
Compressively Sampled MR Image Reconstruction
Using POCS with g-Factor as Regularization
Parameter

Muhammad Kaleem1
• Mahmood Qureshi1 •

Hammad Omer1

Received: 7 July 2015 / Revised: 5 August 2015 / Published online: 19 October 2015

� Springer-Verlag Wien 2015

Abstract Compressed sensing (CS) is an effective method to reduce k-space

sampling for accelerated MRI data acquisition and reconstruction. Iterative-

shrinkage algorithms provide an efficient numerical technique to minimize mixed

ll - l2 norm minimization problems. These algorithms utilize a regularization

parameter to introduce sparsity in the solution for CS recovery problem. This paper

introduces a new method based on geometry factor (g-Factor) as an adaptive reg-

ularization parameter. For this purpose, Projection onto Convex Sets (POCS)

algorithm is modified to include regularization term in the form of g-Factor and a

priori constraint (data consistency) for image reconstruction from the highly under-

sampled data. The performance of the proposed algorithm is verified using simu-

lated and actual MRI data. The results show that g-Factor as a regularization

parameter provides better image reconstruction from the highly under-sampled data

as compared to a fixed regularization parameter in POCS.

1 Introduction

Magnetic resonance imaging (MRI) is an amazing noninvasive diagnostic imaging

modality that is used for the assessment of soft tissues in the human body without

the risk of ionizing radiation. MRI provides a large number of flexible contrast

parameters for excellent soft tissue classification. The data acquisition time in MRI

is inherently a slow process which increases linearly with the number of samples

taken in the frequency domain (k-space). This long data acquisition process may

lead to patient discomfort and results in artifacts in the image [1].
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CS [2, 3] has been recently applied to speed up the acquisition of MRI data. In

CS, the number of sample values acquired is usually much smaller than the samples

normally defining the signal. The signals in CS can be potentially reconstructed with

great accuracy using highly under-sampled values by a nonlinear reconstruction

algorithm. The fundamental requirements for a successful application of CS are: (1)

the desired image has a sparse representation in a known transform domain or the

image should be inherently sparse, (2) the aliasing artifacts due to under-sampling

be incoherent in a specified domain and (3) a nonlinear recovery algorithm be used

to enforce data sparsity and data consistency with the acquired data [2].

The possibility of MR images to be sparse in certain transform domain (wavelets,

contourlets, curvelets, finite-differences, etc.) and the Fourier-encoded nature of the

MRI acquisition make the MR imaging a suitable candidate for the application of

CS. The incoherent artifacts requirement of CS can be achieved by acquiring data in

a variable density sampling pattern [3]. In variable density sampling scheme, the

data are fully sampled (as per Nyquist criteria) at the center of the k-space and are

under-sampled in the outer k-space. The data acquired in this way have the

advantage that most of the energy of the signals is preserved at the center of the k-

space with overall reduction in the scan time [3].

The third and the most important element of CS is the use of an efficient and

robust reconstruction algorithm to recover original MR image from the under-

sampled dataset. Until recently, many optimization algorithms ranging from

steepest descent, conjugate gradient (CG), basis pursuit (BP) and interior-point

methods have been proposed [4–6]. A review of the CS algorithms for MRI

reconstruction can be found in [7, 8] and the references therein. However, all these

general purpose algorithms are often inefficient, requiring too many computations

and/or iterations to reach the final solution. This is especially true for high-

dimensional images, as often encountered in medical image processing. Mathe-

matically, the optimization problem encountered in CS can be modeled using

Lagrangian expression [9].

JðxÞ ¼ y� Hxk k22 þ k xk k1: ð1Þ
This is called an l1-norm regularized linear inverse problem. In this notation,

x defines the sparse signal/image to be recovered, H is the sensing matrix, y is the

measurement vector obtained through the random projections. The second term in

Eq. (1) is a regularization term that controls the norm of the solution. The

regularization parameter k[ 0 provides a trade-off between fidelity to the

measurements and noise sensitivity.

In recent years, a new family of iterative-shrinkage algorithms based on POCS has

been built addressing the above optimization problem efficiently [5, 10, 11]. POCS is

a mathematical tool utilizing projection operator for the reconstruction of the under-

sampled data. Well-known applications of POCS in MRI include image reconstruc-

tion from variable density k-space sampling [3, 12]. POCS in conjunction with

iterative-shrinkage algorithms can be utilized to achieve improved image quality.

In this paper, we propose a new method for image reconstruction from highly

under-sampled data in k-space. The new technique is based on the POCS formalism

with g-Factor as a regularization parameter (k). The g-Factor is simply a ratio of the
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signal-to-noise ratio (SNR) of an unaccelerated optimal image to an accelerated

image multiplied with the square root of the acceleration factor [13, 14]. The g-

Factor can be expressed as given in Eq. (2)

g ¼ SNRunaccelerated

SNRaccelerated �
ffiffiffi

R
p : ð2Þ

The proposed algorithm is applied to recover both the simulated as well as

in vivo images from the compressively sampled measurements.

The remaining paper is organized as follows. Section 2 describes the g-Factor as

regularization parameter. Section 3 discusses the POCS application for CS

recovery. Section 4 presents the proposed g-Factor-based iterative-shrinkage

algorithm. Section 5 introduces the datasets used in this paper. Section 6 contains

the experimental results and discussion and finally, Sect. 7 concludes the paper.

2 g-Factor as a Regularization Parameter

In MRI, the scan time is reduced by decreasing the number of k-space lines in the

data acquisition process. The acquired data contains noise which originates because

of the coil geometry imperfections and also due to the receiver electronics and the

sample itself [13]. Many Parallel MRI (PMRI) [13, 15, 16] algorithms utilize

sensitivity maps of the receiver coils and samples in the k-space [1, 2, 13] to recover

fully sampled data. In these methods, aliasing in the reconstructed image occurs

because of under-sampling which can be mitigated with the help of sensitivity maps

[13, 17, 18]. The sensitivity maps amplify noise during the image reconstruction

process because of the ill-conditioning of the encoding matrix [1, 13]. The ill-

conditioning can be partially resolved by conditioning the encoding matrix [4, 19].

The price of this conditioning is a decreased reconstruction accuracy that may

appear in the final image in the form of aliasing artifacts. Another way of avoiding

the effects of ill-conditioning is using the g-Factor map as a priori information for

image reconstruction as proposed by [14, 15].

The noise amplification in MRI due to ill-conditioning is quantified by the g-

Factor. The g-Factor can be used as a regularization parameter in linear inverse

problems [14, 17]. The g-Factor map calculation has been proposed by Pruessmann

et al. [13] using the following equation:

gp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CHw�1C
� ��1
h i

r

p;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CHw�1C
� �� �

q

p;p
; ð3Þ

where w is NcXNc noise correlation matrix where the diagonal elements represent

the noise variance in a single coil and off-diagonal elements represent the cross-

correlation between any two coils, C is sensitivity encoding matrix derived from the

sensitivity maps of the receiver coils and the subscript p refers to the aliased

replicate number for a specific pixel in the aliased image.

A g-Factor value of 1 shows no noise amplification at a particular pixel location

in the image and a higher g-Factor value indicates greater noise amplification. It is

quite logical to use g-Factor as a regularization parameter because if the value of g-
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Factor is close to 1 at a pixel location, it is better to rely on the data consistency

term, i.e., y� Hxk k22 to have good reconstruction results. On the other hand, if the g-
Factor value is higher at a pixel location, it is wise to rely on the prior information,

i.e., xk k1 about the image [15, 17]. In this way, the g-Factor can potentially be used

as regularization parameter rather than a heuristically chosen value or through other

search methods, e.g., l-curve, generalized cross-validation and discrepancy principle

[6, 14].

3 Projection onto Convex Sets (POCS) Algorithm

POCS method can be used to include a priori information efficiently into the image

reconstruction problem in CS. It is a powerful mathematical tool for the

reconstruction of l1 - l2 convex optimization problems, Eq. (4), from an incom-

plete dataset by projecting the data between the convex sets. In POCS [5, 20], the

data in k-space is transformed to image domain where soft-thresholding is applied

followed by data consistency constraint in k-space. The POCS algorithm has been

successfully applied in different fields including MRI and seismic data analysis and

reconstruction [2, 5, 11, 20, 21]. In MRI, POCS has been utilized to remedy motion

artifacts and also for the correction of ghosting artifacts in EPI images [21]. Another

promising technique called, POCSENSE [21], is based on POCS and provides an

algorithmically efficient way to incorporate various linear and nonlinear constraints

in image reconstruction [5, 20]. The detailed steps involved for CS-MRI

reconstruction using POCS are explained in an overcomplete dictionary [22, 23].

4 Proposed Algorithm

The proposed algorithm solves the convex optimization problem as given in Eq. (4)

by incorporating g-Factor as a regularization parameter into the well-known

iterative-shrinkage-thresholding algorithm [4]. Mathematically, the basic optimiza-

tion problem with regularization term can be shown as:

minJðxÞ ¼ 1

2
y� Fuxk k þ kRðxÞ: ð4Þ

In Eq. (4), the penalty term R(x) is the regularization function and k is the

regularization parameter. The optimal choice of k is crucial for an accurate solution

of the optimization problem. The optimal choice of k rationalizes the trade-off

between data consistency and sparsity priors. The proposed algorithm is shown in

Table 1. The modified form of Eq. (4) for MR image recovery problem with

sparsity constraint can be given as:

JðxÞ ¼ 1

2
Fux� yk k22 þ k wxk k11: ð5Þ

The algorithm starts with an initial guess which is the inverse Fourier transform

of the acquired data (with zero-filling of the non-acquired data points) obtained from

the scanner. In each iteration, the missing k-space values are estimated using
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g-Factor-based soft-thresholding and back-projection. Many MR images are not

sparse in the image domain, so the images are first transformed into a sparsifying

domain using wavelet transform for shrinkage operation. To complete a single

iteration, the solution is updated by transforming the data back into the k-space and

performing the data consistency operation. The data consistency is like a projection

which keeps the originally acquired Fourier samples intact.

The main feature in the proposed method is that the regularization parameter is

not fixed (unlike the conventional shrinkage algorithms) but calculated based on the

image characteristics and noise analysis of the receiver coils (i.e., g-Factor). Both

the back-projected error and the shrinkage operation are performed based on the

g-Factor map.

Table 1 Proposed g-factor-based algorithm for CS-MRI reconstruction

INPUTS:

uy F x= ( under-sampled data acquired from scanner )

λ = Thresholding parameter (g-Factor based parameter)

OUTPUT:

= Reconstructed Image

Algorithm:

STEP 1: Initialization

1(y)ux F −= ,Initial estimate of the solution

X y= (under-sampled k − space data)

STEP 2: Transform to wavelet domain

(x)ix ψ=

STEP 3: Shrinkage operation in wavelet domain

1[ ( , )]iix Thresholding xψ λ−= , λ is Calculated by using g-Factor map

STEP 4: Data consistency in the frequency domain

  ( )i iy F x=

[k] if y[k] 0
y[k]
i

i

y
y

otherwise
=⎧ ⎫

= ⎨ ⎬
⎩ ⎭

Repeat step 1 to step 4 until stopping criterion is met.

RESULT:

1( )x F y−=
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The stopping criterion of the proposed algorithm (outlined in Table 1) can be a

predefined number of iterations or can be a desired number of fitness values. We

have used the fitness value for stopping the algorithm and this value can be

calculated using the expression, i.e., Fuxj � y2
�

�

�

�

2

2
.

5 Materials and Methods

The algorithm presented in Table 1 describes the sequence of operations in the

proposed method. This includes the zero-filled data as an initial estimate to be

reconstructed and the observed under-sampled data from the scanner. In the

subsequent steps, iterative-thresholding is performed based on g-Factor in the

sparsifying domain followed by data consistency in the Fourier domain. The same

process is repeated until the stopping criteria based on the fitness value are achieved.

In this paper, fully sampled data have been acquired using 1.5T and 3T MRI

machines. The under-sampling is performed on this fully sampled data to simulate

the accelerated data acquisitions for different acceleration factors. The proposed

method is tested on a phantom image obtained using 1.5T GE scanner and two

in vivo images of human head which are acquired from two different volunteers

using 1.5T GE and 3T GE MRI scanners, respectively. The data are obtained in all

cases with an eight-channel receiver coil wrapped round the phantom and the head.

Imaging experiments were performed at St. Mary’s Hospital London by applying

gradient echo sequence with the following parameters: TE = 10 ms, TR = 500 ms,

FOV = 20 cm, bandwidth = 31.25 kHz, slice thickness = 3 mm, flip angle 50o,

matrix size = 256 9 256.

The metrics used to evaluate the performance of the proposed algorithm include

artifact power (AP) and peak signal-to-noise ratio (PSNR). AP is the square

difference error which can be computed as:

AP ¼
P

j xj � x̂j
�

�

�

�

2

P

j xj
�

�

�

�

2
: ð6Þ

In Eq. (6) x̂j is the reconstructed image whereas xj is the reference image.

Mathematical expression for calculating PSNR is given as [19]:

PSNR ¼ 10 � log10
MAXf

MSE

	 


: ð7Þ

6 Results and Discussion

This paper presents a modified POCS algorithm which uses g-Factor map as a

regularization parameter for CS-based recovery of MR images from the under-

sampled data. The reconstruction method utilizes iterative-shrinkage algorithm

followed by data consistency in the k-space. During each iteration, a thresholding

step is applied in the sparsifying domain for noise suppression and minimizing the

objective function. The effectiveness of the proposed method has been validated by
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OOriginal Proposed POCS

Original Proposed POCS

Original Proposed POCS

Original Proposed POCS

(a)

(b)

(c)

(d)

Fig. 1 Reconstruction results using the proposed algorithm and standard POCS (AF = 2). a Shepp–
Logan phantom, b Phantom 1.5T and (c and d) human head data (1.5T and 3T)
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successfully recovering both the phantom and human head under-sampled data for

different acceleration factors (AF), i.e., 29, 39, 49, 59, 89, and 109.

Figure 1 shows the reconstruction results for different datasets. The results show

that in standard POCS, there are noisy effects which are successfully removed using

the proposed technique. Table 2 shows the results of AP of the human head images

obtained from 1.5T scanner for different acceleration factors for both the standard

POCS and the proposed method. The results exhibit a significant improvement in

AP for the proposed g-Factor-based reconstruction technique. Figures 2 and 3 show

the graphs of AP against AF for the human head data (1.5T and 3T). It can be seen

that AP is lower for the proposed method as compared to standard POCS, as desired.

Moreover, the graphs also indicate that AP increases with an increase in the AF for

both the algorithms. Table 3 shows a comparison of the proposed method with

standard POCS in terms of PSNR and different AF for phantom and human head

images. The results show that the performance of the proposed algorithm is better as

compared to the standard POCS for phantom image. For human head image, the

Table 2 AP for the 1.5T human

head image reconstructed by the

proposed method and standard

POCS

AF AP

POCS Proposed method

2 0.0205 0.0007

4 0.0718 0.0061

8 0.1351 0.0220

10 0.1675 0.0235
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Fig. 2 Comparison of the proposed algorithm with POCS when applied on human head (1.5T) in terms
of AP and different AF
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PSNR at low AF is slightly better than POCS but for higher AF both algorithms

exhibit the same results.

The results show a considerable improvement in the quality of the reconstructed

images by the proposed method than the standard POCS algorithm. The proposed

method outperforms standard POCS in terms of AP and visual quality for phantom

images, while PSNR at low AF is slightly better than POCS but for higher AF both

algorithms show the same results.
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Fig. 3 Comparison of the proposed algorithm with standard POCS when applied on human head (3T) in
terms of AP and different AF

Table 3 Comparison of the

proposed algorithm with

standard POCS when applied on

(a) phantom and (b) human head

(3T) in terms of PSNR and AF

AF PSNR

POCS Proposed method

(a) Phantom

2 61.1232 61.2184

4 59.9278 59.9787

8 59.1531 59.2749

10 58.1155 58.2100

(b) Human head (3T)

2 65.4776 65.6084

4 65.3581 65.3496

8 63.3310 63.3312

10 63.4645 64.3163
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7 Conclusion

A method based on using the g-factor as a regularization parameter in iterative-

shrinkage-based POCS algorithm is proposed. The results show a considerable

improvement in the quality of the reconstructed images than the standard soft-

threshold-based POCS methods. It has been shown that g-Factor map effectively

acts as an adaptive regularization parameter by providing quality image recon-

structions. Future work includes the application and testing of the proposed

algorithm for non-Cartesian k-space sampling trajectories (spiral and radial).
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