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Abstract Manifestations of the spin coherence transfer induced by the exchange

and dipole–dipole interactions between spin probes in dilute solutions in the

electron paramagnetic resonance (EPR) spectra have been studied. The pertur-

bation theory of manifestations of the spin coherence transfer in the EPR spectra

of nitroxide free radicals elaborated by one of the authors Salikhov (Applied

Magnetic Resonance 38:237–256, 2010) has been generalized with allowance for

the super hyperfine structure of the EPR spectra. For 14N nitroxide radicals, the

total EPR spectrum was presented as a sum of three independent components in

the case of slow and intermediate spin coherence transfer rates. The shapes of

these components were found. The side components of the EPR spectrum

contain the absorption and dispersion contributions and, as a result, have the

asymmetric (mixed) shapes. These asymmetric components can be presented as

J = Jabsorption ± p Jdispersion. The p value is found for the arbitrary super

hyperfine structure of the spectrum. In the slow and intermediate spin coherence

transfer rate regime, the parameter p is independent of the super hyperfine

interactions in the nitroxide radicals, but the shapes of Jabsorption and Jdispersion

terms depend on the super hyperfine structure of the nitrogen components of the

nitroxide EPR spectrum and on the spin coherence transfer rate. It is confirmed

theoretically that a good strategy to evaluate the spin coherence transfer rate

from the EPR spectra is using the dispersion contribution to the shape of the

EPR spectra of nitroxide free radicals. An algorithm is suggested and tested for

determining the spin coherence transfer and spin decoherence rates.
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1 Introduction

It is well known that the short-range exchange interaction between spin probes

(paramagnetic particles) in dilute solutions induces the bimolecular process of the

exchange of spin states of colliding particles: the spin exchange. By studying this

process, one can obtain useful information about the frequency of bimolecular

collisions in complex systems, the overlap of the electron wave functions, which is

of great importance for the interpretation of the electron transfer between donor and

acceptor molecules (see [1–6]).

The spin exchange rate can be determined using the methods of electron

paramagnetic resonance (EPR) spectroscopy. The bimolecular spin exchange

transforms the shape of the EPR spectra of spin probes remarkably: it broadens the

components of the EPR spectra, shifts these components, can produce the exchange

narrowing of EPR spectra, and some of the EPR spectrum components can become

asymmetric [1–3, 5, 6]. Thus, in principle, the spin exchange rate can be determined

by analyzing the shape of the EPR spectra. However, in addition to the exchange

interaction, the long-range dipole–dipole interaction can also change the states of

spin probes. Both interactions affect the shape of the EPR spectrum causing the

spin-probe concentration-dependent transformations of the spectrum shape. Another

important interaction, which also affects significantly the EPR spectrum, is the

hyperfine interaction of the unpaired electrons with magnetic nuclei.

Nitroxide free radicals are among favorite spin probes used for studying the spin

exchange. Keeping this in mind, in the course of our considerations below,

including numerical simulations of the EPR spectra, we refer to solutions of 14N

nitroxide radicals. These considerations can be properly projected to 15N nitroxide

radicals and other paramagnetic particles. There were developed several algorithms

for determining the spin exchange rates using the EPR data (see [1–6]). The

conventional algorithm (see [4–6]) is based on the following observations.

Components of the EPR spectra exhibit the concentration-dependent broadening

and shifts of the EPR lines at the low-spin probe concentration. At high

concentration, all components of the EPR spectrum converge to the narrow single

line at the gravity center of the spectrum. However, this algorithm disregards some

specific manifestations of the spin exchange in the EPR spectrum shape. In the

presence of the spin exchange, the shape of EPR spectra components can be a sum

of absorption and dispersion terms [1, 4, 5]. For example, the EPR spectrum of two

side (nitrogen) hyperfine components of the 14N nitroxide radical has the

asymmetric shape. Note that the conventional algorithm does not treat correctly

the dipole–dipole interaction between spin probes: it ignores the spin coherence

transfer induced by this interaction. According to the conventional theory, the

dipole–dipole interaction in non-viscous solutions produces only the spin decoher-

ence [7, Ch. 8, Eqs. (VIII. 79, VIII. 89)]. However, in Refs. ([8, Eqs. (4.20, 4.75)],

[9]), it was shown by Salikhov that the dipole–dipole interaction also causes the spin

coherence transfer alongside with the exchange interaction. It is worth mentioning

that in non-viscous solutions, the contributions of the exchange and dipole–dipole
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interactions to the spin decoherence rate are added, while their contributions to the

spin coherence transfer rate are subtracted [1, 8, 9].

One more problem arises due to the hyperfine structure of the spin probe EPR

spectra. For example, in the case of nitroxide radicals, the EPR spectra have the

hyperfine structure induced by nitrogen nucleus and other magnetic nuclei (protons,

deuterons, 13C). There are three (in the case of 14N) well-resolved nitrogen

hyperfine components, which belong to the subensembles of nitroxide radicals with

different projections of the nitrogen nuclear spins (m = ?1, 0, -1 for 14N). Each

nitrogen component has the resolved/unresolved hyperfine structure induced by the

interaction of the unpaired electron with other magnetic nuclei. This super hyperfine

structure and overlapping of the nitrogen components provide additional problems

for determining the bimolecular spin exchange rates.

The EPR manifestations of the spin exchange between nitroxide radicals were

comprehensively investigated experimentally. The relevant results are reviewed in

Refs. [4–6]. Recently, Bales and coworkers (see [2, 3, 6, 10]) developed a new

approach for determining the spin exchange rate using EPR data based on the

theoretical observation by Salikhov that due to the coherence transfer, the

components of EPR spectra can become asymmetric and can be presented as a

sum of absorption and dispersion contributions [4, 5]. Bales and coworkers tested

this theoretical prediction and demonstrated in experiments that the determination

of the dispersion contribution to the shape of EPR spectra is a reliable method to

determine the spin coherence transfer rate.

For a model nitroxide free radical, the rigorous theoretical analysis of

manifestations of the exchange and dipole–dipole interactions in the shape of the

nitroxide radical EPR spectrum was presented in Ref. [1]. Only the hyperfine

interaction with the nitrogen nuclear spin was considered, while the super hyperfine

structure of the EPR spectrum induced by the interaction with all other magnetic

nuclei except nitrogen was ignored. In the case of the slow spin exchange (slow spin

coherence transfer), the shape of EPR spectra of 14N nitroxides was presented as a

sum of three independent components. The side components of the spectrum are

asymmetric. These asymmetric components contain the absorption and dispersion

contributions. The dispersion contribution to the EPR spectrum was determined

quantitatively using the perturbation theory for the non-degenerate case.

aN a

ΔΩ0

 
N

Fig. 1 Schematic presentation
of the EPR spectrum for a model
14N-nitroxide radical with six
equivalent protons
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In real systems, the nitrogen hyperfine components of the EPR spectra of

nitroxide radicals have the additional super hyperfine structure (see Fig. 1).

As it is shown in Fig. 1, nitrogen nuclei and protons lead to the hyperfine splitting

of the EPR lines in different scales: the splitting by the nitrogen nucleus is much

larger than the splitting due to protons. Therefore, it is justified to introduce two

characteristic spin concentrations: C0 and C*. They correspond to the characteristic

spin exchange rates, Kex C (Kex is the spin exchange rate constant), determined by

the conditions (1/3) Kex C0 = DX0 and (1/3) Kex C* = aN, respectively (see Fig. 1).

When C\C0, the nitrogen components manifest the inhomogeneous broadening

induced by the super hyperfine interaction, since the spin exchange inside the

nitrogen components (the spin exchange between super hyperfine components) is

relatively slow in this spin concentration range. Therefore, the effect of the spin

exchange on the EPR spectrum at C\C0 has to be analyzed carefully. In the spin

concentration range C0\C\C*, the spin exchange rate is fast enough to collapse

each nitrogen component into the exchange narrowed homogeneous line. Qualita-

tively, the manifestations of the spin exchange in the EPR spectra of nitroxide

radicals in the presence of the super hyperfine structure are well known (see [4, 5]

chapter 3). For example, for the water solution of the stable free radical 2,2,6,6-

tetramethyl-4-oxopiperidine-1-oxyl (TANONE) in the range of intermediate

concentrations (0.4 71.7) 9 10-2 M/L (C0\C\C*), the linewidth depends on

the spin concentration linearly, but the linewidth has the non-linear part at very low

concentrations C\ 0.3 9 10-2 M/L (C\C0) (see Fig. 3.5 in [5] and the

discussion therein). Manifestations of the spin exchange in EPR spectra of nitroxide

free radicals in the slow (C\C0) and intermediate spin exchange rate

(C0\C\C*) regimes were studied in the solution of di-tert-butylnitroxide

(DTBN) [10]. It was shown that the spin exchange leads to the broadening, shift,

and eventual collapse of the lines forming the 19-line proton hyperfine pattern of the

central nitrogen component, which corresponds to the nitrogen nuclear spin

projection m = 0.

The aim of this work is to generalize the perturbation theory approach [1] for

nitroxide radicals to the concentration region C\C* with allowance for the super

hyperfine interaction of the unpaired electron. As expected, in the intermediate

concentration range C0\C\C*, the EPR spectrum of nitroxide radicals can be

described using the theoretical model [1] with minor modifications of the spin

packet linewidths in a group of lines corresponding to one value of the nitrogen

nuclear spin projection number m = 0, ±1. Our main goal was to generalize the

perturbation theory approach [1] for nitroxide radicals into the concentration range

C\C0. In this slow spin exchange case, it is shown that the total EPR spectrum of
14N nitroxide radicals is also a sum of three independent components. The shape of

these components is determined by the super hyperfine structure of nitrogen

components and by the spin exchange rate inside these components alongside with

the spin exchange between nitrogen components. Note that the spin exchange inside

nitrogen components was treated exactly. The dispersion contribution to the

nitrogen components of the EPR spectra in the case of the slow spin coherence

transfer was found analytically. In good approximation, the amplitude of the

dispersion contribution to the spectrum does not depend on the super hyperfine
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structure of the nitrogen components, and it is equal to the value obtained in Refs.

[1, 4, 5] disregarding the super hyperfine structure. The shape of the dispersion

contribution and the shape of the absorption contribution in the range C\C0

depend on the super hyperfine structure of the nitrogen components. The

perturbation theory approach results were tested in numerical experiments. The

EPR spectra were simulated with a given set of parameters which describe the spin

exchange and the dipole–dipole interactions as well as the hyperfine interactions

with the nitrogen nucleus and the super hyperfine interactions. Following the theory

developed in Ref. [1] and in this work, we suggest an algorithm for determining the

spin decoherence and spin coherence transfer rates. We tested the algorithm by

analyzing the simulated EPR spectra. The rates can be further tuned by the

numerical simulations of the EPR spectra. To facilitate these simulations, we

present the known general kinetic equations for the transverse components of the

magnetization. When the dipole–dipole contribution to the shape of the EPR

spectrum is negligible, the solution of the kinetic equations is well known. In the

case of non-viscous solutions, these kinetic equations can be solved with allowance

for the dipole–dipole interaction and the exchange interaction (see also [9]). Here,

we present expressions which describe the shape of the EPR spectrum nitrogen

components in the range C\C0 with allowance for the exchange, dipole–dipole,

and the super hyperfine interactions. Note that these results can be properly applied

to solutions of 15N nitroxide free radicals and other paramagnetic particles.

2 Theoretical Consideration

2.1 Arbitrary Concentration of Spin Probes

We consider a dilute solution of paramagnetic particles (spin probes) with the

electron spin S = 1/2. We assume that gk is the statistical weight of the kth

hyperfine component of their EPR spectrum. We denote the transverse component

of the electron spin magnetization of that particles which belong to the kth hyperfine

component with the resonance frequency xk and the transverse relaxation time T2k

as Mk- = Mkx - iMky. Phenomenologically, the spin exchange affects the magnetic

resonance spectra similar to the chemical exchange. The following kinetic equations

for Mk- with allowance for the exchange and dipole–dipole interactions were

obtained in the rotating frame (see [1], [4, Eq. (2.72)], [8, Eqs. (4.20, 4.75)]):

dMk�=dt ¼ ð�iðwk þ dk � wÞ � C0kÞMk� � WkMk� þ gk
X

VknMn� � iw1Mkz:

ð1Þ
Here, dk is the additional shift of the resonance frequency induced by the

interference of the exchange and hyperfine interactions (see [5, 10]). The kinetic

coefficient C0k = 1/T2k gives the intrinsic homogeneous (alternating) linewidth of

the kth spin packet [11]. The terms with Wk and Vkn describe the spin decoherence

(W) and the spin coherence transfer (V) induced by the exchange and dipole–dipole

interactions between spin probes. The last term describes the magnetization motion
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induced by the alternating magnetic field with the frequency x and amplitude B1,

while x1 = cB1 is the Rabi frequency. Note that during the simulation of EPR

spectra in low B1 fields, when the saturation effect can be ignored, the longitudinal

magnetizations in Eq. (1) can be replaced by their equilibrium values Mk0 = gk M0.

According to [1, 4, 5, 8, 9], we have

Wk ¼ KexC þ
X

gn=T2dd k; nð Þ; ð2Þ

Vkn ¼ KexC � 1=T 0
2dd k; nð Þ: ð3Þ

Here, Kex C is the spin exchange rate. The 1/Tdd terms arise from the dipole–dipole

interaction, and they are given by the following expressions [7–9]:

1=T2dd k; nð Þ ¼ 1=6ð Þj2C ðJ0 0ð Þ þ 1=4ð ÞJ0ðxk � xnÞ þ 9=2ð ÞJ1ðxnÞ þ 9J1ðxkÞ
þ 9=4ð ÞJ2ðxk þ xnÞÞ

� Kdsd k; nð ÞC;

1=T 0
2dd k; nð Þ ¼ 1=12ð Þj2C ðJ0 0ð Þ þ J0ðxk � xnÞ þ 9J1ðxnÞ þ 9J1ðxkÞÞ

� Kdsct k; nð ÞC: ð4Þ

Here, j2 = (3/4) g4 b4/h2, g is the g-factor of the nitroxide radical, b is the Bohr

magneton, and Jq(x) are spectral densities of the correlation functions for the

dipole–dipole interaction ([7], ch.VIII).

The continuous-wave EPR spectrum shape is given by:

JEPR ¼ �Im
X

Mk�;

where Mk- is the steady-state solution of Eq. (1)

ð�iðwk þ dk � wÞ � C0kÞMk� �WkMk� þ gk
X

VknMn� ¼ iw1gkM0: ð5Þ

Solution of Eq. (5) can be easily found if the dipole–dipole contributions to W

and V are negligible. Indeed, in Eqs. (2, 3), the contribution of the spin exchange to

Wk and Vkn is supposed to be independent of the hyperfine components, Wk = W,

Vkn = V. Moreover, for the spin exchange, W = V = Kex C. In this case, Eq. (5)

has the form:

ð�iðwk þ dk � wÞ � C0kÞMk� � VMk� þ gkV
X

Mn� ¼ iw1gkM0: ð5aÞ

The value of the total transverse magnetization M� ¼
P

Mk� is obtained

straightforwardly from Eq. (5a). The corresponding result is presented below [see

Eq. (9a)].

With allowance for the dipole–dipole contribution to the spin decoherence and

the spin coherence transfer, the solution of Eq. (5) is not so straightforward, since

the dipole–dipole contribution to Wk and Vkn depends, in principle, on the hyperfine

components. However, these equations are simplified in the case of non-viscous

solutions when the characteristic time of the translational mutual diffusion of spin

probes sD = r0
2/D is short enough, so that the fast motion condition is fulfilled: aN

sD � 1, where r0 is the collision radius of two spin probes, D is the coefficient of
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their mutual translational diffusion. Under this condition, the power densities J(q)(x)

in Eq. (4) can be approximated as:

Jð0Þðwk � wnÞ � Jð0Þ 0ð Þ; Jð1ÞðwkÞ � Jð1ÞðwnÞ � Jð1ÞðxÞ; Jð2Þðwk þ wnÞ � Jð2Þð2xÞ:

In this case of the fast motion of spin probes, Eqs. (2–4) are reduced to:

Wk � W ¼ KexC þ 1=T2dd � Kex þ Kdsdð ÞC � KsdC;

Vkn � V ¼ KexC � 1=T 0
2dd � Kex � Kdsctð ÞC � KsctC; ð6Þ

Kdsd ¼ 1=24ð Þj2ð5J0 0ð Þ þ 54J1ðx0Þ þ 9J2ð2x0ÞÞ;

Kdsct ¼ 1=6ð Þj2ðJ0 0ð Þ þ 9J1ðx0ÞÞ:

Note that W - V = 1/T2dd ? 1/T02dd = (3/8) j2 C (J0(0) ? 10 J1(x0) ? J2(2x0)).

Here, parameters Kdsd and Kdsct are introduced, which describe the contribution

of the dipole–dipole interaction to the spin decoherence and to the spin coherence

transfer, respectively. Formally, these coefficients appear like the spin exchange rate

constant Kex [see Eq. (6)]. However, note that the effect of the long-range dipole–

dipole interaction is not considered as a result of binary collisions of spin probes.

For numerical simulations, it is necessary to estimate scales of possible values of

the spin decoherence and spin coherence transfer kinetic parameters. The binary

collision rate Z can be estimated using the Smolukhovskii result: Z = 4 p r0 D C,

where r0 is the collision radius of two spin probes and D is their mutual diffusion

coefficient. To estimate the spin exchange rate, we assume that the exchange

interaction is switched on suddenly at the collision of two spin probes. For this

sudden collision approximation, the maximum spin exchange rate constant is

expected to be Kex = 2 p r0 D [4, 5]. If the concentration C is measured in mM/L,

then Kex = 2 p r0 D 10-6 NA, s-1 L/mM. In the EPR experiments, it is convenient

to use the unit gauss (G) of the magnetic field strength. Thus, Kex = 2 p r0 D 10-6

NA/(1.76�107) & 2 r0 D 1011, G L/mM. Here, NA is Avogadro’s number. For

example, for realistic molecular kinetic parameters r0 = 0.7 nm, D = 10-5 cm2/s,

one obtains Kex = 0.15 G L/mM. In the course of numerical simulations, we will

use Kex around this value. The contribution of the dipole–dipole interaction to the

spin decoherence and spin coherence transfer rates was calculated numerically using

expressions for J(q)(x) in [7, Eqs. (VIII.109, VIII.114)]. The results of these

numerical calculations are presented in Fig. 2. The dashed line shows Kex = 2 p r0

D. Figure 2 shows that in non-viscous liquids, when D * 10-6–10-5 cm2/s, the

dipole–dipole interaction contribution to the spin dephasing and to the spin

coherence transfer is much less than the contribution of the exchange interaction

(the spin exchange). Note that Kdsd and Kdsct are almost equal when D * 10-6–

10-5 cm2/s, Kdsd & Kdsct (see Fig. 2).

Thus, in non-viscous liquids, Eq. (5) can be written as (compare with Eq. (5a)):

ð�iðwk þ dk � wÞ � C0kÞMk� �WMk� þ gkV
X

Mn� ¼ iw1gkM0;

or

ð�iðwk þ dk � wÞ � C0kÞMk� � KsdCMk� þ gkKsctCM� ¼ iw1gkMeq: ð7Þ
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Here, M- = RMn- is the total transverse magnetization. Solving Eq. (7), we

find:

JEPR ¼ �ImM� ¼ �w1MeqRefFðxÞg: ð8Þ
Here

FðwÞ ¼ G xð Þ= 1 þ V G xð Þð Þ; ð9Þ

GðwÞ ¼
X

gk=ð�iðwk þ dk � wÞ � ðC0k þ WÞÞ;

where V = Kex C - Kdsct C and W = Kex C ? Kdsd C are the spin coherence

transfer and spin decoherence rates induced by the exchange and dipole–dipole

interactions, respectively.

When the dipole–dipole interaction is negligible, the EPR spectrum is given by

the expression:

JEPR ¼ �w1MeqRefGexðxÞ=ð1 þ KexC GexðxÞÞg; ð9aÞ

GexðwÞ ¼
X

gk=ð�iðwk þ dk � wÞ � ðC0k þ KexCÞÞ:

Equation (9a) is well known in the spin exchange problem (see [4, 5, 12]). The

result given by Eq. (9) is the generalization of the conventional theory of the spin

exchange and its manifestations in EPR spectroscopy: Eq. (9) includes the spin

exchange and dipole–dipole interaction contributions to the spin dynamics.

Theoretical results presented above make it possible to simulate the EPR spectra

of spin probes in dilute solutions and to analyze their transformations when the spin

concentration changes. Below we will use Eqs. (8, 9) for simulating spectra.

There are two concentration-dependent parameters W and V, which affect the

shape of the EPR spectrum. The parameter W is the concentration-dependent
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0.00

0.03
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K
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M

D*105, cm2/s

Fig. 2 Dependence of Kdsd, G L/mM (solid line) and Kdsct, G L/mM (dotted line), Kex, G L/mM (dashed
line) on the two spin probes mutual diffusion coefficient. Parameters used in these simulations: aN = 16
G, r0 = 0.7 nm, and x0 = 3400 G
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contribution to the width of Lorentzian spin packets, which form the G(x) function.

The form of this function is determined by the distribution of the resonance

frequencies xk = x0 ? Dk. When this inhomogeneous distribution of resonance

frequencies has the Gaussian form, the function G(x) has the Voigt form (see [6]).

When the spin coherence transfer is ignored, V = 0, all EPR lines in the G(x)

demonstrate the concentration broadening equal to W. The spin coherence transfer

with the rate V changes the observed spectrum Re(F(x)). The coherence transfer

(non-zero rate V) leads to mixed resonance line shapes, changes the concentration

broadening of the resonance lines, shifts the lines, leads to the collapse of the EPR

spectrum into one homogeneous line. If the dipole–dipole interaction gives the

negligible contribution, the exchange narrowed line is observed at the fast spin

exchange case. If the dipolar contribution is not negligible, the collapsed line

manifests the concentration-dependent dipolar broadening. It is worth to note that

the dipolar broadening of the spectrum W - V = 1/T2dd ? 1/T0
2dd under the

condition of the spectrum collapse, when Ksct C[ aN, is larger than the dipolar spin

decoherence rate 1/T2dd. The last observation arises from the fact that the exchange

and dipole–dipole interactions transfer the spin coherence with different signs.

Indeed, V = (Kex - Kdsct) C [see Eq. (6)].

To demonstrate these qualitative statements concerning the spin probe concen-

tration dependence of the EPR spectrum shape, we present some results of

numerical simulations for 14N nitroxide radicals (Fig. 3). During these simulations,

we assumed that the super hyperfine structure of the nitrogen components is

described by the Gaussian distribution. If the nitroxide radical has 5–10 or even

more protons with close hyperfine interaction constants, in good approximation the

distribution of the frequencies induced by the super hyperfine interaction with

protons can be described by the Gaussian function, fm(D) = (1/Sqrt[2 p r])-

exp(-(D-aN m)2/(2 r)), where m = -1, 0, 1 (projections of the 14N nuclear spin),

aN m is the resonance frequency shift induced by the hyperfine interaction with the

nitrogen nuclear spin and r is the dispersion of the D distribution. Note that the

width D9X0 of the Gaussian nitrogen component of the spectrum (see Fig. 1) can be

characterized by the square root of dispersion, r1/2.

Figure 3 shows that in the slow spin exchange regime, the spectrum has three

components corresponding to projections of the 14N nuclear spin. We present the

results of simulations for two model situations. In one case, we assume that the

dipole–dipole interaction contribution can be neglected compared to the exchange

interaction contribution, so that W = V = KexC (dashed curves in Fig. 3). In

another case, we suppose that the dipole–dipole interaction contribution decreases

the spin coherence transfer rate V and increases the spin decoherence rate W (solid

curves in Fig. 3).

Figure 3 shows the well-known concentration-dependent features of EPR spectra

in solutions: at low concentration the EPR lines broaden and shift, at high

concentration they converge into a single line at the center of gravity of the

spectrum. When the spin exchange interaction gives the major contribution and the

dipole–dipole interaction can be ignored, at high concentration, the EPR spectrum

consists of a single narrow homogeneously broadened line (dashed curves in Fig. 3

demonstrate the exchange narrowing effect). When the spin exchange and dipole–
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dipole interactions contribute to the spin dynamics, at high-spin concentration, the

EPR spectrum consists of one homogeneously broadened line and it has the

concentration broadening equal to W - V = 1/T2dd ? 1/T02dd, so that the line width

increases with the spin concentration due to the dipole–dipole interaction

contribution (see solid curves in Fig. 3).
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Fig. 3 Numerical simulations of the EPR spectrum (left) and its derivative (right) of 14N nitroxide
radicals for several concentrations of spins. The following parameters were used in these calculations:
aN = 16 G, g = 2, r = 0.12 G2, C0k = 0.2 G, W = V = Kex C = 0.1 C G (dashed lines);
Kex = 0.05 G L/mM, Kdsd = 0.011 G L/mM, Kdsct = 0.009 G L/mM (solid lines), C is concentration
of radicals in mM/L units, B is the external magnetic field strength
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For the 14N containing nitroxide radical, the central component is symmetric,

while side components (low- and high-field ones) are asymmetric, since they

contain dispersion contributions.

2.2 Low Concentration (Slow Spin Exchange) Case

Equations (8, 9) make it possible to simulate EPR spectra for any concentration of

paramagnetic particles and for any hyperfine structure of the EPR spectra. Note that

Eqs. (8, 9) include exchange and dipole–dipole interactions contributions to the spin

decoherence and the spin coherence transfer. Thus, in principle, by varying the

parameters W, V in Eq. (9), one can find the best-fit parameters, which reproduce the

experimental curves.

However, for practical applications of the theory for the interpretation of the

experimental results, it is desirable to find some approximate solutions of the

problem which are relevant to different spin coherence transfer rates.

As it was discussed above, there are three characteristic ranges of the nitroxide

free radical concentrations:

C\C0 (Ksct C\ 3 D9X0), slow spin coherence transfer;

200mM/L

500mM/L

3470 3480 3490 3500 3510 3520 3530
0.0

0.1

0.2

0.3

0.4

B, G
347 0 3480 3490 3500 3510 3520 3530

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

B, G

0.0

0.2

0.4

0.6

0.8

1.0

E
P

R

B, G
3470 3480 3490 3500 3510 3520 3530

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

B, G
3470 3480 3490 3500 3510 3520 3530

E
P

R
E

P
R

E
P

R

Fig. 3 continued
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C0\C\C* (3 D9X0\Ksct C\ 3 aN), intermediate spin coherence transfer

rate;

C[C*, (Ksct C[ 3 aN), fast spin coherence transfer.

In the cases of slow and intermediate coherence transfer rate, there is a small

parameter V/aN\ 1. Thus, one can apply the perturbation theory to specify the

general shape of the EPR spectrum given by Eqs. (8, 9).

For concentrations, when (1/3) V\ aN and neglecting the super hyperfine

interaction with all magnetic nuclei except for the nitrogen nucleus, in [1, 4, 5], the

problem of the coupled motion of the spin magnetizations of all nitrogen

components was reduced to the problem of the spin magnetization motion of the

uncoupled (quasi-independent) components but with renormalized parameters of the

homogeneous broadening of the spin packets and their resonance frequencies. The

analogous strategy can also be implemented in the general case when the nitrogen

components of the EPR spectrum have the additional super hyperfine structure due

to the interaction with magnetic nuclei except nitrogen. In this work, at nitroxide

radical concentrations, when (1/3) V\ aN, the total EPR spectrum has been

presented as a sum of the uncoupled components even in the presence of the super

hyperfine splitting. Therefore, the theory was generalized with allowance for the

super hyperfine structure of EPR spectra of nitroxide radicals.

In the case C ? 0, the nitroxide radicals demonstrate the EPR spectrum which

has, as a rule, resolved hyperfine components corresponding to three projections of
14N nuclear spin, m = 1, 0, -1 (see Fig. 1). At low nitroxide radical concentration,

the spin coherence transfer rate can be much less than the splitting between the

nitrogen hyperfine components, i.e., (1/3) V\ aN. Under this condition the effect of

the spin coherence transfer between radicals, which belong to different nitrogen

hyperfine components, on the shape of the EPR spectrum can be analyzed using the

perturbation theory for non-degenerate resonance frequencies with respect to the

small parameter V/aN. However, the spin coherence transfer between radicals inside

the definite nitrogen component corresponds to degenerate or quasi-degenerate

case. This situation is in detail considered in the ‘‘Appendix’’ (see below). Here, the

final expressions for the three quasi-independent components of the EPR spectrum

are presented (see also [1, 4, 5]):

J1 ¼ �Ref 1 þ iV= aNð Þð Þ � Gðx0 þ aN � 1=6ð Þ gn V2=aN

� �
þ dex;1n

þ Dn � x; W þ C01Þ � =ð1 þ V=3ð Þ
� Gðx0 þ aN � 1=6ð Þ gn V2=aN

� �
þ dex;1n þ Dn � x; W þ C01Þ �Þg;

J0 ¼ �Ref� Gðx0 þ Dn � x;W þ C00Þ � =ð1 þ V=3ð Þ
� Gðx0 þ Dn � x;W þ C00Þ �Þg; ð10Þ

J�1 ¼ �Ref 1�iV= aNð Þð Þ � Gðx0 � aN þ 1=6ð Þ gn V2=aN

� �
þ dex;�1n

þ Dn � x;W þ C0�1Þ � =ð1 þ V=3ð Þ
� Gðx0 � aN þ 1=6ð Þ gn V2=aN

� �
þ dex;�1n þ Dn � x;W þ C0�1Þ �Þg;

where

1106 K. M. Salikhov et al.

123



� G xn; yð Þ �¼
X

gn= �ixn � yð Þ;

x0 is the Larmor precession frequency of the radical unpaired electron spin in the

external magnetic field B, gn is the statistical weight of the nth super hyperfine

component inside the nitrogen component of the EPR spectrum of nitroxide

radicals, dex,mn is the shift of the resonance frequency induced by the exchange

interaction during collisions [13], and Dn is the shift of the resonance frequency

induced by magnetic buclei except nitrogen. We expect that the dependence of the

shift dex,mn on the super hyperfine splitting can be ignored, so that dex,mn & dex,m, it

depends only on the nitrogen nuclear spin orientation. To simplify discussion in

numerical simulations below, we ignore this frequency shift and put dex,m = 0.

Note that the frequency shifts ±gn (1/6) (V2/aN) of the side nitrogen components

[see J1 and J-1, Eq. (10)] describe the tendency of these components to collapse at

the center of gravity of the EPR spectrum due to the spin coherence transfer

between its different nitrogen components. These line shifts underestimate real

shifts, since they were derived by neglecting the exchange narrowing of each

nitrogen component of the EPR spectrum when (1/3) V ? DX0. When all proton

hyperfine lines collapse and give a single line, these frequency shifts should be

equal to the shifts in the intermediate spin coherence transfer case, where they are

±(1/6) (V2/aN) (see [1, 4, 5] and Eq. (11) below). Thus, the line shifts should change

from ±gn (1/6) (V2/aN) to ±(1/6) (V2/aN) when V increases from zero to 3 DX0. In

fact, these line shifts are the most important in the region V & 3DX0. Numerical

simulations presented in Sect. 3 support the assumption that in the case of slow spin

coherence transfer, in Eq. (10), the frequency shifts ±gn (1/6) (V2/aN) can be

substituted by ±(1/6) (V2/aN) not only at V ? 3DX0 but at all V (V\ 3DX0) values.

Thus, in the slow spin coherence transfer case, the three quasi-independent

components of the EPR spectrum are approximated as:

J1 ¼ �Ref 1 þ iV= aNð Þð Þ � Gðx0 þ aN � 1=6ð Þ V2=aN

� �

þ dex;1n þ Dn � x; W þ C01Þ � =ð1 þ V=3ð Þ
� Gðx0 þ aN � 1=6ð Þ V2=aN

� �
þ dex;1n þ Dn � x;W þ C01Þ �Þg;

J0 ¼ �Ref� Gðx0 þ Dn � x;W þ C00Þ � =ð1 þ V=3ð Þ
� Gðx0 þ Dn � x;W þ C00Þ �Þg; ð10aÞ

J�1 ¼ �Ref 1 � iV= aNð Þð Þ � Gðx0 � aN þ 1=6ð Þ V2=aN

� �

þ Dn � x;W þ C0�1Þ � =ð1 þ V=3ð Þ
� Gðx0 � aN þ 1=6ð Þ V2=aN

� �
þ dex;�1 þ Dn � x;W þ C0�1Þ �Þg:

The shape of the nitroxide radical EPR spectrum (Eq. (10)) can be simplified

further for the intermediate concentration regime C0\C\C* when the spin

coherence transfer rate exceeds the inhomogeneous broadening of the nitrogen

components of the spectrum. In this case, all spins in the nitrogen component have

the same resonance frequency and the additional shift of the side components should

be ±(1/6) (V2/aN) as it was already shown in [1, 4, 5]. Thus, in the intermediate

concentration regime C0\C\C*, Eq. (10) is reduced to the model situation
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considered in Ref. [1]. In this intermediate spin concentration case, the EPR

spectrum is a sum of three components given by equations:

Jm � �ðw1=3ÞRe 1 þ im V=aNð Þð ÞGm= 1 þ 1=3ð ÞVGmð Þf g; m ¼ 0; �1;

G1 ¼ 1= �i x0 þ aN þ dex;1 � 1=6ð Þ V2=aN

� �
� x

� �
� W þ 3hD2i=V þ C01

� �� �
;

ð11Þ

G0 ¼ 1= �i x0 � xð Þ � W þ 3hD2i=V þ C00

� �� �
;

G�1 ¼ 1= �i x0 � aN þ dex;�1 þ 1=6ð Þ V2=aN

� �
�x

� �
� W þ 3 hD2i=V þC0�1

� �� �
:

Equation (11) coincides with results obtained in Ref. [1] for the model relevant

for this intermediate spin coherence rate situation. The only minor difference

concerns the line width. In Eq. (11), there appears an additional contribution 3‹D2›/
V to the line width, which describes the contribution of the spin coherence transfer

inside the nitrogen component. Note that the spin coherence transfer rate inside the

nitrogen component is V/3 and ‹D2› is the dispersion of the super hyperfine

interaction-induced distribution of the resonance frequencies. If this distribution is a

Gaussian, then ‹D2› = r.

Thus, Eqs. (10a, 11) show that in the low spin concentration case, the

components of the EPR spectrum can be presented in the form:

Jm ¼ �ðw1=3ÞRe 1 þ im V=aNð Þð ÞGm= 1 þ 1=3ð ÞVGmð Þf g;

where

Gm ¼
X

gn=ð�iðx0 þ maN þ dex;m�m 1=6ð Þ V2=aN

� �

þ Dn � wÞ�W � C0mÞ � Am þ iDm

ð12Þ

in the case of the slow spin coherence transfer regime (Eq. (10a)) or

G0
m ¼ 1=ð�iðx0 þ maN þ dex;m�m 1=6ð Þ V2=aN

� �
� wÞ�W � 3hD2i=V � C0mÞ

� A0m þ iD0m; m ¼ 0;�1; ð12aÞ

in the case of an intermediate spin coherence transfer rate (Eq. (11)).

The results presented above show that in the case of the low spin concentration,

the amplitude of the dispersion contribution does not depend on the super hyperfine

structure of the nitrogen EPR spectrum components of the nitroxide radicals. In fact,

the same amplitude was found in [1] under the assumption that there is no super

hyperfine structure of the nitrogen components. However, the shape of the

dispersion contribution as well as the shape of the absorption contribution depends

on the super hyperfine structure. In the absence of the super hyperfine structure, the

absorption and dispersion contributions are given by the real and imaginary parts of

the Lorentzian form (1/(1 ? iz)). In the case of the Gaussian distribution of the

super hyperfine structure, the shape of the dispersion contribution is given by the

imaginary part of the Voigt form [see Eq. (12)]. At the same time, the shape of the

absorption contribution is not given simply by the real part Am of the Voigt form

even in the limit of very low concentrations. These statements are valid only for the
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very low concentrations, at C ? 0. In the general case of the spin coherence

transfer, in particular for spin concentrations around C0, the absorption and

dispersion contributions to the EPR signal are not described by simple functions like

the Lorentzian or Voigt forms.

2.3 Fast Spin Coherence Transfer Case, Ksct C � aN

At high concentrations, when V[ 3 aN, Eq. (10) is not valid. Under this condition,

one has to use the general solution given by Eqs. (8, 9). However, in this limit case,

the exchange narrowing effect operates and the total EPR spectrum of the nitroxide

free radical appears as the Lorentzian absorption curve with the concentration-

dependent dipolar broadening W - V = 1/T2dd ? 1/T02dd [see Eq. (6)]:

JEPR ffi w1M0 W�V þ Cþ 2a2
N= 3Vð Þ

� �
= x0 � xð Þ2þ W�V þ Cþ 2a2

N= 3Vð Þ
� �2

� �
:

ð13Þ
Here, C = (1/3) (C01 ? C00 ? C0-1), and a term 2 aN

2 /(3V) gives the spin

coherence transfer contribution to the linewidth [4, 5].

3 Potential of the Approximate Solutions (Eqs. (10, 11)): Numerical
Simulations

Thus, we derived the exact theoretical expressions (Eqs. (8, 9)) which describe the

EPR spectrum of spin probes with allowance for the effects of the exchange, dipole–

dipole, and hyperfine interactions. For three characteristic nitroxide free radical

concentration ranges, approximate equations were proposed to describe the shape of

the EPR spectra of the 14N nitroxide free radicals in the limit cases of the slow spin

coherence transfer (Eqs. (10, 10a)), intermediate spin coherence transfer rate

(Eq. (11)) and the fast spin coherence transfer (Eq. (13)). Note that Eq. (9) was

obtained long ago in the spin exchange theory (see [5, 11]). The approximate

solution relevant to the intermediate spin coherence transfer in the case of nitroxide

radicals (Eq. (11)) was considered earlier in [1]. The fast spin coherence transfer

case (Eq. (13)) is rather trivial and well known. A non-trivial aspect is that the

dipolar broadening in this limit is equal not to the dipolar contribution to the spin

decoherence, W, but to the dipolar contributions to spin decoherence and spin

coherence transfer effects, W - V. Note that the dipolar contribution to W - V is

larger than that to W, since V\ 0 for the dipole–dipole interaction. Note that the last

observation is relevant to the well-known result: the line broadening induced by the

dipole–dipole interaction between like spins is larger than the dipolar broadening

between unlike spins [7]. The new result of this work is the theoretical description

of the nitrogen components of the EPR spectrum of the nitroxide radicals in the case

of the slow coherence transfer (Eqs. (10, 10a)) when the spin coherence transfer

transforms dramatically the shapes of nitrogen components of the spectrum.

The potential of the approximate solutions of the problem for different

concentration regions was revealed by computer simulations of the EPR spectra.
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For the chosen set of magnetic resonance and kinetic parameters, aN, r, C0k, Ksct,

Ksd, we simulated the EPR spectrum using the exact theory (Eq. (9)) and the

approximate theories (Eqs. (10, 10a, 11)) and compared the results of these

computer experiments.

The key point of the approximate theories (Eqs. (10, 10a, 11)) is the reduction of

the kinetic equations which describe the coupled motion of the hyperfine component

magnetizations to the non-coupled motion of new variables (eigenvectors of the

problem, i.e., definite combinations of the hyperfine component magnetizations).

The EPR spectrum was presented as a sum of the three independent contributions.

It was assumed in the numerical simulations that the super hyperfine interactions

with many protons lead to the Gaussian distribution of the resonance frequency shift

D. In this case

Gðx; yÞ ¼ 1= 2prð Þ1=2
� �Z

dD exp �D2= 2rð Þ
� �

ð1=ðiðxþ DÞ � yÞÞ

¼ ð1=ð2prÞ1=2Þ
Z

dD expð�D2=ð2rÞÞ ½� y=ððx þ DÞ2 þ y2Þ

� iðx þ DÞ=ððx þ DÞ2 þ y2Þ
:
The real part of G(x, y) has the form of the symmetric absorption curve and the

imaginary part has the form of the asymmetric dispersion curve.

At V = 0, e.g., at the zero radical concentration, the shape of each nitrogen

hyperfine component is described by the real part of G(x, y) Eq. (12) with proper

values of x and y [see Eqs. (10, 10a)]. Note that Re G(x, y) is the convolution of the

Lorentzian profile 1/((x ? D)2 ? y2) and the Gaussian distribution f(D) representing

homogeneous and inhomogeneous broadenings, respectively. This convolution is

known as the Voigt form [6]. However, when the concentration increases, i.e.

V = 0, the spin exchange and dipole–dipole interaction effects are manifested in

the shape of the EPR spectrum. Equations (10, 10a, 11) show that at V = 0, the

dispersion part of G(x, y) contributes to the shape of the EPR spectrum components,

and as a consequence, the low- and high-field (side) components become

asymmetric containing absorption and dispersion contributions.

To test the approximate Eqs. (10, 10a, 11), the EPR spectrum of the 14N nitroxide

radical was simulated at different nitroxide free radical concentrations and a certain

set of parameters (Fig. 4). Note that the intrinsic line widths C0k are different for the

nitrogen components [11]. The analytical expressions presented above allow to

consider this fact. However, in our numerical simulations, we will suppose that

those intrinsic line widths are equal, since their difference does not affect the

contribution of the dispersion term to the spectrum components. They only broaden

the absorption and dispersion terms of the spectrum components.

For the parameters used in the simulations in Fig. 4, the estimated values of the

characteristic concentrations are C0 & 30 mM/L, C* & 80 mM/L.

These figures make it possible to conclude the following: In the very low

concentration range 0\C\ 30 mM/L, the approximate Eqs. (10, 10a) give the

EPR spectra which totally coincide with the exact spectrum. In the intermediate

concentration range 30 mM/L\C\ 80 mM/L, the approximate Eqs. (10, 10a)
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give the EPR spectra which are close to the exact spectrum. Thus, the perturbation

theory (Eqs. (10, 10a)) does reasonably well describe the shape of the EPR

spectrum of the 14N nitroxide radicals in the case of the slow and intermediate rate

spin coherence transfer. At concentration C = 150 mM/L, the condition Ksct C\ 3

aN is not fulfilled, so that, as expected, the perturbation theory fails to describe the

EPR spectrum shape.
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Fig. 4 Comparison of the spectra simulated using the exact solution Eqs. (8, 9) (dashed curves) and the
sum of three components calculated using Eq. (10) (thin curves) and Eq. (10a) (thick curves). Parameters
used in these simulations are: aN = 16 G, g = 2, r = 0.1 G2, W = V = Kex C = 0.1 C G (C is measured
in mM/L), C0k = 0.2 G
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Approximate Eqs. (10) and (10a) give close results (see Fig. 4). We consider

Eq. (10a) as more preferable than Eq. (10). As it was pointed out above, Eq. (10a)

overestimate the shifts of the side nitrogen components at very low-spin

concentrations when the spin coherence transfer is also very slow. The frequency

shifts under consideration are the second-order effect compared with aN, namely,

they can be estimated as aN (Ksct C0/aN)2\ aN. Therefore, at low nitroxide free

radical concentration, this particular shift of the resonance frequencies is of minor

importance. The situation changes when the spin concentration increases and the

spin coherence transfer leads to the collapse of the proton hyperfine structure of the

nitrogen components of the EPR spectrum. In this spin concentration range,

Eq. (10) underestimates the line shifts under consideration. Equation (10) disre-

gards the decrease in the super hyperfine interaction-induced inhomogeneous

broadening of the nitrogen components and the shifts of the side nitrogen

components as a whole to the center of gravity of the spectrum when the spin

concentration increases. When the concentration increases, the frequency shift of

the side nitrogen component as a whole should be equal to (1/6)aN (Ksct C*/aN)2,

while Eq. (10) contains less shifts for each individual proton hyperfine line inside

the nitrogen component. It can be seen from the simulated spectra for C = 60, 80,

100 mM/L (Fig. 4) that approximate Eq. (10a) gives the better result concerning the

position of the maxima of the side nitrogen components than Eq. (10). To highlight

the last feature, the inset in Fig. 4 shows the behavior of simulated spectra near the

maximum of the high-field nitrogen component.

At the spin concentrations C[C0, the nitrogen components of the EPR spectrum

became the exchange narrowed homogeneously broadened lines. As a result in the

concentration range C0\C\C*, one can ignore the super hyperfine structure of

the spectrum. For this case, the perturbation theory of the EPR spectrum of the

nitroxide radical was developed in Ref. [1] [see Eq. (11)]. Equation (11) is

simplified version of the perturbation theory result given by Eq. (10a). Note that

Eq. (10a) considers explicitly the spin coherence transfer between super hyperfine

structure lines inside nitrogen components, while in Eq. (11), the super hyperfine

structure is ignored. We compared the spectra simulated using Eqs. (9), (10a), and

(11) (Fig. 5).

Figure 5 shows that at concentrations C[ 40 mM/L, the spectra calculated using

the simplified Eq. (11) reproduce completely those simulated using the Eq. (10a). In

the intermediate spin concentration region, which is 20 mM/L\C\100 mM/L for

the parameters chosen for Fig. 5, the approximation Eq. (11) describes reasonably

well the shape of the spectrum. Figure 6 shows the shapes of the quasi-independent

components of the EPR spectrum simulated by Eq. (10a).

Figure 6 shows that the side components have the asymmetric shape. They can

be presented as a sum of the symmetric absorption contribution and the asymmetric

dispersion contribution. Due to this asymmetry, the positive (max) and negative

(min) amplitudes of the derivatives of the side components are not equal. This fact is

used below to determine the contribution of the dispersion to the signal using the

algorithm presented in [1].
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Fig. 5 Comparison of the spectra simulated using the exact solution Eq. (9) (dashed curves) and the sum
of three components calculated using Eq. (10a) (thick curves) and Eq. (11) (thin curves). Parameters used
in these simulations are: aN = 16 G, g = 2, r = 0.1 G2, W = V = Kex C = 0.1 C G (C is measured in
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Fig. 6 Simulated (Eq. (10a)) independent components of the EPR spectrum of the 14N nitroxide radical
(a) and the derivative of the total EPR spectrum (b). The spectra are simulated with the following
parameters: aN = 16 G, g = 2, r = 0.12 G2, W = V = 0.1 C G, C = 30 mM/L, and C0k = 0.2 G
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4 Determination of the Kinetic Parameters V and W from the EPR
Spectra

Discussion presented above provides an approach for analyzing the concentration

transformations of the nitroxide EPR spectrum shape. Our approach is based on the

paradigm developed by Bales and coworkers (see [2, 3, 10]). They elaborated a

procedure for determining the spin exchange rate by analyzing the dispersion

contribution to the shape of the EPR spectrum. In our work, we accept their main

idea to use the dispersion contribution for determining the spin coherence transfer

rate, i.e., for determining the kinetic parameter V. However, we implement this

general idea in a different way based on the further development of the theoretical

description of the spin concentration dependence of the shape of the EPR spectrum

presented in this work (see also [1]).

The derivative of the spectrum is detected in the EPR experiment. We suggest the

following steps for determining the spin coherence transfer rate V and the spin

decoherence rate W. First, we find the value of the spin coherence transfer rate

V from the dispersion contribution to the side components of the nitroxide radicals

EPR spectrum using the algorithm developed in Ref. [1]. Second, the spin

decoherence rate W is determined from the spin concentration broadening of the

nitrogen components of the spectrum at the intermediate spin concentrations when

3DX0\V\ 3aN. Third, we suggest to simulate the EPR spectrum using the

determined parameters V and W. By comparing the simulated spectrum with the

spectrum detected in the experiment, one has to decide whether these parameters

should be tuned further or not. Thus, our speculations concerning the analysis of the

shape of the EPR spectrum and its spin concentration dependence based on the

perturbation theory can give the optimal probe values of the kinetic parameters

W and V in the course of the iterative procedure for determining exact values of

these kinetic parameters.

To illustrate this approach, we performed the computer experiments with the

model 14N nitroxide radical. For the computer simulations, we take the nitroxide

radical with 12 equivalent protons. Note that in this case, the proton hyperfine

structure can be described by the Gaussian distribution of the resonance frequencies.

The kinetic parameters V and W are proportional to the spin concentration:

V ¼ KsctC and W ¼ KsdC; ð14Þ

where Ksct is the spin coherence transfer rate constant and Ksd is the spin

decoherence rate constant, both induced by the exchange and dipole–dipole

interactions between radicals. For the chosen values of the decoherence and the spin

coherence transfer rate constants, we simulate the EPR spectrum using Eq. (9). The

spin concentration was varied during these computer simulations (Fig. 7).

Figure 7 shows that the side nitrogen components of the spectra are asymmetric.

According to Ref. [1] and discussion above, in the spin concentration region

3DX0\Ksct C\ 3aN, the dispersion contribution to the spectrum, J = Abs ? p

Dis, can be found from the measured ratio r = Mmax/Mmin (see Fig. 5 in Ref. [1]).

The results obtained in [1] (Eq. (24) and Fig. 5) lead to the approximate equation:
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p ¼
ffiffiffi
3

p
ð1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 rj j � 1

p
Þ

2
ð15Þ

Using Eq. (15), one finds the dispersion contribution p

p ¼ �mV=aN ¼ �mKsctC=aN; m ¼ 1; 0; �1: ð16Þ
Equations (15, 16) were obtained in Ref. [1], when the super hyperfine structure

of the EPR spectrum was ignored. Therefore, they are valid in the intermediate

concentration case C0\C\C*. However, in this work, we showed that Eq. (16)

gives the correct dispersion contribution p over the whole slow and intermediate rate

spin coherence transfer region C\C* (Ksct C\ 3aN) even in the presence of the

super hyperfine structure of the nitrogen components of the EPR spectrum of the

nitroxide radical. Encouraged with the last observation we apply also Eq. (15) to the

whole region 0\Ksct C\ 3 aN of the slow and intermediate rate spin coherence

transfer regimes. We consider the fact that the spin coherence transfer between

super hyperfine structure lines inside the nitrogen components does not create an

asymmetry of the nitrogen compounds as a whole. Therefore, we found the

dispersion contribution p under the conditions 0\Ksct C\ 3aN using Eq. (15), and

then using Eq. (16), we determined the spin coherence transfer rate and rate

constants.

For illustration, we find the p value for the spectra shown in Fig. 7.

At concentration 10 mM/L from Fig. 7, one has r1 ¼ max1

min1
¼ 0:672943

�0:629748
¼

�1:06859 for the low-field component and r-1 = (max3)/(min3) = 0.6297/

(-0.6729) = -0.936. for the high-field component. From Eq. (19) for these r

values, we find p1 ¼ �0:05751 and p-1 = 0.057. Using Eq. (16), we find Ksct

C = 0.92 G, Ksct = 0.092 G L/mM. The spectra in Fig. 7 were simulated using

Ksct = 0.1 G L/mM. We see that Ksct = 0.092 G L/mM obtained as output is 8 %

less than the spin coherence transfer rate constant used as the input parameter for

simulation.

For C = 20 mM/L, the dispersion contribution should increase two times

compared to the C = 10 mM/L case. From the spectrum in Fig. 7 for C = 20 mM/
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Fig. 7 Simulated EPR spectrum derivative of the model 14N nitroxide radical with 12 protons.
Parameters used in these simulations are: aN = 16 G, aP = 0.2 G, C0k = 0.2 G, Kex = 0.1 G L/mM,
Kdsct = Kdsd = 0: C = 10 mM/L (a) and C = 20 mM/L (b)
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L, r1 = -1157 and r-1 = -0.864. From Eq. (15), we find p1 = 0.127,

p-1 = -0.127. Using Eq. (16), we obtain the output Ksct = 0.102 G L/mM almost

coinciding with the value Ksct = 0.1 G L/mM used in the EPR spectra simulations.

Note that according to the results presented above, r1 r-1 = 1. In the case when the

intrinsic line widths of the nitrogen components are equal, this is evident and

expected result. Less evident is that this relation r1 r-1 = 1 is valid for any values of

the intrinsic line widths C0k.

We simulated and analyzed the EPR spectrum for two model situations:

neglecting the dipole–dipole contribution (closed circles in Fig. 8) and taking it into

account (open circles in Fig. 8). First, we performed the computer experiment with

a chosen set of input parameters, including the input coherence transfer rate

V = Ksct C and the spin decoherence rate W = Ksd C: using exact Eq. (9), we

obtained experimental spectra. Second, following the algorithm outlined above, we

found the parameters r1 and r-1 for the derivatives of these spectra. Then, using

Eqs. (15, 16), we determined the spin coherence transfer rate which we call as the

output value of the Ksct C.

If the algorithm used for determining the parameter V from the EPR spectrum

data on the basis of Eqs. (15, 16) would be ideal, the plot in Fig. 8 is expected to be

a straight line—a bisector. Any deviations from the bisector characterize errors in

the determination of the spin coherence transfer rate following our algorithm.
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Fig. 8 Correlation between the input and output spin coherence transfer rate V = Ksct C used as the input
of the computer simulation of the EPR spectrum and the value of the kinetic parameter Ksct C obtained by
analyzing the dispersion contribution to the simulated EPR spectrum component. The bisector is shown as
the solid line. Parameters used in these simulations are: Ck = 0.2 G, aN = 16 G, g = 2, number of
protons = 12, aP = 0.2 G, Kex = 0.05 G L/mM, Kdsct = Kdsd = 0 (open triangles); Kex = 0.05 G L/
mM, Kdsct = 0.005 G L/mM, Kdsd = 0.006 G L/mM (open circles); Kex = 0.05 G L/mM, Kdsct = 0.01
G L/mM, Kdsd = 0.012 G L/mM (closed circles)
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Figure 8 shows that the data from the computer experiment belong to the bisector in

the low-spin concentration region. Thus, the spin coherence transfer rate V can be

determined by measuring the parameter r = Mmax/Mmin in the region of low-spin

concentration. It was discussed above that there are two characteristic spin

concentrations. The concentration C0 characterizes the collapse of the super

hyperfine structure of the EPR spectrum. It occurs when the spin coherence transfer

rate inside nitrogen components is equal to the inhomogeneous broadening induced

by the super hyperfine interactions: (1/3)Kex C0 = DX0 (see Fig. 1). In the

numerical simulations (Fig. 8), Kex = 0.05 G L/mM, DX0 = 0.35 G. Thus, in this

case, C0 = 20 mM/L. It is shown in Fig. 8 that the spin coherence transfer rates

obtained by analyzing the simulated spectra belong to the bisector up to the spin

concentration of about 30–40 mM/L. At the higher spin concentrations, the data of

V obtained from analysis of the simulated spectra deviate from the bisector

considerably. The output rate starts to deviate from the bisector even earlier (at

lower spin concentration) if both, the dipole–dipole and the exchange interactions,

contribute (compare closed and open circles data with open triangles data in Fig. 8).

This deviation is explained by the effect of the overlapping of the nitrogen

components of the EPR spectrum. The parameter r = Mmax/Mmin is very sensitive to

this overlapping.

The consideration of the spectrum shape at different concentration ranges shows

that the spin decoherence rate W and the spin coherence transfer rate V determine

directly the widths of the spectrum components in the intermediate concentrations

C0\C\C*. According to the theory developed in this work, in the intermediate

spin concentration range, the peak-to-peak distances should manifest the linear

concentration dependence. From Eq. (11) (see also [1]), the peak-to-peak distances

in the EPR spectrum derivative for the components are:

DXm ¼ f pð ÞDX0m; ð17Þ

where

DX0m ¼ W � V=3 þ 3hD2i=V þ C0m � C Cð Þ þ C0m; ð18Þ

f pð Þ ¼ 2 � 31=2 1 þ p2
� �1=3

Im 1 þ ipð Þ1=3=p
� �

:

When the dispersion does not contribute to the spectrum, i.e., p = 0, then

f(p) = 2�3-1/2 = 1.1547.

To check these expectations, we simulated the EPR spectra again and found the

peak-to-peak distances for their derivatives. The simulations were done for the same

set of the input parameters as in Fig. 8. For the simulated spectra, the peak-to-peak

distance and the concentration-dependent part of the line widths C(C) were

calculated. If our algorithm is valid, the output C(C) should coincide with the input

value. The results of the computer experiments and analysis of the simulated spectra

are shown in Fig. 9.

Figure 9 shows that in the concentration range (30, 100 mM/L), the data of the

analysis of the simulated EPR spectra are close to the bisector. Thus, our algorithm

gives reliable results for determining the concentration-dependent spin decoherence

rate U(C).
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Figure 9 shows the non-linear spin concentration dependence of the line width at

low concentrations C\C0 and at high concentrations C & C* (Ksct C* = 3aN).

These deviations are expected. At very low concentrations, the exchange narrowing

of individual nitrogen components interferes with the exchange broadening due to

the spin exchange between different nitrogen components. At high concentrations,

the exchange broadening interferes with the collapse of the whole spectrum into one

homogeneous line.

Note that the line width U(C) contains contributions of the spin exchange and

dipole–dipole interactions. The separation of these contributions was comprehen-

sively considered in [1].

5 Concluding Remarks

The shape of the EPR spectra of the spin probes depends on the spin decoherence

and spin coherence transfer between probes induced by the exchange and dipole–

dipole interactions between spins. However, manifestations of these interactions in

the EPR experiments depend on other interactions, e.g., the hyperfine interaction of

unpaired electrons with magnetic nuclei. In this work, we analyzed comprehen-

sively the manifestations of the exchange and dipole–dipole interactions in the EPR

spectrum in non-viscous solutions of 14N containing spin probes (nitroxide free

radicals). This work is closely related with [1], where this problem was studied
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Fig. 9 Correlation between the input and output values of the concentration-dependent part of the line
width U(C) of the low-field component of the 14N nitroxide radical. Parameters used in these simulations
are: C1 = 0.2 G, aN = 16G, g = 2, number of protons = 12, aP = 0.2 G, Kex = 0.05 G L/mM,
Kdsct = Kdsd = 0 (open triangles), Kex = 0.05 G L/mM, Kdsct = 0.005 G L/mM, Kdsd = 0.006 G L/mM
(open squares), Kex = 0.05 G L/mM, Kdsct = 0.01 G L/mM, Kdsd = 0.012 G L/mM (closed squares)
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under the assumption that the super hyperfine structure of the EPR spectrum due to

the interaction with all magnetic nuclei except for of nitrogen can be ignored. Here,

the theory was extended to include into consideration all magnetic nuclei of the spin

probes. The consideration was focused on the case of the slow spin coherence

transfer. It was shown that the side components of the EPR spectrum contain the

absorption and dispersion terms: JEPR = Abs ? p Dis, and p = -m Ksct C/aN

(m = 1, -1 for the left- and right-hand nitrogen components, respectively)

independent of the super hyperfine structure due to magnetic nuclei except for

nitrogen. This observation provides a way for determining the spin coherence

transfer rate by analyzing the dispersion contribution to the side nitrogen

components of the EPR spectrum at the low-spin probe concentration.

The spin decoherence leads to broadening of the resonance lines. However, the

shapes of the dispersion term as well as the shape of the absorption contribution

depend on the super hyperfine structure. Therefore, the concentration-dependent

spin decoherence rate can be determined from the concentration broadening but

only in the intermediate range of the spin probe concentration. An algorithm was

proposed and tested for determining the rates of the spin coherence transfer and spin

decoherence induced by the exchange and dipole–dipole interactions between spin

probes in dilute solutions. The algorithm was tested by the results of the computer

experiments: numerical simulations of the EPR spectra and the determination of the

spin coherence transfer and spin decoherence rates by analyzing the simulation data

using the algorithm suggested. We hope that this algorithm will be useful when

studying the spin exchange process.
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Appendix

Perturbation Theory of the EPR Spectrum Shape of 14N Nitroxide Radicals

We consider the solution of the 14N nitroxide radicals. The hyperfine interaction

with nitrogen nuclei in nitroxides is much larger than the super hyperfine interaction

with other magnetic nuclei. In this case at the low radical concentration (C ? 0),

the expected EPR spectrum is shown schematically in Fig. 1. There are three bands

which correspond to the projections of the nitrogen nuclear spins, m = ?1, 0, -1.

Each of these bands has an additional super hyperfine structure due to the interaction

of unpaired electrons with other (except for nitrogen) magnetic nuclei (protons,

deuterons, 13C). The widths of these bands DX0 (see Fig. 1) are less than the

distances between centers of these bands, DX0\ aN. The spin coherence transfer

terms Vkn in Eqs. (1, 7) connect magnetizations of the subensemble of nitroxides

with different resonance frequencies. In the wide range of the radical concentra-

tions, the transition terms Vkn can be much less than the nitrogen hyperfine splitting,
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(1/3) Kex C\ aN. In this case, the spin coherence transfer between spins which

belong to different nitrogen EPR spectrum bands can be treated in the framework of

the perturbation theory for non-degenerate resonance frequencies. Under the same

condition, the spin exchange inside nitrogen components of the EPR spectrum

corresponds to the quasi-degenerate case.

The EPR spectrum shape is found from the solution of the system of Eq. (7) in

the rotating frame for the partial transverse magnetizations Mk:

ð�iðxk þ dk � xÞ � CkÞMk �WMk þ gkVM ¼ ix1gkM0; ð19Þ

where W = Kex C ? 1/T2dd, V = Kex C - 1/T02dd.

We divide all subensembles of nitroxide radicals into three groups which

correspond to three projections of the 14N nuclear spins, m = 1, 0, -1, while a set

of numbers {n} characterizes all super hyperfine structure components in each

nitrogen component of the EPR spectrum (see Fig. 1). Then, in Eq. (19), k : {m,

n}, Mk : Mmn = {M1n, M0n, M-1n}, gk : gmgn = (1/3)gn. In these notations, we

rewrite Eq. (19) as:

ð�iðx1n þ d1n � xÞ � C01ÞM1n � WM1n þ 1=3ð Þ gnV
X

M1n þ
X

M0n þ
X

M�1n

� �

¼ ix1M1n;eq;

ð�iðx0n þ d0n � xÞ � C00ÞM0n �WM0n þ 1=3ð Þ gnV
X

M0n þ
X

M1n þ
X

M�1n

� �
¼ ix1M0n;eq;

ð20Þ

ð�iðx�1n þ d�1n � xÞ � C0�1ÞM�1n �WM�1n þ 1=3ð Þ gnV
X

M�1n þ
X

M1n þ
X

M0n

� �
¼ ix1M0�1n; eq:

In these equations, the terms marked in bold italic describe the spin exchange

between spins with sufficiently large difference of their resonance frequencies.

Their contributions to the solution of Eq. (20) can be found using the perturbation

theory for the non-degenerate case. In the approximation, linear over V the partial

magnetizations M1n, M0n, and M-1n and the right-hand sides of Eq. (20) take the

form:

M �mn xmnð Þ ¼ Mmn xmnð Þ þ i 1=3ð ÞgnV
X

Mpq xpq

� �
= xmn � xpq

� �
ðp 6¼ mÞ:

ð21Þ
The right-hand side of Eq. (20) is transformed analogously:

M�mn;eq ¼ gmn 1 þ iV
X

gpq= xmn � xpq

� �� �
Meq

¼ Meq 1=3ð Þgn 1 þ i 1=3ð ÞV
X

gq= xmn � xpq

� �
Þ

� �

ðp 6¼ mÞ:

ð22Þ

Due to the spin coherence transfer between different nitrogen components, the

resonance frequencies shift as:
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x�mn ¼ xmn � gmnV
2
X

gpq=ðxmn � xpqÞ ðp 6¼ mÞ: ð23Þ

In Eqs. (21–23), the denominators of 1/(xmn - xpq) are the difference of the

resonance frequencies of spins, which belong to different nitrogen components of the

EPR spectrum. We assume that the difference (xmn - xpq) is mainly determined by

the hyperfine interaction with nitrogen: (x1n - x0q) % aN, (x0n - x-1q) % aN,

(x1n - x-1q) % 2 aN. With this approximation, Eqs. (21–23) take the forms:

M �1n xmnð Þ ffi M1n xmnð Þ þ i 1=3ð Þ gn V=aNð Þ
X

M0q xpq

� �
þ i 1=3ð Þ gn V= 2aNð Þð Þ

X
M�1q xpq

� �
;

M �0n xmnð Þ ffi M0n xmnð Þ�i 1=3ð Þ gn V=aNð Þ
X

M1q xpq

� �
þ i 1=3ð Þ gn V=aNð Þ

X
M�1q xpq

� �
;M ��1n xmnð Þ ffi M�1n xmnð Þ�i 1=3ð Þ gn V= 2aNð Þð Þ

X
M1q xpq

� �

�i 1=3ð Þ gn V=aNð Þ
X

M0q xpq

� �
;

Mz�1n; eq ¼ gn 1=3ð Þ 1 þ i 1=2ð Þ V=aNð Þð ÞMeq;

Mz�0n; eq ¼ gn 1=3ð ÞMeq; ð24Þ
Mz��1n;eq ¼ gn 1=3ð Þ 1 � i 1=2ð Þ V=aNð Þð ÞMeq;

x�1n ¼ x1n � 1=2ð Þ gn V2=aN

� �
;

x�0n ¼ x0n;

x��1n ¼ x�1n þ 1=2ð Þ gn V2=aN

� �
:

Thus, for the small parameter (1/3) V/aN\ 1, Eq. (20) takes the form of the

uncoupled equations for the transverse magnetizations of the nitrogen hyperfine

components:

ð�iðx �1n þd1n � xÞ�W � C1ÞM �1n þ 1=3ð Þ gnV M�1

¼ gnix1 1=3ð Þ 1 þ i 1=2ð Þ V=aNð Þð ÞMeq;

ð�iðx �0n þd0n � xÞ�W � C0ÞM �0n þ 1=3ð Þ gnV M�0 ¼ gnix1 1=3ð ÞMeq;

ð25Þ

ð�iðx ��1n þd�1n � xÞ�W � C�1ÞM ��1n þ 1=3ð Þ gnV M��1

¼ gnix1 1=3ð Þ 1 � i 1=2ð Þ V=aNð Þð ÞMeq;

where M*1 = R M*1n, M*0 = R M*0n, M*-1 = R M*-1n.

These equations give:

M�1n ¼ ðgn= ð�iðx �1n þd1n � xÞ�W � C01ÞÞ ðix1 1=3ð Þ 1 þ i 1=2ð Þ V=aNð Þð ÞMeq

� 1=3ð ÞV M�1Þ;

M�0n ¼ ðgn= ð�iðx �0n þd0n � xÞ�W � C00ÞÞ ðix1 1=3ð ÞMeq � 1=3ð ÞVM�0Þ;

M��1n ¼ ðgn= ð�iðx ��1n þd�1n � xÞ�W

� C0�1ÞÞ ðix1 1=3ð Þ 1 � i 1=2ð Þ V=aNð Þð ÞMeq � 1=3ð ÞV M��1Þ:
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The magnetizations M*1, M*0, and M*-1 can be found straightforwardly:

M�m ¼ CmGm= 1 þ 1=3ð ÞVGmð Þ; ð26Þ

where

Gm ¼
X

gn=ð�iðx �mn þdmn � xÞ�W � C0mÞ;

Cm ¼ ðix1 1=3ð Þ 1 þ im 1=2ð Þ V=aNð Þð ÞMeq; m ¼ þ1; 0; �1: ð27Þ
In the EPR experiments, one observes the total transverse magnetization

M = M1 ? M0 ? M-1. In the approximation, linear over V/aN [see Eqs. (21, 24)]

M1 ffi M �1 �i 1=3ð Þ V=aNð ÞM �0 �i 1=3ð Þ V=2aNð ÞM��1;

M0 ffi M �0 þi 1=3ð Þ V=aNð ÞM �1 �i 1=3ð Þ V=aNð ÞM��1;

M�1 ffi M ��1 þi 1=3ð Þ V= 2aNð Þð ÞM �1 þi 1=3ð Þ V=aNð ÞM �0 :

Thus, the EPR spectrum is given:

J ¼ �Im Mf g ¼ J1 þ J0 þ J�1;

Jm ¼ �Im ð1 þ im 1=2ð Þ V=aNð ÞM�mf g ffi � 1=3ð ÞImfix1 1 þ im V=aNð Þð Þ
Gm= 1 þ 1=3ð ÞV Gmð Þg

¼ � ðx1=3ÞRe 1 þ im V=aNð Þð ÞGm= 1 þ 1=3ð ÞV Gmð Þf g:
ð28Þ

Gm ¼
X

gn=ð�iðx �mn þdmn � xÞ�W � C0mÞ:
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