
Compressively Sampled MRI Recovery Using Modified
Iterative-Reweighted Least Square Method

Hassaan Haider1 • Jawad Ali Shah1 •

Ijaz Mansoor Qureshi2 • Hammad Omer3 •

Kushsairy Kadir4

Received: 13 March 2016 / Revised: 22 June 2016 / Published online: 15 July 2016

� Springer-Verlag Wien 2016

Abstract Magnetic resonance imaging (MRI) is a medical imaging modality used

for high-resolution soft-tissue imaging of human body. In traditional MRI acqui-

sition methods, sampling is performed at Nyquist rate to store data in k-space. The

MR image is recovered using inverse Fast Fourier Transform (FFT). This approach

results in slow data acquisition process, which is uncomfortable for the patients.

Compressed Sensing (CS) acquisition approach offers nearly perfect recovery of

MR image using non-linear reconstruction algorithms even from partial k-space

data. This study presents a novel method to reconstruct MR image from highly

under-sampled data using modified Iterative-Reweighted Least Square (IRLS)

method with additional data consistency constraints. IRLS is an effective numerical

method used in convex optimization problems. The proposed algorithm was applied

on original human brain and Shepp–Logan phantom image, and the data acquired

from the MRI scanner at St. Mary’s Hospital, London. The experimental results

show that the proposed algorithm outperforms Projection onto Convex Sets (POCS),

Separable Surrogate Functional (SSF), Iterative-Reweighted Least Squares (IRLS),

Zero Filling (ZF), and Low-Resolution (LR) methods based on the parameters, e.g.

Peak Signal-to-Noise Ratio (PSNR), Improved Signal-to-Noise Ratio (ISNR), Fit-

ness, Correlation, Structural SIMilarity (SSIM) index, and Artifact Power (AP).
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1 Introduction

MRI is a preferable clinical diagnostic imaging technique due to its high-resolution

images and high-quality soft-tissue contrast. MRI does not employ ionization

radiations which is good for patient’s health. The problem with MR imaging is that

its acquisition process is slow, which results in discomfort for the patients. Long

scanning time may also degrade the image due to motion during the scanning

process.

MRI scanning time is linearly proportional to the number of samples taken in k-

space. Compressed sensing is a novel data acquisition technique that exploits

sparsity in signals to reconstruct it from a reduced number of samples [1, 2]. MRI

naturally fits in as a potential application of CS due to its sparsity either directly or

after transformation in well-defined domains, e.g. Finite-Difference domain and

Wavelet domain. In compressive sampled, MRI acquisition process, non-Cartesian

sampling techniques provide better reconstruction due to its low coherence with the

sparsifying domain [3].

Reconstructing high-quality MRI image efficiently from its partially sampled k-

space data is the most challenging part in CS. There are several reconstruction

algorithms that can be used to recover MRI from under-sampled k-space data, which

have been briefly reviewed in [4–6].

Recently, iterative shrinkage thresholding (IST) [7] and fast IST [8] algorithms

have proved to be very effective in minimizing the mixed l1 � l2 cost function of the

form:

x̂ ¼ argxmin
1

2
jjy� Uxjj22 þ bjjxjj

1

� �
: ð1Þ

The parameter b� 0 is used as regularizer that defines the sparsity in the

estimated solution. U is the measurement matrix, x is the sparse signal, and y is the

observation vector acquired from random projections. x̂ is the estimated signal and

operators, jjzjj
1
and jjzjj

2
are the l1 and l2 norms of vector z, respectively.

This study presents a novel technique to recover MRI from its partial k-space

data using the iterative-reweighted least square method [9] with additional data

consistency constraint. The proposed method was applied on Shepp–Logan

phantom image and original human brain MR image, by exploiting their sparsity

in the finite-difference domain and wavelet domain, respectively [10]. The

performance of non-Cartesian under-sampling schemes, such as radial lines and

variable density random sampling, were also compared.

2 Application of CS on Rapid MRI

There are several methods that can be found in the literature to reduce MRI

scanning time. One such method is to provide a high gradient amplitude with rapid

switching, which results in an undesirable nerve stimulation [11]. Other methods

exploit the redundancy in MRI data, such as: multiple receiver coils that reduce the

number of acquisitions per scan 0. Scan time can also be reduced by skipping some
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of the phase encoding lines, which results in a small field of view (FOV) that

decreases the signal-to-noise ratio (SNR) [13].

The time taken for MRI scan is linearly proportional to the number of samples

acquired during scanning. Compressed sensing is a novel data acquisition technique

that exploits sparsity in MRI. CS allows a near perfect recovery of MR image even

from lesser number of samples that reduces the scan time significantly. MRI is a

suitable application for CS, because MRI scanning involves sampling in k-space

rather than pixel-by-pixel data acquisition. For the accurate recovery of the signal

using CS, signal has to be sparse in some domain. This condition is fulfilled by MRI

as it is sparse either directly or in well-defined domains, i.e., finite-difference

domain and wavelet transform domain.

The sampling patterns of MRI can be Cartesian or non-Cartesian. Cartesian

sampling scheme is conventionally used in MRI, where samples are taken in

equispaced lines and a simple inverse Fast Fourier transform (IFFT) can be used to

reconstruct the fully sampled MR image. Unlike Cartesian sampling, non-Cartesian

sampling techniques provide freedom to choose from several sampling patterns,

such as radial lines, spirals, and variable density random sampling. Non-Cartesian

sampling techniques are particularly useful for CS due to less coherence with

sparsifying transform [3, 13], which directly impact the least number of samples

required for accurate reconstruction. Low coherence means that a few samples are

required for accurate reconstruction of MR image. In radial sampling scheme, the

samples are taken along the uniformly angular spaced lines, passing through the

origin of k-space. In variable density sampling scheme, nearly, all the samples are

taken near the origin in k-space, while sampling sparsely away from the origin as

most energy of the image is concentrated closer to the origin in k-space [3].

3 Recovery Methods

Several recovery techniques can be utilized for recovery of MRI from partial k-

space data. These methods vary in terms of either their specific sampling pattern or

recovery technique.

3.1 Linear Reconstruction Techniques

Zero Filling (ZF) is a simple MRI recovery method that gives freedom to choose

any sampling pattern for under-sampling in k-space, while missing k-space data are

filled with zeros. The image is simply reconstructed using inverse fast Fourier

transform.

Low Resolution (LR) is another under-sampling technique with fixed sampling

pattern. Only centric k-space data are acquired, leaving the rest of the space

unsampled, and then, image is reconstructed using IFFT. This technique recovers

smooth region in the image accurately, but sharp edges in the image are not

recovered properly.
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3.2 Project onto Convex Set Algorithm

Project onto Convex Set (POCS) is an iterative algorithm to recover MR image from

under-sampled k-space data [12] (Fig. 1). In POCS method, all the constraints onto

an image recovery problem can be mapped on convex sets in a Hilbert space

consisting of all possible images. To reconstruct an image, all we need to do is to

find a point of intersection of all the convex sets in a Hilbert space defined by a

priori information. POCS is very effective in solving mixed l1 � l2 convex

optimization problem in the following equation:

x̂ ¼ argxmin jjWxjj1 subject to jjFux� yjj22\v; ð2Þ

where W represents the sparsifying transform, e.g,. wavelet transform, Fu is the

partial Fourier transform, and x represents the recovered image. The parameter v is

set subject to the noise level and jjzjj1 ¼
P
j

jzjj is the l1 norm of vector z that tends
to promote sparsity. A modified POCS has also been proposed for MRI recovery in

[14].

3.3 Separable Surrogate Functional

Separable Surrogate Functional (SSF) algorithm belongs to the family of iterative

shrinkage algorithms. IST algorithms are simple in structure but highly effective in

recovering sparse signals by minimizing the mixed l1 � l2 objective function in the

following [13]:

f xð Þ ¼ 1

2
jjFux� yjj22 þ bjjWxjj1 . ð3Þ

Iterative shrinkage algorithms use shrinkage function xopt ¼ SbðaÞ, which maps

the input a to output xopt. The values below the threshold T are mapped to zero

((Sb að Þ ¼ 0 for aj j\TÞ and those values which are outside this threshold T are

Fig. 1 POCS algorithm for MRI recovery from partial Fourier data
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shrunk [15]. Each iteration includes a shrinkage step and multiplication by sensing

matrix Fu and its transpose ðFT
u Þ. Iterative shrinkage algorithms are known for their

simplicity, yet highly effective in minimizing the problem in Eq. (1) [16]. Separable

surrogate functional (SSF) [17], Fast IST algorithm (FISTA) [18], Parallel

Coordinate Descent (PCD) [15], and Iterative-Reweighted Least Squares (IRLS)

algorithm [10] are some of the iterative shrinkage algorithms. Recently, PCD and

SSF have been used with the genetic algorithm (GA) [19] and differential evolution

(DE) to speed up the convergence of the sparse reconstruction problem [20].

The SSF algorithm was developed by Daubechies et al. [17] by adding the

following function to objective function in Eq. (3)

d x; x0ð Þ ¼ c

2
jjx� x0jj22 �

1

2
jjFux� Fux0jj22; ð4Þ

where c is chosen to make function dð:Þ strictly convex; thereby, its Hessian should

be positive-definite, i.e., cI� FT
uFu [ 0, which can be satisfied, if

c[ jjFT
uFujj2 ¼ bmaxðFT

uFuÞ. Recently, Combettes and Wajs [21] have proved that

c[ 0:5bmaxðFT
uFuÞ for guaranteed convergence of SSF algorithm.

The optimal solution can be found by following shrinkage function:

xopt ¼ S u0ð Þ ¼ S
1

c
FT
u y� Fux0ð Þ þ x0

� �
: ð5Þ

Surrogate function is used to achieve minimization of cost function in Eq. (3)

iteratively. The sequence of solutions that is produced iteratively is proved

convergence to the local minima of objective function in Eq. (3). The resulting

iterative process can be written as follows:

xkþ1 ¼ S
1

c
FT
u x� Fuxkð Þ þ xk

� �
: ð6Þ

Fig. 2 Separable surrogate functional algorithm description
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The above-mentioned method can be described as proximal-point algorithm in

optimization theory. The function d x; x0ð Þ calculates the difference from previous

solution. The directions x� x0that are near null-space of Fu, the distance is nearly

Euclidean, 0:5cjjx� x0jj22 and those directions that are spanned by Fu, the distance

become closer to zero. Therefore, the function d x; x0ð Þ limits the solutions in a

range, which help us in achieving our goal of minimizing the objective function in

Eq. (3) [15]. Figure 2 shows the SSF algorithm in detail.

3.4 Iterative-Reweighted Least Square

Iterative-reweighted least square (IRLS) is one of the algorithms that belong to

iterative shrinkage thresholding (IST) algorithms family of algorithms. IST

algorithms are simple in structure but highly effective in recovering sparse signals

by minimizing the mixed l1 � l2 objective function in Eq. (3) [13]. Figure 3 shows

the IRLS method in detail.

3.5 Algorithms Performance Measures

The performance of various algorithms based on the recovered image and the

original image can be measured using various methods. Structural Similarity

(SSIM) index was proposed by Wang et al. [23]. SSIM index closer to one means

two images are closely matched, whereas SSIM index closer to zero means that the

recovered image is poorly matched.

Artifact Power (AP) is another performance measure to judge the accuracy of the

recovered image. It is derived from square difference error, which can be calculated

using Eq. (7). Smaller AP means better image recovery

Fig. 3 Brief description of iterative-reweighted least square
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AP =

P
i jxðiÞ � x̂ðiÞj2P

i jxðiÞj
2

: ð7Þ

Improved signal-to-noise ratio (ISNR) is another parameter for measuring the

recovered image quality [15]. ISNR can be evaluated using Eq. (8). Higher value of

ISNR means that the recovered image is of better quality

ISNR ¼ 10 � log10
jjx� jFuxjjj22

x̂� x22

( )
½dB�: ð8Þ

Peak signal-to-noise ratio (PSNR) is the ratio between the maximum pixel value

of an image and the power of the recovered image [24]. It is a popular metric used to

measure the fidelity of the image. Higher value means better image recovery. It can

be calculated using the following equation:

PSNR ¼ 20 � log10 MaxðXÞf g � 10 � log10
1

mn

X
i

X
j

ðXði; jÞ � X̂ði; jÞÞ2
( )

½dBs�:

ð9Þ
Fitness is another parameter that can be used to evaluate the recovered image.

Fitness at each iteration can be calculated by jjFuxi � yjj22 or jjxi � xi�1jj22. Smaller

value of fitness means better quality of the recovered image. Correlation is a

statistical parameter to show the relationship between the original image and the

recovered image. Correlation value closer to 1 means the two images are closely

matched. It can be found using equation qX;Y ¼ covðX;YÞ
rXrY

, where cov X; Yð Þ is the

covariance between X and Y , and rX ; rY are the standard deviations of the images

X and Y, respectively.

4 The Proposed Algorithm

The proposed algorithm is inspired by the Iterative-Reweighted Least Square

(IRLS) method and the data consistency constraint in POCS algorithm. The IRLS

algorithm is used frequently in convex optimization problems. IRLS has proved its

utility in finding the maximum likelihood functions of generalized linear model.

IRLS minimizes a weighted residual rather than minimizing the l2 norm [16]. Non-l2
norms are converted into l2 ones using weighting by IRLS [22]. In Eq. (1), jjxjj1 is
replaced by 0:5xTW�1 xð Þx, where WðxÞ is a diagonal matrix, comprising of

W k; k½ � ¼ 0:5x k½ �2=jjxjj1 values in its diagonal. The objective function in Eq. (1)

can be rewritten as:

f xð Þ ¼ 0:5jjy� Fuxjj22 þ 0:5bxTW�1 xð Þx. ð10Þ
The solution x0 is updated, by assuming fixed W to minimize the quadratic

function:

rf xð Þ ¼ �FT
u y� Fuxð Þ þ bxTW�1 xð Þx ¼ 0; ð11Þ
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where x is updated by taking inverse of matrix: FT
uFu þ bW�1, then W is updated

using the new solution.

IRLS performed poorly for large images [15]. To overcome this drawback, the

above-mentioned algorithm was modified by Adeyemi and Davies [10] resulting in

another iterative shrinkage algorithm by adding and subtracting cx from Eq. (13).

The resulting iterative shrinkage update equation is given below:

xkþ1 ¼
b
c
W�1ðxkÞ þ I

� ��1
1

c
FT
uy�

1

c
ðFT

uFu � cIÞxk
� �

¼ S:
1

c
FT
u ðy� FuxkÞ þ xk

� �
; ð12Þ

where diagonal matrix S ¼ b
c
W�1ðxkÞ þ I

� ��1

¼ b
c
I þWðxkÞ

� ��1

WðxkÞ plays the
role of shrinkage on the values of 1

c
FT
u ðy� FuxkÞ þ xk. Each entry is multiplied by

a scalar value
0:5xk ½i�2=x1

b
c
þ0:5xk ½i�2=x1

¼ xk ½i�2
2b
c
x1þxk ½i�2:

When the value of xk½i� is large, the above factor becomes one, and for small

values of xk½i�, its value approaches zero, similar to the way shrinkage works. The

Fig. 4 Brief description of the proposed algorithm for MRI recovery
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relaxation constant c� 1 should be chosen as c[ kmaxðUTUÞ=2 to ensure

convergence of matrix S, where kmax is the maximum eigenvalue of the matrix.

The proposed algorithm is initialized by zero filling the missing k-space data.

Then, the missing k-space data are synthesized by back-projection and soft-

thresholding iteratively. As human brain MR image is sparse in wavelet domain,

shrinkage operation is performed in wavelet domain. To reconstruct the MRI

accurately, the proposed algorithm efficiently minimizes the objective function in

Eq. (13). Figure 4 shows the proposed algorithm in detail

f xð Þ ¼ 1

2
jjFux� yjj22 þ bjjWxjj1: ð13Þ

5 Simulation Results and Discussion

The performance of the proposed algorithm was validated by nearly perfect

recovery of Shepp–Logan phantom image and the original human brain MR data.

The human brain data were acquired using 1.5 Tesla GE HDxt MRI scanner with a

gradient echo sequence and eight-channel head coil with the following parameters:

FOV ¼ 20 cm, TR ¼ 55, TE ¼ 10 ms, bandwidth ¼ 31:25 KHz, slice thickness ¼
3 mm, flip angle ¼ 90�, matrix size ¼ 256 � 256 at St. Mary’s Hospital London.

The size of the Shepp–Logan phantom image is 256 � 256.

Both the data sets were fully sampled at the time of data acquisition and are

under-sampled later by taking only 25 % of the samples in k-space using variable

density random sampling as well as radial lines sampling schemes. The performance

of the variable density random sampling and radial lines schemes performance are

compared, keeping the same number of samples. The proposed IRLS with data

Fig. 5 Recovery of the phantom image using various reconstruction methods
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consistency constraint algorithm exploits the sparsity of MR image in wavelet

domain and the sparsity of the phantom image in finite-difference domain to apply

shrinkage operation.

The proposed algorithm was compared with ZF, LR, POCS, IRLS, and SSF. The

parameters set for comparison are fixed number of iterations = 10, IRLS parameter

c ¼ 100, and the thresholding shrinkage operator b that was tuned to optimize the

performance of POCS and the proposed algorithm.

Figure 5 shows the recovery of the phantom image when under-sampled using

variable density randomsampling scheme.Figure 5a shows the recoveryof thephantom

Fig. 6 Performance comparison of the proposed algorithm and POCS for phantom image

Fig. 7 Comparison of recovered MRI using different algorithms
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image using ZF, LR, IRLS, POCS, and the proposed method. The image recovered by

the proposed method subjectively looks better than other recovered images. Figure 5b

shows the sampling pattern for each algorithm. LR has centric ordered data in k-space,

while other algorithmshavevariable density randomsampling scheme. Figure 5c shows

the magnified difference between original image and recovered images. ZF performed

poorly, while LR was not able to extract edges accurately. The simple IRLS and SSF

algorithms are inefficient compared with the proposed algorithm. The error in the

proposed method is far less as compared with POCS.

Figure 6 shows the efficiency of the proposed method graphically as compared

with POCS when applied on phantom image. The under-sampling has been

performed using variable density random sampling scheme. Figure 6a shows the

ISNR of POCS and the proposed algorithm. The results show that an improvement

in ISNR has been achieved using the proposed method. Figure 6b shows the

improvement in PSNR when the proposed method is used. Figure 6c shows an

increase in SSIM of the recovered image using the proposed algorithm. Figure 6d

shows a decrease in the fitness using the proposed method.

Figure 7 shows the recovery of the real human brain MR image using variable

density random sampling. Figure 7a shows the MRI reconstruction using different

algorithms like ZF, LR, POCS, IRLS, SSF, and the proposed method. Figure 7b

exhibits the corresponding sampling patterns of different algorithms. Figure 7c

elaborates the difference between the original MRI and the recovered MR images.

The results show that ZF performs poorly, LR fails to recover edges accurately in

the reconstructed image, and the proposed algorithm has far less error compared

with POCS.

Figure 8 compares the performance of the proposed algorithm with POCS

quantitatively, when applied on under-sampled MR data. The under-sampling has

been performed using variable density random sampling pattern. Figure 8a shows

Fig. 8 Comparison of the proposed algorithm and POCS in recovering MR image

Compressively Sampled MRI Recovery Using Modified… 1043

123



the improvement in ISNR achieved by the proposed algorithm. Figure 8b shows the

increase in PSNR when compared with POCS. Figure 8c shows an increase in SSIM

index by the proposed algorithm when compared with POCS. Figure 8d shows the

decrease in fitness of the recovered MR image by the proposed algorithm.

Fig. 9 Comparison of the recovered MR image using variable density random sampling and radial
sampling schemes

Table 1 Comparison of various recovery techniques applied on phantom image

Algorithms Sampling pattern b AP Correlation

ZF Radial lines NA 0.0923 0.9474

LR Centric ordered NA 0.0411 0.9728

POCS Radial lines 0.15 0.0226 0.9886

SSF Radial lines 0.20 0.1947 0.9886

IRLS Radial lines 0.2 0.2349 0.9372

Proposed Radial lines 0.70 0.0164 0.9897

ZF Random NA 0.1176 0.9469

POCS Random 0.09 0.0160 0.9950

SSF Random 0.20 0.2083 0.8993

IRLS Random 0.13 0.2257 0.9495

Proposed Random 0.4 0.0078 0.9956

Bold italic values represent the best results by an algorithm in terms of certain performance measure
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Figure 9 demonstrates the recovery of the MR image using the proposed

algorithm for variable density random sampling and radial lines sampling schemes.

The quality of the recovered images from both schemes shows the superiority of the

variable density random sampling scheme over uniformly angular spaced radial

lines sampling technique.

Tables 1 and 2 summarize the performance of the different algorithms based on

AP and the correlation between recovered and original for the phantom image and

the MR image, respectively. The recovered images by the proposed algorithm better

accomplish the minimum AP and maximum correlation with the original phantom

image and the original MRI data. The value of b is tuned for the optimal

performance of POCS and the proposed algorithm.

6 Conclusion

This study presents a novel method for the reconstruction of MR image from its

partial Fourier data based on CS. The recovery technique is based on the IRLS

algorithm with additional data consistency constraints in the k-space. The proposed

method applies shrinkage in sparsifying domain iteratively, to minimize the cost

function. The missing k-space data, due to under-sampling, are synthesized by soft-

thresholding and back-projection. The experimental results demonstrate that the

proposed algorithm can faithfully recover the phantom as well as human brain MR

data from compressively sampled k-space data. The experimental results prove the

superiority of IRLS-based MRI reconstruction method over LR, ZF, IRLS, SSF, and

POCS recovery techniques in terms of performance metrics, i.e., PSNR, ISNR,

fitness, SSIM, AP, and correlation.

Table 2 Comparison of the recovery algorithms when applied on human brain MR data

Algorithms Sampling pattern b AP Correlation

ZF Radial lines NA 0.0307 0.9792

LR Centric ordered NA 0.0061 0.9951

POCS Radial lines 75 0.0106 0.9926

SSF Radial lines 700 0.0301 0.9794

IRLS Radial lines 700 0.0411 0.9700

Proposed Radial lines 700 0.0069 0.9946

ZF Random NA 0.0325 0.9818

POCS Random 50 0.0058 0.9965

SSF Random 35 0.0307 0.9823

IRLS Random 350 0.0298 0.9827

Proposed Random 350 0.0026 0.9980

Bold italic values represent the best results by an algorithm in terms of certain performance measure
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