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Abstract We present an algorithm for the numeric calculation of antiferromagnetic

resonance frequencies for the noncollinear antiferromagnets of general type. This

algorithm uses general exchange symmetry approach (Andreev and Marchenko,

Sov. Phys. Usp. 130:39, 1980) and is applicable for description of low-energy

dynamics of an arbitrary noncollinear spin structure in weak fields. Algorithm is

implemented as a MatLab and Cþþ program codes, available for download. Pro-

gram codes are tested against some representative analytically solvable cases.

1 Introduction

Antiferromagnetic ordering is observed at low temperatures in a vast amount of

crystals. In the simplest case, magnetic ions can be grouped into two sublattices with

antiparallel average spins yielding the collinear antiferromagnetic structure. However,

such collinear structures do not cover all possible types of antiferromagnetic order:

one can easily imagine magnets with more than two sublattices or helicoidal

structures, which cannot be deduced to a finite number of sublattices at all. Numerous

examples of such systems are known, e.g., three-sublattice ‘‘triangular’’ antiferro-

magnetic order in CsNiCl3 and RbNiCl3 [2, 3], 12-sublattices ordering in an

Mn3Al2Ge3O12 garnet [4, 5], spiral ordering in LiCu2O2 [6–8], and complicated

multi-k structure in strongly frustrated pyrochlore magnet Gd2Ti2O7 [9].
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Electron spin resonance (antiferromagnetic resonance, AFMR) is a powerful and

sensitive tool to study low-energy dynamics of the magnetically ordered systems.

By exciting uniform oscillations (i.e., k ¼ 0 spin waves) of the ordered spin

structure one can investigate its properties: orientation of the ordered structure with

respect to the crystal, strength of the anisotropic interactions fixing this orientation,

and various spin-reorientation transitions. Due to high-energy resolution of

microwave AFMR spectrometry, spin-wave spectrum details at k ¼ 0 can be quite

routinely determined with accuracy up to 5 mkeV (corresponding to the resolution

of 1 GHz), thus strongly complimenting powerful inelastic magnetic neutron

scattering techniques at low energies.

However, interpretation of the antiferromagnetic resonance data for complicated

magnetic structures is sometimes difficult. Antiferromagnetic resonance frequencies

for a collinear structure can be calculated relatively easily in a two-sublattice model

[10]. Similar calculations for a noncollinear magnets are much less general: many-

sublattice model calculations using a mean-field theory approach are very

cumbersome [11]; standard (Holstein–Primakoff like) spin-wave theory approach

to many-sublattice antiferromagnets is also complicated (e.g., [12, 13]). Moreover,

analytical solution of these equations is usually out of the question for general

mutual orientation of the magnetic field and sublattice magnetizations. Numeric

calculations of spin-wave spectra are also known, see e.g., SpinW library by Tóth

[14], but they rely on strongly model-dependent microscopic hamiltonian.

Some of these difficulties can be overcome using an exchange symmetry

approach developed in [1]. This approach allows to build up general hydrodynamic

description of low-energy dynamics of an antiferromagnet. It was successfully

applied for various magnetic systems [3, 5, 8, 15–17]. However, analytical solution

for f(H) dependency (which is the characteristic observable in antiferromagnetic

resonance experiment) remains complicated, if possible at all, for arbitrary direction

of magnetic field.

In the present manuscript, we describe numeric approach to the solution of

dynamic equations within framework of exchange symmetry approach [1] in the

arbitrary case. The developed algorithm is implemented in program codes, available

on the authors homepage [18].

2 Brief Basics of Exchange Symmetry Approach and Derivation
of Dynamic Equations

First, we briefly recall necessary equations of exchange symmetry theory [1] to be

used in our calculations. The main limitation of this theory is that distortions of the

ordered spin structure are small, which limits its applicability to the low fields

H � Hex ’ J=ðglBÞ. In particular, this limitation excludes from consideration

various phase transitions with complete restructuring of the order parameter

(collinear–noncollinear transitions, various magnetization plateaus phases, etc.).

Under this assumption, any noncollinear magnetic structure can be described by

three unitary orthogonal vectors l1;2;3 (e.g., planar structure with a wavevector k can

be described as SðrÞ ¼ l1 cosðkrÞ þ l2 sinðkrÞ, with l3 ¼ l1 � l2). All static
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properties and low-energy dynamics of this structure can be described by its

Lagrangian with Lagrangian density (we use here notations of Refs. [8, 19])

L ¼
X

i

Ii

2
_li þ c li �H½ �
� �2�UAð lif gÞ ð1Þ

here c is a free electron gyromagnetic ratio and UA is the energy of anisotropy.

Constants Ii � 0 are related to susceptibilities as M ¼ oL
oH: magnetic susceptibilities

for the field applied along ith vector are v1 ¼ c2ðI2 þ I3Þ, v2 ¼ c2ðI1 þ I3Þ,
v3 ¼ c2ðI1 þ I2Þ.

Anisotropy energy should be invariant under crystal symmetry transformation, its

exact form depends on the symmetry of the particular crystal and on the exchange

symmetry of the ordered phase; relationship between Ii constants is also fixed by

symmetry of the susceptibilities tensor for a given spin structure. Some examples

for the known analytically solvable cases are given in Appendix. Note that Ii
constants and exact form of the anisotropy energy are the only parameters of this

approach. Once they are deduced only the formal operations remains.

First, static equilibrium position l
ð0Þ
i have to be found by minimization of

potential energy density

P ¼ �
X

i

Ii

2
c2 li �H½ �2þUAð lif gÞ ð2Þ

Second, frequencies of small oscillations near equilibrium have to be deduced. We

suppose here that these oscillations are parameterized by some three non-degenerate

variables /af g, e.g., Euler angles or other suitable variables. For the sake of sim-

plicity we take that all of /a ¼ 0 at equilibrium position. Potential energy has a

quadratic minimum at the equilibrium, thus when looking for small oscillations we

can replace potential energy by its quadratic expansion. This substitution explicitly

excludes possible problems of a numeric algorithm due to the finite accuracy of

minimum determination. Lagrangian density is then

L ¼
X

i

Ii

2
_li
� �2þc

X

i

Ii _li � li �H½ �
� �

� 1

2

X

b;d

o2P
o/bo/d

 !

0

/b/d ð3Þ

here ð. . .Þ0 index means that derivative is calculated at equilibrium position.

To obtain dynamic equations linear in /a or its time derivatives, li have to be

expanded up to second order in /a:

li ¼ l
ð0Þ
i þ

X

b

oli
o/b

 !

0

/b þ
1

2

X

b;d

o2li
o/bo/d

 !

0

/b/d

_li ¼
X

b

oli
o/b

 !

0

_/b þ
X

b;d

o2li
o/bo/d

 !

0

/b
_/d;

then with linear over /a accuracy
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oL
o/a

¼ c
X

i;b 6¼a

oli
o/b

 !

0

� oli
o/a

� �

0

�H

� � !
_/b

þ c
X

i;b

Ii _/b
o2li

o/ao/b

 !

0

� lð0Þi �H
h i

�
X

b

o2P
o/ao/b

 !

0

/b

and so forth.

Variation of the action results in three Euler–Lagrange equations

d

dt

oL
o _/a

� oL
o/a

¼ 0 ð4Þ

By summing up all terms and by substituting uniform harmonic oscillations /b ¼
/ð0Þ
b eıxt we obtain equations on oscillation amplitudes /ð0Þ

b . Required degeneracy of

these equations results in the condition detM ¼ 0 where matrix M of the linear

equations is defined as

Mab ¼� x2
X

i

Ii
oli
o/a

� �

0

� oli
o/b

 !

0

 !

þ 2ıxc
X

i

Ii
oli
o/a

� �

0

� oli
o/b

 !

0

�H

" # !
þ o2P

o/ao/b

 !

0

ð5Þ

The equation detM ¼ 0 results in real cubic equation for x2, all complex

coefficients will sum to zero. Solution of this equation yields eigenfrequencies of

small oscillations we sought for.

Experimental observation of these small oscillations in standard magnetic

resonance experiment is, in fact, observation of the absorption of microwave

radiation of certain polarization. Thus, information about oscillation of magneti-

zation mðtÞ ¼ meıxt is important as well. It can be calculated straightforwardly as

M ¼ oL
oH ¼ M0 þmeıxt, oscillating magnetization vector is

m ¼ ıcx
X

i;b

Ii
oli
o/b

 !

0

�l
ð0Þ
i

" #
/ð0Þ
b

� c2
X

i;b

Ii
oli
o/b

 !

0

�H
 !

l
ð0Þ
i þ l

ð0Þ
i �H

� 	 oli
o/b

 !

0

 !
/ð0Þ
b

ð6Þ

complex form of m describes circular or elliptical precession of magnetization:

mðtÞ ¼ uþ ıvð Þeıxt means that real magnetization is u cosxt � v sinxt. Average
square of longitudinal and transverse components of the oscillating magnetization

can be used as a simple indicator of excitation conditions

hm2i ¼ 1

2
ðu2 þ v2Þ ð7Þ

hm2
jji ¼

1

2
ððu � nÞ2 þ ðv � nÞ2Þ ð8Þ
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hm2
?i ¼hm2i � hm2

jji ð9Þ

here n is a unitary vector in the applied field direction. Being interested in only the

polarization of oscillating magnetization, we will norm its square averaged (if non-

zero) to unity: hm2i ¼ 1.

Determination of the initial guesses for the model parameters is case dependent.

We will note here that equation detM ¼ 0 allows one to scale all parameters of M
arbitrary. This means that (unless one is particulary interested to reproduce both

static and dynamical properties without scaling coefficients) one of the coefficients

(one of Ii constants or one of the coefficients in anisotropy energy expansion) can be

set to unity for convenience. Second, theM matrix simplifies for zero-field problem

(its complex part vanishes) which could help to find zero-field gaps in AFMR

spectrum. Another possible simplification is softening of the AFMR modes, which

commonly appears at spin reorientation transition. In this case, x ¼ 0 and

detM ¼ 0 reduces to detð o2P
o/ao/b

Þ0 ¼ 0. Finally, at high fields one of the AFMR

modes is field independent and its frequency can be calculated [20], while field-

dependent mode linear asymptotes are (we assume that v3 ¼ c2ðI1 þ I2Þ is the

largest susceptibility)

x2 ¼ cH

x3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2
I3ðI1 þ I2Þ

ðI1 þ I3ÞðI2 þ I3Þ

s

cH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðv1 þ v2 � v3Þv3
v1v2

s

cH

In the limiting case of I1 ¼ I2 (v1 ¼ v2\v3), x3 ¼ I1�I3
I1þI3

cH ¼ v3�v1
v1

cH. Alterna-

tively, Ii constants can be deduced from the susceptibility measurements.

3 Solving Dynamic Equations Numerically

Below we describe briefly details of algorithm implementations. MatLab script and

Cþþ source files along with compiled Win32 executable file can be downloaded at

[18]. More detailed information is presented in the electronic supplementary

materials of this manuscript.

3.1 Search for Equilibrium

We define orientation of flig vectors by Euler angles h, / and w. Minimization can

be performed with any suitable standard numeric minimization procedure. However

please note that numeric procedures always look for local minimum. Thus, to find a

global minimum, one has to perform preliminary search for a starting approximation

with minimal potential energy P over some grid in the Euler angles space. On the

other hand, it could be of interest to follow a particular local minimum evolution

with field, which allows one to model response from different magnetic domains.

MatLab implementation uses global minimum search only, Cþþ implementation

allows one to follow local minimum on user choice.
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From this point, we assume that desired equilibrium position flð0Þi g is found.

Dynamic equations are obtained by varying action S ¼
R
LdVdt and they can be

written down as any suitable variable. Euler angles are, generally, not the best

choice for dynamics equation as they suffer from ‘‘gimbal lock’’ problem: one of the

degrees of freedom will be lost if at some moment l3jjZ. To avoid this problem we

used two approaches for calculation of eigenfrequencies: (i) to recalculate our

problem to the frame of reference which is definitely free from the ‘‘gimbal lock’’,

or (ii) to use other set of variables for dynamic equations. First approach was

implemented in MatLab code, second approach was implemented in Cþþ code.

3.2 Solving Dynamics Equation, MatLab Implementation Details

First approach was applied in MatLab environment using the Symbolic Math

Toolbox, as it provides functions for manipulating symbolic math equations and lets

analytically perform differentiation, simplification and transforms. All these

opportunities allow us to consider not only quadratic terms in the anisotropy

energy UA, but also take into consideration its higher orders in accordance with

symmetry theory, if necessary. GlobalSearch class is used as well for obtaining

global minimum point of potential energy P and finding equilibrium position flð0Þi g.
First, we rotate laboratory reference frame in such a way that h ¼ / ¼ w ¼ p=6 for

equilibriumposition of flig vectors. The choice of angle equal top=6 is fairly arbitrary,
it is chosen simply to exclude ‘‘gimbal lock’’ problem. Herewith, recalculation of

vector components of the external magnetic field and transformation of the anisotropy

energy to new coordinates is needed. If A ¼ faabg is the matrix of this rotation,

B ¼ A�1 ¼ fbabg is the inverse matrix, then in new frame of references

H
0

a ¼
X

b

aabHb ð10Þ

~UAðflai gÞ ¼ UA

�nX

b

babl
b
i

o	
ð11Þ

Here, H ¼ Haf g and H0 ¼ fH 0
ag are vectors of the external magnetic field in the

basic and transformed frames of references correspondingly, ~UAðflai gÞ is the

anisotropy energy written in new frame of references.

Second, we use parametrization of Euler angles for description of small

oscillations near the equilibrium position in transformed frame of references,

because in such case ‘‘gimbal lock’’ problem is avoided. As magnetic vectors

components flai g are known functions of h, /, w parameters, there are no any

problems to obtain the values of first derivatives of flai g vectors and the values of

first and second derivatives of potential energyP at flð0Þi g position. These values are
used for calculations of oscillations eigenfrequencies from the equation detM ¼ 0

according to Eq. (5).

Complete algorithm is divided into few steps:

1. We start from specified start field H ¼ Hstart applied in the specified direction.
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2. We look for global minimum of potential energy P and find a new equilibrium

position at field H. Information on equilibrium position (Euler angles, potential

energy at equilibrium, projections of flð0Þi g vectors on the field direction,

longitudinal and transverse susceptibilities) is saved.

3. Components of vector H0 (see Eq. (10)) and anisotropy energy ~UA (Eq. 11) in

transformed frame of references are obtained.

4. Matrix M (see Eq. (5)) is calculated and detM ¼ 0 equation is solved for

eigenfrequencies. Results are saved.

5. Eigenvectors and average values of projections of oscillating magnetization

vector along and transverse to external magnetic field for all oscillation modes

are found and saved.

6. Field is increased by specified increment Hstep. If the field does not reach its

goal value Hstop, we continue with Step 2.

All input parameters including anisotropy energy function UA in general case, vi
and c coefficients, magnetic field direction, variation boundaries, increment of the

value of magnetic field are specified in MatLab script. Calculation results are saved

in three files correspondingly with static properties (equilibrium position, energy at

equilibrium, projections of flð0Þi g vectors on the field direction, longitudinal and

transverse susceptibilities), oscillation eigenfrequencies and eigenvectors together

with average projections of oscillating magnetization vector along and transverse to

the magnetic field.

3.3 Solving Dynamics Equation, Cþþ Implementation Details

MatLab environment allows big flexibility and allows one to avoid a lot of routine

operations. However, it requires commercial software and, being an interpreter, is

somewhat slower than a properly compiled program. Thus, we propose an alternative

implementation in Cþþ language along with flexible executable program.

For the sake of flexibility we will consider only quadratic terms in anisotropy

energy

UA ¼
X

0

i;j;a;b

a
a;b
ij lai l

b
j ð12Þ

here
P 0 sign means that each lai l

b
j combination is counted only once during sum-

mation (which formally means i� j and, for the case i ¼ j, a� b). Higher orders of
anisotropy can be included in the program code in a straightforward way, if nec-

essary. This restriction allows to read all a
ab
ij coefficients from easily editable plain

text ini-file and to simplify all derivative calculations for minimum search routine

and for dynamics equation derivation, e.g.,

oUA

ox
¼
X

0

i;j;a;b

a
a;b
ij

olai
ox

l
b
j þ lai

ol
b
j

ox

 !
ð13Þ

here x is some variable of choice.

Numerical Recipes [21] FRPRMN routine is used to find an equilibrium position.

We continue calculations in the same frame of references attached to the crystal, but
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small oscillations near the equilibrium are described as a small rotations of lif g
vectors parameterized by vector of small rotations / ¼ ð/x;/y;/zÞ. Length of this

vector is rotation angle and its direction defines rotation axis, at equilibrium position

/ ¼ 0. Up to quadratic terms in / transformation of lif g can be described as:

li ¼ l
ð0Þ
i þ /� l

ð0Þ
i

h i
þ 1

2
/� /� l

ð0Þ
i

h ih i
þ Oð/3Þ ð14Þ

This parametrization is free from ‘‘gimbal lock’’. Note that there are non-zero

second-order derivatives o2li
o/ao/b

which have to be taken into account when

calculating Hessian matrix o2P
o/ao/b

. This allows complete calculation of oscillations

of eigenfrequencies.

Once eigenfrequencies are known, complex oscillation vectors / are found as

zero-eigenvalue eigenvectors of M matrix using standard JACOBI procedure from

Numerical Recipes [21]. This allows to compute complex oscillating magnetization

vector m (see Eq. (6)) and its average projections on the field direction and on the

direction transverse to the field.

Complete algorithm looks as follows:

1. We start from specified start field H ¼ Hstart applied in the specified direction.

2. We look for a new equilibrium position at field H. According to user choice we

either look for global minimum or for a local minimum close to some initial

approximation (specified initial approximation at first point or previous

equilibrium position). Information on equilibrium position (Euler angles,

projections of li on the field direction and longitudinal susceptibility) is saved.

3. Matrix M (see Eq. (5)) is calculated and detM ¼ 0 equation is solved for

eigenfrequencies. Results are saved.

4. Oscillating complex magnetization components and average longitudinal and

transverse components of the oscillating magnetization for all oscillation modes

are found and saved.

5. Field is increased by specified increment Hstep. If the field does not reach its

goal value Hstop, we continue with Step 2.

All input parameters including anisotropy energy coefficients (Eq. 12), Ii and c
coefficients, magnetic field direction and limiting boundaries are specified in a text

ini-file. Calculation results are saved in three files with static properties (equilibrium

position, energy at equilibrium, longitudinal and transverse susceptibilities),

oscillation eigenfrequencies and eigenvectors correspondingly.

3.4 Application to the Test Examples

We tested our algorithms against test cases described in Appendix. Example of the

numerically computed AFMR f(H) dependence is shown in Fig. 1, detailed test

protocols are included in supplementary material.

Test routine included: application to the test cases with known analytical results

for f(H), computation at the equivalent field orientations for cubic crystal,

computation of the f(H) curve at canted field orientation. We have found that
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numeric results coincide with known analytical solutions, both implementations of

the algorithm yield the same results, no ‘‘gimbal lock’’ cases occurs.

Some minor instabilities of the numeric procedures were noted in highly

degenerate cases (coincidence of resonance frequencies for different modes or

presence of a zero-frequency mode), but they affect only less important output data.

We found that sometimes determination of the frequency for x ¼ 0 mode, which is

not experimentally observable, is faulty or excitation condition determination is

sometimes uncertain for the degenerate modes. Determination of the static

properties and f(H) curves for f 6¼ 0 was not affected by these issues.

4 Conclusion

We present an algorithm for numerical solution of antiferromagnetic resonance

frequencies for a noncollinear antiferromagnet of a general type within framework

of the exchange symmetry theory [1]. Algorithm is implemented in the available

MatLab and Cþþ codes (including ready-to-use compiled win32 executable) [18]

and implementations are tested against known analytically solvable models.
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Fig. 1 Application of the numeric algorithms to the test example of Mn3Al2Ge3O12. Model parameters
reproduce 1.2 K experimental data of Ref. [5] and are listed in the ‘‘Appendix’’. On all panels closed
symbols are the results of MatLab-implemented algorithm, open symbols are the results of Cþþ-
implemented algorithm. Left panel Hjj½111�, bold solid lines are analytical solution; right panel Hjj½100�,
curves are guide to the eye
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Appendix: Analytically Solvable Models Used as Test Cases

We recall here some of the known examples of application of exchange symmetry

theory to low-energy dynamics of noncollinear antiferromagnets. These analytical

solutions were used as test cases to ascertain correctness of numeric algorithms.

The first test example is an antiferromagnet on a triangular lattice CsNiCl3 [3]. In

the ordered phase of this magnet, spins form a planar 120	 structure. High symmetry

of triangular lattice leaves single invariant in the anisotropy energy UA ¼ bðlz3Þ
2
,

here z-axis is normal to hexagonal plane and vector l3 is the normal to the plane of

the planar spin structure, b[ 0 as at zero-field spin plane is orthogonal to the

hexagonal crystallographic plane. Magnetic susceptibility normal to the spin plane

dominates: v3 [ v2 ¼ v1 (i.e., I3\I1 ¼ I2). Two of the zero-field frequencies are

zero, non-zero zero-field frequency is x0 ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffi
I1�I3
I1þI3

b
q

¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v3�v1
v1

b
q

. As the field is

applied along z-axis spin plane reorients at the field H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
c2ðI1�I3Þ

q
¼

ffiffiffiffiffiffiffiffiffi
b

v3�v1

q
.

Magnetic resonance frequencies at Hjjz are given by equations:

H\H0 : x
2
1 ¼ x2

0 þ cHð Þ2

x2 ¼ x3 ¼ 0

H[H0 :

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v3
2v1

cH

� �2

�x2
0

s


 2v1 � v3
2v1

cH

x3 ¼ 0

Because of simplicity of anisotropy energy, this problem can be solved analytically

at arbitrary field orientation, see Ref. [3] for details.

To reproduce experimental results of Ref. [3], we take for our modeling b ¼ 1

kOe2, c ¼ 18:8 109rads�1

kOe
(3.0 GHz kOe�1 in frequency units), I1 ¼ I2 ¼ 8:77�

10�6 kOe2

ð109rads�1Þ2 and I3 ¼ 9:75� 10�7 kOe2

ð109rads�1Þ2.

Second, we consider 12-sublattice antiferromagnet Mn3Al2Ge3O12 [5]. Here,

I1 ¼ I2 because of the cubic symmetry, anisotropy energy UA ¼ k½l22z � l21z þ
2ffiffi
3

p ðl1xl2x � l1yl2yÞ� (k[ 0) (we use notations of Ref. [22]). At zero-field plane of the

spiral structure is orthogonal to one of the h111i directions. Oscillation eigenfre-

quencies can be found at Hjj½111�:

x1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1

I1 þ I3
cH

� �2

þ 4

3

k
ðI1 þ I3Þ

s


 I3

I1 þ I3
cH

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v3
2v1

cH

� �2

þ 4

3

k
v1

c2

s


 2v1 � v3
2v1

cH

x3 ¼

ffiffiffiffiffiffiffi
8

3

k
I1

s

¼ c

ffiffiffiffiffiffiffiffi
8

3

2k
v3

s
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To reproduce experimental results of Ref. [5], we take for our modeling k ¼ 1 kOe2,

c ¼ 17:6 109rads�1

kOe
(2.80 GHz kOe�1), I1 ¼ I2 ¼ 1:42� 10�5 kOe2

ð109rads�1Þ2, I3 ¼ 7:99�
10�6 kOe2

ð109rads�1Þ2. Results of the modeling for this case are shown at the Fig. 1.

Finally, it is a spiral magnet LiCu2O2 [8]. Despite the orthorhombic symmetry

I1 ¼ I2 as there is no anisotropy in the plane of the spiral structure, UA ¼ A
2
l23z þ B

2
l23y

(A�B� 0). It turns out that in the case of LiCu2O2 A and B constants in anisotropy

energy are close within 1 %. Thus, normal to the spin plane l3 rotates almost freely

in the (yz) plane. One of the oscillation frequencies corresponds to the rotation in the

plane of spiral structure and is always zero since phase of the helix can be changed

at no energy cost. Two other modes have non-zero zero-field frequencies

x2
10 ¼� A

I1 þ I3
¼ �c2

A

v1

x2
20 ¼

B� A

I1 þ I3
¼ c2

B� A

v1
\x2

10

For LiCu2O2 v3 [ v1, in this case at Hjjz vector l3 always remains aligned along z

and non-zero oscillation frequencies are

x2
1;2 ¼

x2
10 þ x2

20

2
þ c2H2 I23 þ I21

I3 þ I1ð Þ2




ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

10 � x2
20

2

� �2

þ4
c4H4I21 I

2
3

I1 þ I3ð Þ4
þ 2

c2H2ðx2
10 þ x2

20ÞI23
I1 þ I3ð Þ2

s

At Hjjx spin plane rotates orthogonally to the magnetic field at some critical field.

Critical field Hcx ¼ x10

c

ffiffiffiffiffiffiffiffi
I1þI3
I1�I3

q
¼ x10

c

ffiffiffiffiffiffiffiffiffi
v1

v3�v1

q
and oscillation frequencies are

H\Hcx :

x2
1 ¼x2

10 þ c2H2

x2
2 ¼x2

20

H[Hcx :

x2
1;2 ¼

x2
20 � 2x2

10

2
þ I21 þ I23

I1 þ I3ð Þ2
c2H2




ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4

20

4
þ 2c2H2

x2
20 � 2x2

10

� �
I23

I1 þ I3ð Þ2
þ 4

c4H4I21I
2
3

I1 þ I3ð Þ4

s

To reproduce experimental results of Ref. [8], we take for our modeling c ¼
17:59 109rads�1

kOe
(corresponds to 2.80 GHz kOe�1), A ¼ �1 kOe2, B ¼ �0:99 kOe2,

I1 ¼ I2 ¼ 1:85� 10�7 kOe2

ð109rads�1Þ2, I3 ¼ 6:18� 10�8 kOe2

ð109rads�1Þ2
The detailed comparison of the modeled curves with analytical predictions is

given in a supplementary material.
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