
An Adaptive Algorithm for Compressively Sampled
MR Image Reconstruction Using Projections
onto lp-Ball

Muhammad Kaleem1
• Mahmood Qureshi1 •

Hammad Omer1

Received: 30 October 2015 / Revised: 9 December 2015 / Published online: 24 February 2016

� Springer-Verlag Wien 2016

Abstract Compressed sensing (CS) is an emerging technique for magnetic reso-

nance imaging (MRI) reconstruction from randomly under-sampled k-space data.

CS utilizes the reconstruction of MR images in the transform domain using any non-

linear recovery algorithm. The missing data in the k-space are conventionally

estimated based on the minimization of the objective function using l1 � l2 norms.

In this paper, we propose a new CS-MRI approach called tangent-vector-based

gradient algorithm for the reconstruction of compressively under-sampled MR

images. The proposed method utilizes a unit-norm constraint adaptive algorithm for

compressively sampled data. This algorithm has a simple design and has shown

good convergence behavior. A comparison between the proposed algorithm and

conjugate gradient (CG) is discussed. Quantitative analyses in terms of artifact

power, normalized mean square error and peak signal-to-noise ratio are provided to

illustrate the effectiveness of the proposed algorithm. In essence, the proposed

algorithm improves the minimization of the quadratic cost function by imposing a

sparsity inducing lp-norm constraint. The results show that the proposed algorithm

exploits the sparsity in the acquired under-sampled MRI data effectively and

exhibits improved reconstruction results both qualitatively and quantitatively as

compared to CG.

1 Introduction

Magnetic resonance imaging (MRI) is a useful medical imaging modality for an

excellent soft-tissue characterization and because of its non-ionizing property.

However, the fundamental limitation of MRI is the long data acquisition time which
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may lead to patient discomfort and results in artifacts in the image [1, 2]. To alleviate

this problem many researchers have come up with different solutions including

efficient data acquisition as well as reconstruction techniques. In the first place some

researchers focused on fast data acquisition using different non-Cartesian trajectories

with under-sampled data acquisition, followed by efficient reconstruction algorithms.

For instance, parallel MRI (PMRI) [1] is a fast imaging method, which uses an array of

radio frequency coils to acquire multiple sets of under-sampled k-space data

simultaneously. In PMRI different reconstruction techniques can be applied in both

the image domain and k-space [3, 4]. PMRI can accelerate data acquisition, but with

some degradation in the reconstructed image and hence reduce the signal-to-noise

ratio (SNR). The reduction in SNR is due to the reduction factor, g-factor and slice

position [5]. This degradation can be improved by incorporating a regularization term

in the reconstruction techniques [6–8].

Recently a new theory of applied mathematics called compressed sensing (CS)

[9] has been extensively utilized in the data acquisition and reconstruction in MRI

[2]. In CS, the number of the acquired sample values is usually much smaller than

the samples normally defining the signal, i.e., the traditional Nyquist Shannon

principle [10, 11]. The signals in CS can be potentially reconstructed with great

accuracy using highly under-sampled values by a nonlinear reconstruction

algorithm. The fundamental requirements for a successful application of CS are:

(1) the desired image has a sparse representation in a known transform domain or

the image should be inherently sparse, (2) the aliasing artifacts due to under-

sampling be incoherent in a specified domain, (3) a non-linear recovery algorithm

be used to enforce data sparsity and data consistency with the acquired data [2].

The possibility of MR images to be sparse in certain transform domain (Wavelets,

Contourlets, Curvelets, finite-differences, etc.) and the Fourier-encoded nature of the

MRI acquisition make the MR imaging a suitable candidate for the application of CS.

The incoherent artifacts as required for successful implementation of CS can be

achieved by acquiring data in a variable density sampling pattern [10]. In variable

density sampling scheme, the data are fully sampled (as per Nyquist criteria) at the

center of the k-space and are under-sampled in the outer k-space. The data acquired in

this way has the advantage that most of the energy of the signals is preserved at the

center of the k-space with overall reduction in MRI scan time [10].

The third and the most important element of CS is the use of an efficient and robust

reconstruction algorithm to recover the fully sampled MR image from the under-

sampled dataset. Until recently many optimization algorithms ranging from steepest

descent, conjugate gradient (CG), basis pursuit (BP), split bregman (SB), two-step

iterative shrinkage/thresholding algorithm (TwIST), alternating direction augmented

lagrangian (ADAL), fast iterative shrinkage/thresholding algorithm (FISTA), and

interior-point methods have been proposed recently [12–16]. A review of the CS

algorithms for MRI reconstruction can be found in [17–19] and the references therein.

However, all these general purpose algorithms are often inefficient, requiring too

many computations and/or iterations to reach the final solution. This is especially true

for high-dimensional images, as often encountered in medical image processing.

In this paper, we propose a new method for image reconstruction from highly

under-sampled data in k-space. The new technique is based on the family of
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gradient-based adaptive algorithms called tangent-vector-based gradient method

‘with unit-norm constraint’ within the parameter space that are specified by

Xk k ¼ 1, where �k k is any vector norm [20].

2 General Form of the Optimization Problem

The general form of the basic linear inverse problem arising in wide range of

applications such as image restoration, deblurring, denoising, inpainting, source-

separation, and CS can be modeled as solving a set of linear equations as given:

Ax ¼ bþ g ð1Þ

where in Eq. (1) A 2 Rmxn, b 2 Rm are known, g is unknown noise vector, and x is

the unknown signal/image to be estimated. The classical approach to the problem in

Eq. (1) is the least-squares approach as given below:

x̂ ¼ argmin
x

Ax� bk k2
2 ð2Þ

In many applications if the operator or function A is ill-conditioned [1] then a

regularization method is required to stabilize the solution. The most popular choice

that has attracted a revived interest in the signal and image processing literature is

the l1-norm regularization in which one seeks to find the solution of l1 � l2
expression of the form:

minJðxÞ � Ax� bk k2þk xk k1 ð3Þ

where xk k1 stands for the sum of the absolute values of the components of x and k is

the regularization parameter.

More specifically for the gradient-based adaptive algorithms, the expression

JðXÞ ¼ AX � bk k2
2 is called the cost function for the parameter vector

X ¼ x1; x2. . .xn½ �T. The general form of the problem formulation of Eq. (3) can be

given as:

minJðXÞ
s:t Xk kpp¼ c

ð4Þ

Equation (4) imposes a geometric structure to the parameter space and

expression Xk kp¼
Pn

i¼1 Xij jp
� �1=p

is the lp-norm of X, where 1� p� 2 and defines

different geometric structures depending upon the values of p. Another important

parameter in Eq. (4), is how the constraint c is imposed. Throughout the paper,

without loss of generality we choose c ¼ 1 and present tangent-vector-based

gradient method [20] for the solution of the problem posed in Eq. (4).

To proceed further we define some important parameters of the tangent-vector-

based gradient algorithm:

gðkÞ ¼ lðkÞ oJ XðkÞð Þ
oX

¼ lðkÞ oJðxÞ
ox1

� � � oJðxÞ
oxn

� �T

X¼XðkÞ
ð5Þ
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hgðkÞ ¼ I � VðkÞVTðkÞ
VðkÞk k2

2

 !

gðkÞ

VðkÞ ¼ o Xk k
oX

� �

X¼XðkÞ

ð6Þ

Geometrically, hgðkÞ is tangent to the surface Xk kpp¼ 1 and is called the tangent

gradient of JðxÞ in the constraint space.

3 Proposed Method

The proposed algorithm solves the convex optimization problem as given in Eq. (4)

using tangent-vector-based gradient method [20]. The objective here is to mitigate

the interference and noise from the under-sampled data and reconstructing the full

resolution data without any artifacts. The flow chart of the proposed algorithm is

shown in Table 1.

Now we can change the constraint problem of Eq. (4) to an unconstrained form

using Lagrangian expression as:

ĴðX; kÞ ¼ JðXÞ þ kð Xk kpÞ ð7Þ

In Eq. (7) JðXÞ ¼ FuX � Yk k2
2 is the cost function and Xk kp¼ wXk k1 is the l1-

norm constraint in any sparse domain. The solution of Eq. (7) can be written as:

Xðk þ 1Þ ¼ XðkÞ þ I � VðkÞVðkÞT

VðkÞk k2
2

 !

gðkÞ ð8Þ

In Eq. (8) gðkÞ ¼ lðkÞ oJðXðkÞÞ
oX

and VðkÞ ¼ o Xk k
oX

h i

X¼XðkÞ

For illustration purpose 1-D sparse signal is reconstructed using the proposed

tangent-vector-based gradient algorithm. As is evident from Fig. 1 that the resulting

reconstructed coefficients are often slightly smaller than the original signal. This

coefficient shrinkage can be improved if the reconstruction consistency in the cost

function can be made smaller.

Proof The mathematical derivation of the final updated vector can be calculated

using projections as shown in Fig. 2. From Fig. 2 the updated vector is given as:

Xðk þ 1Þ ¼ XðkÞ þ gTðkÞ ð9Þ

where gTðkÞ is the component of gðkÞ which is tangential to the surface Xk kpp¼ C

and the component of gðkÞ or gðtÞ in the direction of vðtÞ or vðkÞ which is per-

pendicular to the tangential vector d

dt
XðtÞ and can be obtained using projections as

given in Eq. (10):
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gvðkÞ ¼ gk k cos h
vðkÞ
vðkÞk k

¼ gðkÞT
vðkÞ

vðkÞk k2

 !

vðkÞ

ð10Þ

Table 1 Flow chart of the proposed algorithm for CS-MRI Reconstruction
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Now using the fact that, gðkÞ ¼ gvðkÞ þ gTðkÞ and substituting the expression

from Eq. (10) into Eq. (9) we get the following updated expression:

Xðk þ 1Þ ¼ XðkÞ þ gTðkÞ
¼ XðkÞ þ gðkÞ � gvðkÞ

¼ XðkÞ þ gðkÞ � gðkÞT
vðkÞ

vðkÞk k2

 !

vðkÞ

¼ XðkÞ þ gðkÞ � vðkÞvðkÞT

vðkÞk k2

 !

gðkÞ

Xðk þ 1Þ ¼ XðkÞ þ I � VðkÞVðkÞT

VðkÞk k2
2

 !

gðkÞ

: ð11Þ

The proposed tangent-vector-based gradient method is an iterative method in the

parameter space for obtaining the desired solution. In each iteration, the algorithm

estimates the missing k-space values until a satisfactory solution has been found.

The input to the proposed algorithm is the under-sampled k-space data which is

directly obtained from the MRI scanner. The algorithm starts (step 1) with an initial
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Fig. 1 Reconstruction of the sparse 1-D signal using the proposed method
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guess which is the inverse Fourier transform of the acquired data (with zero-filling

of the non-acquired data points) obtained from the scanner. The gradient of the cost

function (step 2) is calculated at each iteration as given below:

rJðXÞ ¼ 2FT
u ðFuX � YÞ ð12Þ

The right hand side of Eq. (12) tells how the gradient of the cost function plays its

role in the reconstruction process. At every step of the algorithm, the actual image

estimate X is transformed into the frequency domain using the Fourier transform

operator Fu [10]. These transformed data are then compared with the measured data

Y by calculating the difference. If the difference is small, then the estimate best fits

the measured data, otherwise the residuum contains significant values. If the

residuum is large, then the algorithm needs to know how to modify the image

estimate to the best estimate in the frequency domain. This information is obtained

by transforming the k-space data back to the image domain using inverse Fourier

transform operator FT
u . The l1-norm minimization of the regularization term in the

wavelet domain is performed (step 3) which promotes sparsity. The final updated

vector is calculated in step 4.

The stopping criterion of the proposed algorithm (outlined in Table 1) can be a

predefined number of iterations or can be a desired fitness value. In this paper, the

Fig. 2 Geometrical interpretation of the updated vector using projections
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fitness value approach at jth iteration has been used for stopping criterion which is

calculated through FuXj � Y
�
�

�
�2

2
.

4 Materials and Methods

The proposed tangent-vector-based gradient method is outlined in Table 1 showing

the basic operations involved in the method. The under-sampled k-space data after

zero-filling are used as an initial estimate. In the subsequent steps the solution image

is continuously updated until the stopping criterion is achieved.

The proposed method was evaluated on different datasets, i.e., simulated data,

phantom data, and in vivo human head datasets. All the reconstruction results were

obtained in MATLAB (Math works, Natick, MA) on a workstation with 3-GB

random-access memory and 2.33 GHz central processing unit. The performance of

the proposed algorithm is quantitatively evaluated using artifact power (AP),

normalized mean square error (NMSE), and peak signal-to-noise ratio (PSNR)

between the reconstructed and the reference images. AP, NMSE, and PSNR provide

a combined metric for image artifacts, noise, and loss of resolution.

In this paper, a numerical phantom (256 9 256) was constructed to evaluate the

performance of the proposed method. The phantom is piecewise smooth, i.e., most

coefficients are exactly zero. Moreover, the simulation is used to show how the

algorithm performs with different under-sampling factors and noise. For in vivo

images, fully sampled data have been acquired using 1.5 T and 3 T MRI machines.

The under-sampling is performed retrospectively on this fully sampled data to

simulate the accelerated data acquisitions for different acceleration factors. The

proposed method is tested on a scanned phantom image obtained using 1.5 T GE

scanner and in vivo images of human head which are acquired from two different

volunteers using 1.5 T GE and 3T GE MRI scanners, respectively. The data sets are

acquired in all cases with an eight-channel receiver coil wrapped round the phantom

and the head. Imaging experiments were performed at St. Mary’s Hospital London

by applying Gradient Echo sequence with the following parameters: TE = 10 ms,

TR = 500 ms, FOV = 20 cm, bandwidth = 31.25 kHz, slice thickness = 3 mm,

Fig. 3 Shepp-Logan phantom (left), phantom (middle), and human head (right) MR images used in the
experiments
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flip angle 50�, matrix size = 256 9 256. The datasets used for the reconstructions

are shown in Fig. 3.

In the simulation we have used the sampling mask shown in the Fig. 4 (left).

Based on the CS requirements and the analysis in the sparse MRI, we have used

variable density random under-sampling with denser sampling closer to the center

of the k-space. This has the advantage that it fulfills the incoherent artifact

requirement of CS and that the artifacts introduced due to this random under-

sampling are noise like. The quantifying metrics used to evaluate the performance

of the proposed algorithm include artifact power (AP), normalized mean square

error (NMSE), and peak signal-to-noise ratio (PSNR). AP is the square difference

error which can be computed as:

AP ¼
P

j xj � x̂j
�
�

�
�2

P
j xj
�
�
�
�2

ð13Þ

In Eq. (13) x̂j is the reconstructed image whereas xj is the reference image.

Mathematical expression for calculating PSNR is given as [19, 21]:

PSNR ¼ 10: log10

MAXf

MSE

� 	

ð14Þ

where in Eq. (14) MSE ¼ 1

MxN

PM�1
i¼0

PN�1
j¼0 x̂ði; jÞ � xði; jÞð Þ2

.

5 Results and Discussion

This paper presents a tangent-vector-based gradient method for CS based

recovery of MR images from the under-sampled data. This method calculates the

gradient of the cost function which consists of data consistency and sparsity

priors. The effectiveness of the proposed method has been validated by

successfully recovering the numerical phantom, scanned phantom as well as

human head under-sampled datasets for different acceleration factors (AF), i.e.,

29, 39, 49, 59, 89, and 109.

Fig. 4 Sampling mask (left), under-sampled Shepp-Logan phantom (middle), and reconstructed phantom
(right) using the proposed method
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Table 2 and Fig. 5 show the reconstruction results for different noise levels at

AF = 2 for Shepp-Logan phantom. The proposed method has been validated for

higher acceleration factors on scanned phantom and in vivo datasets with different

quantifying parameters.

Table 2 Reconstruction results in terms of AP (a) and NMSE (b) for different levels of noise variance

for the Shepp-Logan phantom

(a)

Noise variance @AF = 2 AP

CG Proposed

0.00 0.0004 0.0001

0.02 0.0035 0.0033

0.05 0.0235 0.0234

(b)

Noise variance @AF = 2 NMSE

CG Proposed

0.00 0.0018 0.0011

0.02 0.0128 0.0127

0.05 0.0352 0.0351

Fig. 5 Reconstruction results from a set of simulated eight-channel Shepp-Logan phantom with different
level of noise variance (NV) for AF = 2. Left column (NV = 0.00), center column (NV = 0.05), and
right column (NV = 0.1). The first row shows the results of the proposed method and the second row
shows the results of the standard CG
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The reconstruction results for the Shepp-Logan phantom are shown in Fig. 5 for

different levels of noise added to the measurements for AF = 2. A visual inspection

of the results indicates that at all the noise levels, the proposed method and CG both

Fig. 6 Reconstruction results using the proposed algorithm and standard CG (AF = 2). Left column
(original image), center column (proposed algorithm), and right column (standard CG). First row
(phantom), second row [axial human head (1.5T)], third row [axial human head (3T)], Fourth row
[sagittal human head (3T)]
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well preserve the fine structures in the image with random noise added on the

structures.

Moreover, Table 2a, b provide a quantitative measure for the error in the

reconstructed image in terms of AP and NMSE. As expected, both the methods

perform better at low noise levels and the results deteriorate gracefully as the

noise variance increases at the same acceleration factor (AF = 2). Similarly

Table 2 a shows the reconstruction results for both the proposed and CG

methods in terms of AP of the Shepp-Logan phantom for different levels of

noise variance at AF = 2. The results show that both the methods perform

equally well for different noise levels with a slight improvement in terms of

NMSE and AP in the proposed method.

Figure 6 shows the reconstructions from the scanned phantom, axial, and sagittal

human head datasets at AF = 2. The results show that both the methods perform

equally well in reconstructing the images from the under-sampled data for low

acceleration factors (AF = 2). Similarly Fig. 7 shows the performance of the

proposed method as compared to CG for different datasets (phantom, axial, and

sagittal).
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Fig. 7 Reconstruction results using the proposed method and standard CG for different datasets in terms
of AP with different 1/AF for a phantom, b axial human head (1.5T), c axial human head (3T), and
d sagittal human head (3T)
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Table 3 provides a comparison of the proposed method with standard CG in

terms of PSNR and different AF for the phantom and human head images. The

results show that the performance of the proposed algorithm is better as compared to

the standard CG for both the phantom as well as human head (3T) images.

6 Conclusion

A method based on using the unit-norm constraint in the parameter space is

proposed. The results (Tables 2, 3; Fig. 7) show a considerable improvement in the

quality of the reconstructed images than the standard non-linear CG method. It has

been shown that the proposed tangent-vector-based gradient method acts as an

adaptive algorithm providing quality image reconstructions. Future work includes

the application and testing of the proposed algorithm for non-Cartesian k-space

sampling trajectories (spiral and radial).
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