Rn

xk k1 s:t: y ¼ Ux: ð2Þ

2.2 The Proposed Method

The sparsity of the MR images is one of the crucial bases for CS-MRI. In this study,

we propose to use the sparsity averaging prior [26] for CS-MRI reconstruction based

on the fact that MR images have average sparsity over multiple wavelet frames.

Then, the CS-MR image reconstruction problem can be written as:

ex ¼ argmin
x

y� Uxk k2þk WWyx
�

�

�

�

�

�

1
ð3Þ

where U is a partial Fourier transform expressed by Fu ¼ P � F, and F represents

Fourier transform, P is common under-sampling pattern (mask); W 2 CD�D is a

positive diagonal weighting matrix; W ¼ 1
ffiffi

q
p W1;W2; . . .;Wq;

� �

2 CN�D; N\D is

a dictionary which is composed of frame concatenation Wi with 1� i� q.

Let f xð Þ ¼ 1
2

y� Axk k22, which is a convex and smooth function with Lipschitz Lf,

and g xð Þ ¼ kkWWyxk1, which is convex but non-smooth function. Then, Eq. (3) can

be solved by the FISTA [27]. The pseudocode of the presented method is indicated in

Algorithm FSACSMRI, where rf rk
� �

¼ UT y� Uxð Þ with UT denotes the inverse

partial Fourier transform; the proximal map is defined for any scaler q[ 0:

proxq fð Þ xð Þ ¼ argmin
u

f vð Þ þ 1

2q
v� xk k22

� 	

: ð4Þ
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3 Results and Discussion

3.1 Materials

To compare with the conventionally used sparsifying transforms in the CS-MRI,

two-dimensional (2D) MR images with dimension of 256 9 256 are used in present

work (these images can be download from Ref. [28]), as illustrated in Fig. 1.

Figure 1a indicates the k-space under-sampling mask with a under-sampled ratio of

20% using the variable density sampling pattern [12]. Figure 1b–f illustrates the

original MR images which are acquired with full k-space data and considered as the

ground truth for comparing the proposed method with other approaches. In the

experiments, we use Daubechies wavelets with four decomposition levels for

sparsifying image. All codes of the other methods are downloaded from the authors’

websites for fair comparisons. The observation noise standard deviation e is set to
0.01 and the regularization parameter k ¼ 0:035.

For evaluating the performance of the method presented in this work, we

compare it with several CS-MRI reconstruction approaches, including the

SparseMRI [12], Contourlet [16], FCSA [28], and WaTMRI [29]. The indices

including mean structural similarity (MSSIM) and peak-signal-to-noise ratio

(a) k-space mask (b) MRI_Coronal_Brain (c) 3DMR_Chest

(d) MRI_ Brain (e) 3DMR_Renal_Arteries (f) Shoulder

Fig. 1 Under-sampling mask and test images
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Fig. 2 Reconstructed MR images using different methods with 20% sampling. a Original MR images of
MRI coronal brain; images reconstructed by b SparseMRI [12]; c Contourlet [16]; d FCSA [28];
e WaTMRI [29]; f FSACSMRI (proposed)

Fig. 3 Reconstructed MR images using different methods with 20% sampling. a Original MR images of
3DMR Chest; images reconstructed by b SparseMRI [12]; c Contourlet [16]; d FCSA [28]; e WaTMRI
[29]; f FSACSMRI (proposed)
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Fig. 4 Reconstructed MR images using different methods with 20% sampling. a Original MR images of
MRI Brain; images reconstructed by b SparseMRI [12]; c Contourlet [16]; d FCSA [28]; eWaTMRI [29];
f FSACSMRI (proposed)

Fig. 5 Reconstructed MR images using different methods with 20% sampling. a Original MR images of
3DMR Renal Arteries; images reconstructed by b SparseMRI [12]; c Contourlet [16]; d FCSA [28];
e WaTMRI [29]; f FSACSMRI (proposed)
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(PSNR) [30] are also derived for comparing these methods quantitatively. The

PSNR is defined as:

PSNR ¼ 20 log10
MAXx
ffiffiffiffiffiffiffiffiffiffi

MSE
p


 �

ð5Þ

where MSE ¼ 1
M�N

PM
i¼1

PN
j¼1 xref i; jð Þ � xrec i; jð Þ

� �2
; MAXx is the maximum

possible pixel value of the image, which is set to be 1 or 255.

The SSIM is formulated as [30]:

SSIM x; yð Þ ¼
2lxly þ C1

� �

2rxy þ C2

� �

l2x þ l2y þ C1

� 

r2x þ r2y þ C2

�  ð6Þ

where the parameters C1 and C2 are constants that avoid instability when the local

means lx and ly, and local standard deviations rx and ry are close to zero. The

mean SSIM (MSSIM) is a single value that represents an overall quality measure of

the entire image. The MSSIM values exhibit much better consistency with

qualitative visual appearance [30].

Fig. 6 Reconstructed MR images using different methods with 20% sampling. a Original MR images of
shoulder; images reconstructed by b SparseMRI [12]; c Contourlet [16]; d FCSA [28]; e WaTMRI [29];
f FSACSMRI (proposed)
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3.2 Visual comparisons

Figures 2, 3, 4, 5, 6 give the visual comparisons of the several types of MR images

reconstructed from different methods. The under-sampled ratio is about 20%. From

such figures, we observe that the image reconstructed with the method proposed in

this work has sharp contours and edges and gives fine image details.

To provide more intuitive result, the PSNR and MSSIM indices for MR images

reconstructed from 20% k-space data with different methods are compared

quantitatively, as shown in Tables 1 and 2, respectively. It indicates that our

method has the highest PSNRs and the greatest MSSIMs.

Figures 7, 8 give the curve of PSNR and MSSIM versus different under-sampled

ratio (10–50% or 0.10–0.50) for the MR images reconstructed with different

methods. It can be seen that the FCSA and WaTMRI have a similar performance for

the Coronal Brain MR image, and our method has always a better performance than

SparseMRI, Contourlet, FCSA, and WaTMRI in terms of PSNR and MSSIM for

different MR images.

Figure 9 gives the comparison reconstruction time between the proposed method

and the other methods with different under-sampled ratio and different images.

From the figures, it can be clearly observed that the FCSA and WaTMRI methods

are the fastest among the five methods, and the proposed method takes the longer

reconstruction time. On the other hand, the computation time of the methods has no

obvious change for different images and different under-sampled ratio.

Table 1 PSNR of reconstruction using different methods with 20% sampling

Image SparseMRI Contourlet FCSA WaTMRI Proposed

Coronal brain 20.70 23.77 27.34 27.41 29.48

3DMR chest 25.26 28.30 27.82 28.56 31.37

MRI brain 28.83 32.73 32.03 33.07 37.08

3DMR renal arteries 26.63 30.93 33.42 34.26 37.28

Shoulder 32.89 39.20 38.66 39.84 45.79

Table 2 MSSIM of reconstruction using different methods with 20% sampling

Image SparseMRI Contourlet FCSA WaTMRI Proposed

Coronal brain 0.55 0.69 0.88 0.88 0.92

3DMR chest 0.68 0.78 0.75 0.78 0.87

MRI brain 0.78 0.86 0.83 0.87 0.94

3DMR renal arteries 0.54 0.76 0.90 0.92 0.95

Shoulder 0.86 0.95 0.94 0.95 0.98
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4 Conclusions

In this study, we introduced an approach for CS-MR image reconstruction by

employing sparsity averaging constraint as powerful prior, which promotes average

signal sparsity over multiple wavelet basis. The experiment results illustrate that our

Fig. 7 Performance comparisons (PSNR vs. different sampling rates) for different MR images
reconstructed with different methods: a coronal brain image; b 3DMR chest image; c MRI brain;
d 3DMR renal arteries; e shoulder
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approach exhibits a better reconstruction performance compared to state-of-the-art

CS-MRI reconstruction methods. In addition, the image quality reconstructed with

our method is not sensitive to the under-sampling rates for different types of MR

images, which illustrates the robustness of such approach.

Fig. 8 Performance comparisons (MSSIM vs. different sampling rates) for different MR images
reconstructed with different methods: a Coronal brain image; b 3DMR chest image; c MRI brain;
d 3DMR renal arteries; e shoulder
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