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Abstract The objective of this study was to evaluate the performances of different

algorithms for diffusion parameters estimation in intravoxel incoherent motion

method for diffusion-weighted magnetic resonance imaging (DW-MRI) data ana-

lysis. Traditionally, the method of non-linear least squares analysis by means of

Levenberg–Marquardt algorithms has been used to estimate the parameters obtained

from exponential decay data. In this study, we evaluated the Variable Projection

curve-fitting algorithm and the performance of two non-linear regression methods

when single and multiple starting points were used. Analysis was done on

simulation data to which different amounts of Gaussian noise had been added. The

performance of two non-linear regression methods was compared using the residual

sum of squares and the number of failures in data fitting. We conclude that the

VarPro algorithm is superior to the LM algorithm for curve fitting in intravoxel

incoherent motion method for DW-MRI data analysis.

1 Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) shows promise as an

imaging biomarker for treatment response in a variety of clinical tumor types [1–9].

Routine in almost all preclinical and clinical scanners, diffusion maps can be
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generated from a minimum of two images acquired at low (b value *100 s/mm2)

and high (b value *1000 s/mm2) diffusion weightings.

Depending on the acquisition parameters, apparent diffusion coefficient (ADC) is

known to reflect variable combinations of diffusion and perfusion effects. The

concept of the IVIM method (intravoxel incoherent motion) initially described by

Le Bihan et al. [10, 11] has the potential to measure both true molecular diffusion

and incoherent motion of water molecules in the capillary network, known as

pseudodiffusion. The pulse sequence used in this method is made sensitive to the

motion of blood through the application of magnetic field gradients in a manner

analogous to the measurement of diffusion coefficient [10, 11]. In the simplest

possible model for analysis of IVIM data, the water in the tissue of interest is

described as being in either one of two compartments: intravascular or extravas-

cular. Extravascular water moves by ordinary diffusion, and the process can be

assigned a diffusion coefficient with dimension mm2/s. Intravascular water not only

moves via diffusion but also moves with the bulk flow of blood. Blood flow

displaces intravascular spins over much greater distances per unit time than

diffusion. If the movement of these spins through vessels is modeled as random or

incoherent motion, then this process can be assigned a pseudodiffusion coefficient

that also has dimension of mm2/s. Overall, there are three pieces of information

available from this model of the IVIM experiment: f the fraction of spins within the

volume of interest that are within flowing blood, Dp the pseudodiffusion coefficient

of those intravascular flowing spins, and Dt the diffusion coefficient of the

extravascular non-flowing spins.

Then, assuming monoexponential signal attenuation with b value, the apparent

diffusion coefficient (ADC) can be calculated analytically. Instead, assuming

biexponential signal attenuation with b value, tissue pure diffusion (Dt), pseudod-

iffusion (Dp) and perfusion fraction (f) can be calculated analytically.

Traditionally, the method of non-linear least squares (NLLS) analysis by means

of Levenberg–Marquardt algorithms has been used to estimate the parameters

obtained from exponential decay data [12].

In this study, we evaluated the Variable Projection algorithms and the

performance of two non-linear regression methods when single and multiple

starting points were used. Analysis was done on simulation data to which different

amounts of Gaussian noise had been added.

The performance of two non-linear regression methods was compared using the

residual sum of squares in data fitting.

2 Materials and Methods

2.1 IVIM

The simple, two compartment model described above can be expressed as [10, 11]

SðbÞ=S0 ¼ ð1 � f Þe�bDt þ fe�bDp ; ð1Þ
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where S(b) is the echo amplitude with diffusion gradients on at amplitude b and S0 is

the echo amplitude with diffusion gradients off. The parameters f, Dt, and Dp are,

respectively, perfusion fraction, tissue pure diffusion and pseudodiffusion

coefficient.

2.2 Levenberg–Marquardt Algorithm

Typically, non-linear regression of tracer kinetics models involves the minimization

of the cost functional:

Sð#Þ ¼
XN

i¼1

ðyðiÞ � Sbði; #ÞÞ2 ¼ y� Sbk k2 ð2Þ

where N denotes the number of points of curve, y = [y(1),...,y(N)]T represents the

measured data and h = (f; Dp; Dt). A widely used approach for estimating the

optimum h is the Levenberg–Marquardt (LM) algorithm, which is based on an

approximation of the Hessian of Sb(h). An exhaustive description of the algorithm is

beyond the scope of the present paper and the reader is referred to [12, 13]. LM has

shown to be a good solution for a number of non-linear regression problems and is

implemented in a number of commercial packages. To start a minimization, the user

has to provide an initial guess for h. As the cost function surface could have many

local minima in the parameter space, the algorithm is not guaranteed to converge to

the global minimum unless the starting estimate is close to it. To improve the

convergence of LM in DCE-MRI scenario, Ahearn et al. [13] proposed a multiple

starting point approach which has been used in our simulation study.

2.3 VARiable PROjection Algorithm

Rearranging Eq. (1), the SðbÞ=S0 � e�bDt is the product of f and a non-linear

function of Dt and Dp:

f ðDp;Dt; bÞ ¼ SðbÞ=S0 � e�bDt ¼ f ðe�bDp � e�bDtÞ ð2Þ
Letting f(Dp; Dt; b), the cost functional becomes:

SðbÞ=S0 � e�bDt ¼ jjy� f ðDp; Dt; bÞf jj2 ð3Þ
Therefore, a separable non-linear LS algorithm known as Variable Projection

(VarPro) can be used to calculate the diffusion parameters [12]. If we knew, the

estimate of the non-linear parameters Dp and Dt, the estimate of the linear parameter

f could be obtained by (solving a linear LS problem):

f ¼ e�bDt þ yþ f ðDp; Dt; bÞþ ð4Þ

where f(Dp; Dt; b)? is the Moore–Penrose generalized inverse of f(Dp; Dt; b).

Therefore, a new cost functional can be constructed:

SðbÞ=S0 � e�bDt ¼ jjy� f ðDp; Dt; bÞ f ðDp; Dt; bÞþyjj2 ð5Þ
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An exhaustive description of the algorithm is beyond the scope of the present

paper and the interested reader is referred to [12]. Implementations of the VarPro

algorithm are available in commercial packages.

2.4 Simulation Data

Computer simulated amplitude data were analyzed. The simulated data were

generated from b values 0, 50, 100, 150, 200, 300, 400, 600, 800 s/mm2 using

Eq. (1). The ranges of values for f, Dp, Dt were (0.01, 0.30), (0.001, 0.030), (0.0001,

0.0025) with step 0.05, 0.005 and 0.0005, respectively. These values for b, f, Dp, Dt

correspond to those used in a study of NLLS analysis of IVIM reported by Pekar

et al. [14]. Gaussian noise was then added at simulated data varying in the range

(1.7, 2.3) with step 0.1. To evaluate the performances of the different algorithms

examined, the following procedure has been followed: Sb(h) curves were simulated

for several values of the parameters h; noise has been added on simulated curves;

per each noisy curves parameters were estimated using all the algorithms. Per each

simulated curve, 100 noisy curves have been obtained using random gaussian noise:

correspondingly, per each algorithm and per each parameter, 100 estimates have

been calculated (Monte Carlo Simulation). The value S0 was imposed to 200,

considering an estimation performed on real data. Each data set was analyzed using

both NLLS and VarPro algorithms. For each simulation, we fitted the data using a

single search start point (SSSP) in the middle of parameter space and multiple

search start points (MSSP), i.e., the first starting point for each search was in the

center of parameter space. Additional starting points were then defined at the center

of each quadrant of parameter space. For each simulation, we fitted the data using

each of the height points described above and selected the best fit of the height as

the final result.

2.5 Goodness of Fit

Finding the best fit of a model to data involves the minimization of a merit function.

This is usually described by the sum of the squares of the differences between the

data points and the model estimated points, the residual sum of squares (RSS):

R2 ¼
XN

i¼1

ðyðiÞ � SbðiÞÞ2 ð2Þ

where N denotes the number of points of curve, yb are the experimental data and the

S(b) are the data obtained by model fitting, a higher R2 value corresponds to greater

discrepancy (worse fit) between the data and the model.

3 Results

Figure 1 shows results of R2 goodness-of-fit test for Sb curves obtained with LM

algorithm with SSSP versus LM algorithm with MSSP (a) and VarPro algorithm
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with SSSP versus VarPro algorithm with MSSP (b). Straight lines indicate equal

goodness of fit. The points above lines denote cases in which LM or VarPro

algorithm with SSSP gave better fit; points below lines denote cases in which LM or

VarPro algorithm with MSSP gave better fit. Both VarPro and LM with SSSP

showed equivalent results than VarPro and LM with MSSP. Figure 2 shows results

of R2 goodness-of-fit test for Sb curves obtained with VarPro algorithm versus LM

algorithm. Straight lines indicate equal goodness of fit. The points above lines

denote cases in which LM algorithm gave better fit; points below lines denote cases

in which VarPro algorithm gave better fit: (a) SSSP and (b) MSSP methods. VarPro

algorithm showed a better fitting in comparison of LM algorithm both for SSSP and

for MSSP.

Table 1 reports the comparison of LM and VarPro algorithm with SSSP versus

MSSP: the number of simulated curves that showed better fitting of LM with MSSP

versus SSSP was 55.6 % and the number of simulated curves that showed better

fitting of VarPro with MSSP versus SSSP was 54.4 %.

Table 2 reports the comparison of LM and VarPro algorithm: the number of

simulated curves that showed better fitting of VarPro versus LM with SSSP was

73.3 % and the number of simulated curves that showed better fitting of VarPro

Fig. 1 R2 goodness-of-fit test for Sb curves obtained with LM algorithm with SSSP versus LM algorithm
with MSSP (a) and VarPro algorithm with SSSP versus VarPro algorithm with MSSP (b). Straight lines
indicate equal goodness of fit. The points above lines denote cases in which LM or VarPro algorithm with
SSSP gave better fit, points below lines denote cases in which LM or VarPro algorithm with MSSP gave
better fit
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Fig. 2 R2 goodness-of-fit test for Sb curves obtained with VarPro algorithm versus LM algorithm.
Straight lines indicate equal goodness of fit. The points above lines denote cases in which LM algorithm
gave better fit, points below lines denote cases in which VarPro algorithm gave better fit: a SSSP and
b MSSP methods

Table 1 Comparison of LM and VarPro algorithm with SSSP versus MSSP: number of simulated curves

that showed better fitting of LM and VarPro with SSSP versus MSSP using RSS

Fraction of curves R2
1 \R2

2 MSSP versus SSSP

LM 0.56

VarPro 0.54

n total number of simulated curves

Table 2 Comparison of LM and VarPro algorithm: number of simulated curves that showed better

fitting of VarPro versus LM using RSS

Fraction of curves R2
1 \R2

2=n VarPro versus LM

SSSP 0.73

MSSP 0.60

n total number of simulated curves
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versus LM with MSSP was 60.0 %. The median ± standard deviation R2 values for

LM with SSSP, LM with MSSP, VarPro with SSSP and VarPro with MSSP were,

respectively: 3.3298e-004 ± 4.7658e-005, 3.3739e-004 ± 5.7141e-005;

3.2641e-004 ± 2.4145e-005, 3.2600e-004 ± 2.4180e-005.

4 Discussion and Conclusion

In this study, we evaluated the Variable Projection algorithms and the performance

of two non-linear regression methods when single and multiple starting points were

used to estimate diffusion parameters of intravoxel incoherent motion method for

DW-MRI data analysis. Analysis was done on simulation data to which different

amounts of Gaussian noise had been added. The performance of two non-linear

regression methods was compared using the residual sum of squares in data fitting.

In a recent paper [15] were reported the results about a comparison of three

different curve-fitting methods for intravoxel incoherent motion (IVIM) analysis in

breast cancer: a direct estimation of Dt, Dp and f (Method 1); an estimation of D first

and then D* and f (Method 2); an estimation of D and f first and then D* (Method 3).

Among the three biexponential methods, Method 1 best described most of the pixels

(63.20 % based on R2). Their conclusions were that IVIM-derived parameters differ

depending on the calculation methods.

Our group in a previous paper [16] evaluated the performances of different

algorithms for tracer kinetics parameters estimation in breast Dynamic Contrast

Enhanced-MRI. We considered four algorithms: two non-iterative algorithms based

on impulsive and linear approximation of the Arterial Input Function, respectively;

and two iterative algorithms widely used for non-linear regression (Levenberg–

Marquardt, LM and Variable Projection, VarPro). The results of this study showed

that the accuracy of all the methods depends on the specific value of the parameters.

The methods are in general biased: however, VarPro showed small bias in a region

of the parameter space larger than the other methods; moreover, VarPro showed

better performances with respect to LM and non-iterative algorithms.

To the best of our knowledge, no paper is present in the research literature that

reports the finding of VarPro algorithm to diffusion parameter estimation by DW-

MRI data.

Our findings showed that both VarPro and LM with SSSP give equivalent results

than VarPro and LM with MSSP. Moreover, VarPro algorithm showed a better

fitting in comparison of LM algorithm both for SSSP and for MSSP. The number of

simulated curves that showed better fitting of VarPro versus LM with SSSP was

73.3 % and the number of simulated curves that showed better fitting of VarPro

versus LM with MSSP was 60.0 %.

Therefore, we conclude that the VarPro algorithm is superior to the LM

algorithm for curve fitting in intravoxel incoherent motion method for DW-MRI

data analysis.

Conflict of Interest All authors have no conflict of interest to be disclosed.

Comparison of Non-Linear Regression Algorithms 557

123



References

1. M. Sumi, M. Van Cauteren, T. Sumi, M. Obara, Y. Ichikawa, T. Nakamura, Radiology 263(3),

770–777 (2012)

2. A.M. Chow, D.S. Gao, S.J. Fan, Z. Qiao, F.Y. Lee, J. Yang, K. Man, E.X. Wu, J. Magn. Reson.

Imaging 36(1), 159–167 (2012)

3. S. Rheinheimer, B. Stieltjes, F. Schneider, D. Simon, S. Pahernik, H.U. Kauczor, P. Hallscheidt, Eur.

J. Radiol. 81(3), e310–e316 (2012)

4. T.J. Re, A. Lemke, M. Klauss, F.B. Laun, D. Simon, K. Grünberg, S. Delorme, L. Grenacher, R.

Manfredi, R.P. Mucelli, B. Stieltjes, Magn. Reson. Med. 66(5), 1327–1332 (2011)

5. E.E. Sigmund, G.Y. Cho, S. Kim, M. Finn, M. Moccaldi, J.H. Jensen, D.K. Sodickson, J.D. Goldberg,

S. Formenti, L. Moy, Magn. Reson. Med. 65(5), 1437–1447 (2011)

6. H. Chandarana, V.S. Lee, E. Hecht, B. Taouli, E.E. Sigmund, Invest. Radiol. 46(5), 285–291 (2011)

7. A. Lemke, F.B. Laun, M. Klauss, T.J. Re, D. Simon, S. Delorme, L.R. Schad, B. Stieltjes, Invest.

Radiol. 44(12), 769–775 (2009)

8. M. Iima, D. Le Bihan, R. Okumura, T. Okada, K. Fujimoto, S. Kanao, S. Tanaka, M. Fujimoto, H.

Sakashita, K. Togashi, Radiology 260(2), 364–372 (2011)

9. B.A. Hoff, T.L. Chenevert, M.S. Bhojani, T.C. Kwee, A. Rehemtulla, D. Le Bihan, B.D. Ross, C.J.

Galbán, Magn. Reson. Med. 64(5), 1499–1509 (2010)

10. D. Le Bihan, Radiology 249(3), 748–752 (2008)

11. D. Le Bihan, E. Breton, D. Lallemand, M.L. Aubin, J. Vignaud, M. Laval-Jeantet, Radiology 168(2),

497–505 (1988)

12. G.A.F. Seber, C.J. Wild, Nonlinear Regression (Wiley, New York, 1989)

13. T.S. Ahearn, R.T. Staff, T.W. Redpath, S.I. Semple, Phys. Med. Biol. 50(9), N85–N92 (2005)

14. J. Pekar, C.T. Moonen, P.C. van Zijl, Magn. Reson. Med. 23, 122–129 (1992)

15. S. Suo, N. Lin, H. Wang, L. Zhang, R. Wang, S. Zhang, J. Hua, J.J. Xu, Magn. Reson. Imaging

(2014). doi:10.1002/jmri.24799

16. R. Fusco, M. Sansone, A. Petrillo, IJECCE 5(4), 2278–4209 (2014)

558 R. Fusco et al.

123

http://dx.doi.org/10.1002/jmri.24799

	The Use of the Levenberg--Marquardt and Variable Projection Curve-Fitting Algorithm in Intravoxel Incoherent Motion Method for DW-MRI Data Analysis
	Abstract
	Introduction
	Materials and Methods
	IVIM
	Levenberg--Marquardt Algorithm
	VARiable PROjection Algorithm
	Simulation Data
	Goodness of Fit

	Results
	Discussion and Conclusion
	Conflict of Interest
	References




