
ORI GIN AL PA PER

Local NMR Relaxation of Dendrimers in the Presence
of Hydrodynamic Interactions

Maxim Dolgushev1,2 • Sebastian Schnell1 •

Denis A. Markelov3,4

Received: 25 January 2017 / Revised: 4 May 2017 / Published online: 24 May 2017

� Springer-Verlag Wien 2017

Abstract We study the role of hydrodynamic interactions for the relaxation of

segments’ orientations in dendrimers. The dynamics is considered in the Zimm

framework. It is shown that inclusion of correlations between segments’ orientations

plays a major role for the segments’ mobility, which reveals itself in the nuclear

magnetic resonance relaxation functions. The enhancement of the reorientation

dynamics of segments due to the hydrodynamic interactions is more significant for

the inner segments. This effect is clearly pronounced in the reduced spectral density

xJðxÞ, maximum of which shifts to higher frequencies when the hydrodynamic

interactions are taken into account.

1 Introduction

Dendrimers are treelike macromolecules with a regular branching. Because of their

unique architecture, there are plenty of applications of these macromolecules [1–3].

Exemplarily, dendrimers can be used as drug delivery systems [4, 5], nanoscale

catalysts [6, 7], rheology modifiers [8, 9], contrast agents [10, 11], to name only a

few of possible applications. Clearly, for some of these applications, the local

dynamic behavior is of a great importance.
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Recently, much of attention has been attracted to the local dynamics in

dendrimers, both in theory (analytic theory [12–14] and computer simulations

[15–17]) and experiments [18–21]—see also recent review [22]. Especially the

nuclear magnetic resonance (NMR) relaxation experiments have remarkably

advanced this field. In particular, it was found that the methodology used for the

analysis of mobility based on the spin–lattice relaxation time T1 has to be

reexamined for dendrimers [18]. Unlike for linear polymer chains, for dendrimers

the mobility cannot be assessed based on a single frequency measurement only. In

case of dendrimers, which possess a very broad relaxation spectrum, the T1-function

reveals its nonmonotonous behavior. Therefore, measurements of T1 at different

frequencies or investigations of the spin–spin relaxation time T2 are necessary [18].

The description of this remarkable local dynamics of dendrimers has been

provided by the theory [13]. Unlike for linear chains, the dendrimer possesses

exponentially growing relaxation times related to the dynamics of its large

subbranches. As has recently been shown in Ref. [13], in order to see these times in

the local characteristics, one has to include local correlations between segments

(i.e., to consider the so-called semiflexible dendrimers). Nevertheless, the theoretical

study of Ref. [13] did not include hydrodynamic interactions (HI), although the

experiments typically deal with dendrimers in a solvent [18, 19, 23–27]. It is

important to mention the work of Ref. [12] which studied the NMR relaxation

functions for semiflexible dendrimers in solution averaged over the whole

dendrimer structure. However, in the present work, we are interested in the

dependence of the NMR functions on the segments’ location, bearing in mind the

experiments of Refs. [18, 19]. As we proceed to show here, the NMR functions of

semiflexible dendrimers in solution strongly depend on the segments’ location,

although HI typically enhance mobility.

The paper is structured as follows: Sect. 2 represents the theory of the local

dynamics of semiflexible dendrimers in solution. In Sect. 3, we provide and discuss

our results. The paper ends with conclusions (Sect. 4).

2 Theory

2.1 The Model

A dendrimer is a polymer with a regular treelike structure. To construct a

dendrimer, we start with a central bead to which we attach f beads. This creates a

dendrimer of generation G ¼ 1: The procedure is continued by attaching f � 1 new

beads to the peripheral beads, which creates a dendrimer of generation G ¼ 2:
Iterating the previous step will increase the generation of the dendrimer by one for

each iteration. We focus here on dendrimers with f ¼ 3 and various generation

G ¼ 3; . . .; 5: Also, we enumerate the segments (i.e., springs) belonging to the same

shell by g, starting with the segments attached to the core. (Note that for dendrimers

the segments belonging to the same shell g are equivalent.) Moreover, as we will

show below, for the analysis of the segments’ dynamics it is practical to introduce
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also an enumeration of shells from the periphery, i.e., to use m � G� g: In this

notation, m ¼ 0 will indicate the outer (peripheral) shell (Fig. 1).

In this work, we consider dendrimers being constructed of identical beads, which

are connected via harmonic springs, also called segments. All springs have the same

spring constant K and the same mean-square length l2: In this way, the structure of a

dendrimer can be represented by a set of the beads’ position vectors frig: For two

connected beads (say, i and j), we define an oriented segment da ¼ ri � rj: To

model semiflexibility, we consider the orientations of segments to be correlated

following the general framework of Ref. [28] (that stems from earlier works

[29–34]). In the model of freely rotating segments [35], one has the following

constraints. The mean-square segment lengths are fixed hda � dai ¼ l2: Two adjacent

segments, say a and b, fulfill hda � dbi ¼ �l2q; where the plus is for head-to-tail

orientations and the minus otherwise. The semiflexibility parameter q varies from 0

to 1=ðf � 1Þ, so for f ¼ 3 from 0 to 1/2, see Ref. [36]. A flexible dendrimer has

q ¼ 0, whereas a semiflexible dendrimer (SD) has q[ 0 (in this work we choose

q ¼ 0:45 for SD). Finally, any two nonadjacent segments a and c are connected in a

dendrimer through the unique path (b1; . . .; bk). For them, hda � dci ¼ hda � db1
ihdb1

�
db2

i � � � hdbk � dcil�2k holds. For a dendrimer, we can write these relations in a

compact form, see Ref. [13]:

hda � dbi ¼ ð�1Þk�s
qkl2; ð1Þ

Fig. 1 Schematic representation of a dendrimer of generation G ¼ 3 and functionality f ¼ 3: The
segments are represented by springs and the beads by spheres. The dashed circles indicate different shells
numbered by g. Another enumeration scheme counts shells from the periphery, m � G� g

Local NMR Relaxation of Dendrimers... 659

123



where k is the amount of beads along the unique path from da to db and s equals the

number of head-to-tail connections along this path. Here we choose the vectors

representing the segments to point away from the core and therefore adjacent

segments are oriented tail-to-tail for segments belonging to the same shell and head-

to-tail for the segments from different shells.

Equation (1) represents the covariance matrix of the multivariate Gaussian

distribution for segments fdag: Thus, given that all segments have a zero mean, the

Gaussian distribution for fdag is fully determined through Eq. (1). This distribution

yields the Boltzmann distribution, expð�VSDðfdagÞ=kBTÞ=Z; with the potential

energy

VSDðfdagÞ ¼
K

2

X

a;b

Wabda � db; ð2Þ

where K ¼ 3kBT=l
2 is the entropic spring constant and the matrix W ¼ fWabg is

related to Eq. (1) by

hda � dbi ¼ l2ðW�1Þab: ð3Þ

Hence, in order to obtain the potential described by Eq. (2), one has to invert the

matrix of correlations represented by Eq. (1). Strikingly, in the model considered

here for any treelike architecture, the matrix W is known analytically, see Ref. [28].

It turns out that the matrix W is very sparse [28]. Elements involving nonadjacent

segments vanish. For dendrimers, the diagonal elements of W can take only two

different values [37]:

ð�1 þ qÞ=ð�1 þ qþ 2q2Þ

for peripheral segments and

ð�1 þ q� 2q2Þ=ð�1 þ qþ 2q2Þ

for nonperipheral segments. The off-diagonal elements involving adjacent segments

are [37]

�q=ð�1 þ qþ 2q2Þ;

where the plus sign stands for segments oriented as head-to-tail, and the minus sign

for the other orientations.

The potential energy VSDðfdagÞ of Eq. (2) can be transformed from segments

into beads’ position variables, VSDðfrkgÞ: This can be done using

da �
X

k

ðGTÞakrk : ð4Þ

The matrix G is the so-called incidence matrix of the graph theory [38], and T

denotes the transposition operation. The elements of G ¼ ðGiaÞ; corresponding to

the segment a, are either Gja ¼ �1 or Gia ¼ 1; if the segment a is orientated from

bead i to bead j and zero otherwise. The transformation of Eq. (4) leads to
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VSDðfrkgÞ ¼
K

2

X

i;j

Aijri � rj; ð5Þ

with A ¼ ðAijÞ:
A ¼ GWGT ; ð6Þ

where A is the so-called dynamical matrix. Its elements are known analytically and

listed elsewhere (see Ref. [28] for general treelike structures and Ref. [39] for

dendrimers). Note that A and W are both square and symmetric but have different

dimensions. The dimensions of A are N � N and of W are ðN � 1Þ � ðN � 1Þ,
where N stands for the number of beads. On the other hand, matrix A contains one

zero eigenvalue k1 ¼ 0 and W does not have vanishing eigenvalues, so that the rank

of both matrices is equal to ðN � 1Þ:
For further calculations, it is practical to use the normal modes fuig ¼

fuxi; uyi; uzig that are related to frig ¼ frxi; ryi; rzig by

raiðtÞ ¼
X

j

QijuajðtÞ: ð7Þ

Here, Q ¼ ðQijÞ is constructed from orthonormal eigenvectors of A, i.e., Q diago-

nalizes A:

Q�1AQ ¼ Diagðk1; . . .; kNÞ: ð8Þ

With this, the potential energy of Eq. (5) can be rewritten as

VSDðfungÞ ¼
K

2

XN

i¼2

ki ui � ui; ð9Þ

where we have used that k1 ¼ 0:

2.2 Hydrodynamic Interactions

In this work, we study the dynamics of semiflexible dendrimers in a solvent, where

the beads experience HI. Each moving bead in the solvent creates a fluid current

around itself, and the surrounding beads are affected by this current. Following the

Zimm-picture [35, 40], HI are modeled by the Oseen tensor [41],

cHij ¼ Idij þ
3

4

lfr
Rij

Rij � Rij

R2
ij

þ I

 !
1 � dij
� �

; ð10Þ

where Rij ¼ jRijj ¼ jri � rjj and fr ¼ a=l is the coefficient related to the bead radius

a. In this work, we use the traditional value fr ¼ 0:25, as in Refs. [31, 42–47]. This

choice of fr ensures the stability of dynamic quantities [42–44, 46].

Based on the hydrodynamic tensor bH and on the potential energy of Eq. (5), we

can construct a set of Langevin equations that describe the motion of beads. For,

say, bead i it reads as follows:
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f
o

ot
riðtÞ ¼

XN

j¼1

bHij � �K
XN

k¼1

Ajkrk þ f jðtÞ
 !

: ð11Þ

Here the left-hand-side term represents friction force, i.e., f is the friction constant

for a bead. The last term contains stochastic forces ffkðtÞg, for which hfkðtÞi ¼ 0;
and hfakðtÞfbmðt0Þi ¼ 2½ðbH�1Þnm�abkBTfdðt � t0Þ holds. Now, since bHij depends on

rj, Eq. (11) is not linear and very difficult to solve. To overcome this problem, one

uses the preaveraging approximation in the Zimm picture [35, 40], in which bHij is

replaced by its equilibrium average value, which we call Hij in the following. The

interbead distances are Gaussian distributed, and the Cartesian components of frkg
are uncorrelated. With this, one gets [35]

Hnm ¼ ðdnm þ frhl=Rnmið1 � dnmÞÞI � HnmI; ð12Þ

where I is the three-dimensional identity tensor. Moreover, the vector Rnm con-

necting beads n and m obeys a Gaussian distribution, so that for Rnm generally holds

hR�1
nmi ¼

6

phR2
nmi

� �1=2

; ð13Þ

i.e., Eq. (13) is independent of the polymeric topology [31, 33, 44–47]. Further-

more, we note that the stationary distances hR2
nmi are independent of the HI.

Therefore, we can evaluate hR2
nmi based on the eigenvalues and eigenvectors of A:

The answer reads as follows:

hR2
nmi ¼ l2

XN

k¼2

b2
knm

kk
; ð14Þ

where we have defined

bknm ¼ Qkn � Qkm: ð15Þ

In case of flexible dendrimers (q ¼ 0), Eq. (15) results in the topological matrix

(i.e., the matrix of topological distances between the beads) [41], for semiflexible

dendrimers the hR2
nmi are evaluated numerically.

2.3 Local Dynamics of Dendrimers in Solution

First quantity of our interest is the single segment time-autocorrelation function

defined by

Ma
1ðtÞ � hdaðtÞ � dað0Þi=l2: ð16Þ

This function can be found by solving the set of Langevin equations Eq. (11).

However, since the product HA is not symmetric, there are different left- and right-

sided eigenvectors. Therefore, we will work here in the symmetrized picture, e.g.,

Ref. [48], in which the matrix describing the set of Langevin equation is symmetric.

Using the Cholesky decomposition of H ¼ CCT ; the Langevin equation, Eq. (11),

under preaveraging, say, for the y-component reads as follows:
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y
�
iðtÞ ¼ �K

f

XN

j¼1

ðCCTAÞijyjðtÞ þ
1

f

XN

j¼1

ðCCTÞijfjðtÞ: ð17Þ

Multiplication with C�1 from the left side leads to

XN

i¼1

ðC�1Þkiy
�
iðtÞ ¼ �K

f

XN

j¼1

ðCTACC�1ÞkjyjðtÞ þ
1

f
f 0kðtÞ; ð18Þ

where we set f 0kðtÞ ¼
PN

j¼1ðCTÞkjfjðtÞ; for which now hf 0kðtÞi ¼ 0 and

hf 0akðtÞf 0bmðt0Þi ¼ 2kBTfdkmdabdðt � t0Þ hold. Moreover, from the symmetry of A
follows the symmetry of CTAC: Hence, we can find an orthogonal matrix ~Q ¼
f ~Qkmg such that

~Q�1CTAC ~Q ¼ Diagð~k1; . . .; ~kNÞ; ð19Þ

where the f~kig are the eigenvalues of CTAC; including the eigenvalue ~k1 ¼ 0 (these

eigenvalues are the same as those of HA). In this way, the matrix ~Q leads to a

transformation from frkg to f~umg: From Eq. (19), we obtain as follows:

XN

i¼1

ðC�1ÞkiyiðtÞ ¼
XN

m¼1

~Qkm~umðtÞ: ð20Þ

With this transformation we obtain orthogonal eigenmodes f~umg, whose correlation

function read as follows:

h~uakðtÞ~ubmð0Þi ¼
l2dabdkm expð�~kmt=s0Þ

3~km
: ð21Þ

Now, multiplying Eq. (20) from the left side by C leads to

ynðtÞ ¼
XN

i¼1

ðCC�1ÞniyiðtÞ ¼
XN

m¼1

ðC ~QÞnm~umðtÞ: ð22Þ

With this and from Eq. (4) we get for the y-component of the segment da

da;yðtÞ ¼
XN

n¼1

ðGTÞanynðtÞ ¼
XN

m¼1

ðGTC ~QÞam~umðtÞ; ð23Þ

from which, based on Eq. (21), the single segment time-autocorrelation function in

the presence of HI is as follows:

Ma
1ðtÞ ¼

XN

j¼2

½ðGTC eQÞaj�
2 exp½�~kjt=s0�

~kj
ð24Þ

Now, the function Ma
1ðtÞ is connected with the second Legendre polynomial,
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Pa
2ðtÞ �

1

2
3

ðdaðtÞ � dað0ÞÞ2

jdaðtÞj2jdað0ÞÞj2

* +
� 1

 !
: ð25Þ

For Gaussian-distributed fdag; Pa
2ðtÞ can be expressed analytically from Ma

1ðtÞ
[49, 50]. The result reads as follows [50]:

Pa
2ðtÞ ¼ 1 � 3 x2 � p

2
x3 1 � 2

p
arctanðxÞ

� �� 	
; ð26Þ

where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðMa

1ðtÞÞ
2

q
=Ma

1ðtÞ: The Fourier transform of the second Legendre

polynomial Pa
2ðtÞ; the so-called spectral density,

JðxÞ ¼
Z

Pa
2ðtÞ e�ixtdt; ð27Þ

is the fundamental quantity for determination of the NMR relaxation functions, such

as T1; T2, and NOE, e.g., Refs. [51–54].

3 Results and Discussion

3.1 Relaxation of Segments

We start our discussion with the results for function M1ðtÞ calculated for

dendrimers’ segments. Here we follow the terminology introduced in

Refs. [13, 55–57].

In Fig. 2, we display M1ðtÞ for the segments belonging to different shells m (the

shells are counted from the periphery, so that index m ¼ 0 is related to the

peripheral shell). As can be inferred from the figure, for dendrimers, the function

M1ðtÞ depends on m, but not on the dendrimer’s generation G. The only

considerable difference can be observed for m ¼ G� 1: These findings can be

traced back to two major processes: (1) short-scale internal relaxation and (2)

relaxation of the branch originating from the labeled segment as a whole. The first

process corresponds to the contribution of the internal relaxation modes. The

ensuing part of the spectrum is located in a narrow region of the whole spectrum; it

has a very weak dependence both on the size of the dendrimer G and on the segment

location m (see also the inset to the bottom plot of Fig. 2). Therefore, this process

can be described through an averaged relaxation time sin related to the part of the

spectrum corresponding to the internal modes. This region of the spectrum is

practically independent of G and m. On the contrary, the second process depends on

the branch size, i.e., on index m of its originating segment. Therefore the

characteristic time sbr
m of this process grows with m.

Thus, the decay of the function M1ðtÞ can be split on two regions: (1) the region

of short times, where the function M1ðtÞ has the same behavior for all

m characterized by the time sin and (2) the region of long times in which one can

characterize M1ðtÞ by the time sbr
m that depends on m. As can be observed in Fig. 2,

for flexible dendrimers the initial region (1) dominates the dynamics. Inclusion of
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local stiffness leads to tremendous changes in the behavior of M1ðtÞ, so that the slow

modes dominate the relaxation. This fact reflects suppression of the local scale

motions due to the introduced local bending stiffness.

As was briefly mentioned above, the core segments (i.e., those with m ¼ G� 1)

possess an exceptional behavior, especially for semiflexible dendrimers. One can

observe that for the same value m the functions with m\G� 1 have a slower decay

than those for m ¼ G� 1: This behavior can be traced back to the fact that for

m\G� 1 also the time sbr
mþ1 that is larger than sbr

m ; s
br
mþ1 [ sbr

m ; contributes. In case

of m ¼ G� 1; the time sbr
m¼G�1 is the maximal relaxation time of the whole system,

so that there are no larger times that can contribute.

We note that the behavior of M1ðtÞ discussed above is in a qualitative agreement

with previous theoretical works [13, 15, 17]. Hence, we have shown that the

0 10 20 30 40 50
t/τ0

0

0.2

0.4

0.6

0.8

1

M
1(t)

G = 5
G = 4
G = 3

m = 4

m = 3

m = 2
m = 1

m = 0

with HI, q = 0.45

0 10 20 30 40 50
t/τ0

0

0.2

0.4

0.6

0.8

1

M
1(t)

with HI, q = 0

Fig. 2 (Top) temporal autocorrelation function Ma
1ðtÞ for segments of semiflexible dendrimers (of

generation G) belonging to different shells counted from the periphery by m. (Bottom) the same as for top
figure, but for segments of flexible dendrimers
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inclusion of HI into the theoretical approach of Ref. [13] does not change the

qualitative behavior of the orientational mobility. These findings are also supported

by the Brownian dynamics simulations [56–58]. In order to look at the quantitative

role of the HI, we compare our results with the theory that does not account for HI

[13], see Fig. 3.

As observed in Fig. 3, for large times, HI lead to a faster decay of M1ðtÞ, both for

flexible and semiflexible dendrimers. For inner segments (indicated by larger m),

this effect is even more pronounced than for more peripheral ones. This behavior

corresponds to an effective decrease of the friction coefficient of the beads. On the

scale of large times the dynamics of a segment of the mth shell involves relaxation

of the whole subbranch that originates from this segment. For dendrimers of

functionality f ¼ 3, this subbranch contains 2mþ1 � 1 beads. Therefore the decrease

of the friction coefficient of a larger amount of beads leads to a stronger decrease for

50
t/τ0

0

0.2

0.4

0.6

0.8

1

M
1(t)

with HI
without HI

m = 4

m = 0

G = 5, q = 0.45

0 10 20 30 40

0 10 20 30 40 50
t/τ0

0

0.2

0.4

0.6

0.8

1

M
1(t)

with HI
without HI

G = 5, q = 0

Fig. 3 Comparison of Ma
1ðtÞ calculated based on the models with HI (this work, Fig. 2, G ¼ 5) and

without HI (Ref. [13]) for segments of semiflexible (top) and flexible (bottom) dendrimers

666 M. Dolgushev et al.

123



sbr
m corresponding to higher m. This consequently yields the quicker decay of M1ðtÞ

for higher m.

A final remark is related to short times. As observed for m ¼ 0, there is a very

slight deviation from the general acceleration of the dynamics. This effect can be

traced back to the fact that the small relaxation times and hence also sin are related

to the motion of neighboring beads in an antiphase manner [39, 59, 60]. HI rather

decelerate such type of motions, thereby supporting the observed behavior on the

short time scales. These findings are also supported by simulations [56–58], e.g.,

Fig. 13 of Ref. [58].

3.2 Spectral Density

The reorientional autocorrelation function M1ðtÞ discussed in the previous

subsection is fundamental for calculation of spectral densities JðxÞ, see Eqs. (26)

and (27). The spectral densities of Figs. 4 and 5 correspond to the functions M1ðtÞ of

Figs. 2 and 3, respectively.

In Fig. 4, we show the dependence of spectral density on frequency for segments

of flexible and semiflexible dendrimers in the presence of HI. As observed in Fig. 4,

for flexible dendrimers, the spectral densities are practically independent of m and

G, with a little exception for m ¼ 0; for which the maximum of xJðxÞ is slightly

shifted toward low frequencies. This behavior stems from the fact that for m ¼ 0

mainly the local scale, inner modes contribute. Therefore the position of the

maximum of xJðxÞ is close to 1=sin: In case of semiflexible dendrimer, the picture

of xJðxÞ displays striking deviations from xJðxÞ of the flexible dendrimers. The

maximum of xJðxÞ is shifted toward low frequencies for segments that are closer to

the core, i.e., for higher m. This shows that for semiflexible dendrimers the main

contribution is related to the relaxation of the branch as a whole and the position of

the maximum of xJðxÞ is determined through the corresponding time sbr
m that is

larger for higher m. We note that such differences in the behavior between flexible

and semiflexible dendrimers were observed for the theoretical model that does not

include HI [13]. Therefore in the following we discuss differences between the

model of Ref. [13] and the present study by making a direct comparison between

the ensuing functions xJðxÞ:
For a more detailed investigation of the influence of HI on the spectral density,

we compare it with that coming from the model without hydrodynamics [13], see

Fig. 5. For semiflexible dendrimers, inclusion of HI leads to a shift of the maxima

toward higher frequencies in comparison with the corresponding functions obtained

in the model [13] that does not include HI. The reason for this tendency corresponds

to decrease of sbr
m for the system with HI especially for higher m (vide supra).

Interestingly, for m ¼ 0 there is a weak deviation from the general trend of xJðxÞ:
Inclusion of HI leads to a slight increase of sbr

0 ; therefore the corresponding function

xJðxÞ shifts toward lower frequencies. For flexible dendrimers, this effect is even

more pronounced, see Fig. 5b. For this type of dendrimers, one can observe this

effect for all m, given that inclusion of HI leads to a slight growth of times of the

inner spectrum (i.e., of sin) as well as of sbr
0 : Taking into account the results for the

autocorrelation functions obtained in simulations [56–58], we can conclude that this
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effect is not an artifact of the viscoelastic model, but rather a feature of the dendritic

structure that shows itself in its eigenmodes. We believe that further experimental

and simulation studies can shed light on this specific feature of dendrimers.

4 Conclusions

In this work, we have studied the influence of hydrodynamic interactions on the

reorientational properties of segments in dendrimers. The hydrodynamic interac-

tions have been modeled through the Ossen tensor, the dynamics of macromolecules

has been considered in the Zimm picture. Two different viscoelastic models of

ωτ0

0.1

0.2

0.3

0.4

ω
J(

ω
)

G = 5
G = 4
G = 3

m = 4
m = 3

m = 2 m = 1 m = 0
with HI, q = 0.45

0.01 0.1 1 10 100

0.1 1 10 100
ωτ0

0.1

0.2

0.3

0.4

ω
J(

ω
)

m = 1...4

m = 0
with HI, q = 0

Fig. 4 (Top) reduced spectral density xJðxÞ for segments of semiflexible dendrimers (of generation G)
belonging to different shells counted from the periphery by m. (Bottom) the same as for top figure, but for
segments of flexible dendrimers
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dendrimers (flexible and semiflexible) have been examined. The results have been

compared with those coming from the framework that does not include hydrody-

namic interactions. The local relaxation of segments has been studied based on the

temporal autocorrelation functions M1ðtÞ and on the spectral density JðxÞ that

manifests the NMR relaxation experiments.

It has been shown that the inclusion of hydrodynamic interactions qualitatively

conserves reorientational properties of segments, in particular, that functions M1ðtÞ
and JðxÞ are determined by the remoteness of segments from the periphery. The

presence of hydrodynamics leads to an acceleration of the decay of M1ðtÞ and to a

shift of the maximum of xJðxÞ toward higher frequencies. This effect strengthens

for more inner segments. An interesting exception from this behavior is provided by

ωτ0

0.1

0.2

0.3

0.4

ω
J(

ω
)

with HI
without HI

m = 4m = 3 m = 2
m = 1

m = 0 G = 5, q = 0.45

0.01 0.1 1 10 100

0.1 1 10 100
ωτ0

0.1

0.2

0.3

0.4

ω
J(

ω
)

with HI
without HI

m = 1...4

m = 0
G = 5, q = 0

Fig. 5 Comparison of xJðxÞ calculated based on the models with HI (this work, Fig. 4, G ¼ 5) and
without HI (Ref. [13]) for segments of semiflexible (top) and flexible (bottom) dendrimers
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the peripheral segments. The obtained results are qualitatively supported by the

computer simulations.
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