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Abstract The current theory of three-pulse electron double resonance (PELDOR)

has been generalized to the case, when paramagnetic particles (spin labels) in pairs

or groups have the electron paramagnetic resonance (EPR) spectra, which overlap

essentially or coincide. The PELDOR signal modulation induced by the dipole–

dipole interaction between paramagnetic spin � particles in pairs embedded in

disordered systems has been analyzed comprehensively. It has been shown that the

PELDOR signal contains additional terms in contrast to the situation considered in

the current theory, when the EPR spectra of the spin labels in the pairs do not

overlap. In disordered systems, the pairs of spin labels have the characteristic

dipolar interaction frequency. According to the current theory for pairs of spin

labels, the PELDOR signal reveals the modulation with this characteristic fre-

quency. The additional terms, which are obtained in this work, do not change the

modulation frequency of the PELDOR signal for pairs of spin labels. However,

these additional terms should be taken into account when analyzing the amplitude of

the PELDOR signal and the amplitude of the modulation of the PELDOR signal.

The consistent approach to treating the PELDOR data for the groups containing

three or more spin labels has been outlined on the basis of the results for pairs of

spin labels. It has been also analyzed how the spin flips and molecular motion or

molecular isomerization can affect the manifestation of the interaction between the

spin labels in PELDOR experiments. PELDOR experiments for the stable biradicals

(biradicals I containing 1-oxyl-2,2,5,5-tetramethylpyrroline-3-yl spin labels and

biradicals II containing 3-imidazoline spin labels) have been performed. The results

have been interpreted within the theory developed in this work.
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1 Introduction

Pulse electron–electron double paramagnetic resonance (PELDOR) experiments are

widely used for determining distances between spin labels in pairs, and also the

number of dipolar-coupled spins in groups, e.g., in spin-labeled proteins, and the

distribution of distances between spin labels in groups (see, e.g., [1–7]). The

manifestation of the dipole–dipole interaction is detected in these experiments. The

dipole–dipole interaction leads to the modulation of the PELDOR signals. The

modulation frequencies are determined by the value of the dipole–dipole interaction

between spin labels.

The manifestations of the spin–spin interaction between paramagnetic centers in

solids in the pulse EPR experiments were studied comprehensively (see [8–13]).

The results of these investigations created a basis for the development of PELDOR.

It was demonstrated theoretically and experimentally that the exchange and dipole–

dipole interactions between partners in pairs of the paramagnetic particles can cause

the modulation of the electron spin echo signals [14]. This effect depends on the

excitation pattern of the electron spins in the pulse EPR experiment. The echo signal

of a given spin is modulated by the interaction between this spin and the spin of the

partner paramagnetic particle in the pair in the case, when the partner spin is also

excited by the microwave (MW) pulse. The distance between the partners in pairs

can be found from the modulation frequency of the echo signal [14, 15]. This

modulation effect makes it possible to highlight the spin–spin interaction between

particular paramagnetic particles using their selective excitation by the MW pulse.

This option is implemented in the PELDOR experiments.

The dipole–dipole interaction between paramagnetic particles distributed over

the sample volume causes the spin echo signal decay. The kinetics of this decay

depends on the spatial distribution of the paramagnetic particles. This option was

widely used when studying the distribution of paramagnetic particles in tracks of

ionizing irradiation [8, 10, 11]. The relevant results are important when interpreting

the experimental PELDOR data, since the PELDOR signal is affected by the

dipole–dipole interaction between the paramagnetic particles distributed over the

sample volume, the same as the primary electron spin echo or the stimulated echo

signals (see, e.g., [8–11]).

The first theoretical description of the three-pulse ELDOR experiment was

presented in [16]. The system of the randomly distributed pairs of the hydrogen

atom (spin A) and the hydroquinone radical (spin B), which were produced during

the photolysis of frozen solutions at 77 K, was considered. The electron

paramagnetic resonance (EPR) spectra of these particles do not overlap and the

spins A and B can be selectively excited by the MW pulses in the course of the

PELDOR experiment.

Figure 1 shows the protocol of the three-pulse ELDOR experiment. The

amplitude of the PELDOR signal exhibits the modulation described at any fixed

interval s as [16].

V T; sð Þ ¼ V0 sð Þ 1� pB þ pB cos DTð Þð Þ; ð1Þ
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where V0(s) is the primary spin echo signal without the MW pump pulse, pB is the

probability of the inversion of the spins B by the MW pump pulse at t = T, and D is

the parameter of the dipole–dipole interaction

Hd�d ¼ �hDABSAzSBz; ð2Þ

DAB ¼
gAgBb2

�hr3
AB

1� 3 cos2 h
� �

� D0AB 1� 3 cos2 h
� �

: ð3Þ

Here, rAB is the distance between spins A and B, h is the angle between the

vector rAB and the direction of the external magnetic field. Here, we assume that the

g-tensors of spin labels are practically isotropic. We suppose that the distance

between the partner spins in the pair is larger than 1 nm so that the contribution of

the short-range exchange interaction between particles can be ignored (the range of

distances preferable for PELDOR was discussed in Refs. [5, 17–19]. Possible effects

of the exchange interaction on the PELDOR signal were discussed in Refs. [20–22].

Equation (1) describes the well-known effect of the so-called instantaneous

spectral diffusion [8–11, 23, 24] induced by the ‘‘instant’’ change of the dipole–

dipole interaction when the selective MW pulse inverts the spin projection of

partner particles. The instantaneous spectral diffusion in the pulse EPR experiments

selectively reveals the dipole–dipole interaction between definite particles (spin

labels). With this idea in mind, the pulse EPR methodology was used to obtain

information about the spatial distribution of paramagnetic particles [8, 10–13, 16].

The suggestion to use the PELDOR methodology for characterizing complex

molecular structures, when several spin labels are inserted and they form groups of

spin labels, was presented in Ref. [25]. This approach was developed comprehen-

sively (see, e.g., [26–35]).

Let us assume that there are groups of N spin labels. The current paradigm is to

present the PELDOR signal as a product of two terms (see, e.g., [1, 5, 14, 19, 21–

23])

V s; Tð Þ ¼ V0 sð ÞV Tð Þ; ð4Þ

Fig. 1 Protocol of the three-pulse PELDOR experiment [14]. The spin echo is formed by the MW
excitation of the spins A at t = 0 and t = s. The additional (pump) MW pulse excites the spins B at
t = T and affects the spin echo signal. Durations of pulses at t = 0, T and s are tp1, tp2 and tp3,
respectively
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where V(T) describes the effect of the spin labels, which are pumped by the MW

pulse at the moment t = T (see Fig. 1). V(T) contains the contributions of the

dipole–dipole interaction inside the groups of spin labels and between these groups

Vintra Tð Þ and Vinter Tð Þ, respectively,

V Tð Þ ¼ Vintra Tð ÞVinter Tð Þ: ð5Þ
The contribution of the dipole–dipole interaction inside the groups of spin labels

will be discussed below (see Sect. 2.5). Here, we present only approximate results to

illustrate that PELDOR can give information about the number and the mutual

spatial positions of spin labels in groups. Neglecting any correlations of the

positions of spin labels in the groups, Vintra Tð Þ is presented as (see, e.g., [1, 5, 25, 30,

33, 34])

Vintra Tð Þ ffi 1� pB þ pB cos DTh ið ÞN�1ffi 1� N � 1ð ÞpB 1� cos DTh ið Þ: ð6Þ
Here, � � �h i means averaging over orientations of the rAB vector and distances

between spin labels in these groups. Equation (6) is used for determining the

distribution of the inter-pair distances in the group of N spin labels (see, e.g., [36,

37]). It appears that the approximation used in Eq. (6) is not good for the pB that is

typical for recent PELDOR work (see [34, 43]).

It is expected that the contribution of the interaction between spin labels inside

groups Vintra Tð Þ with increasing T tends to

Vintra Tð Þ ) ð1� pBÞN�1 ffi 1� N � 1ð ÞpB: ð7Þ
This asymptotic value of the PELDOR signal does not depend on the distances

between the spin labels inside the group. It depends only on the number N of spin

labels in the group. Equation (7) is used for determining the number N of spin labels

in the groups [1–7, 30].

At present, Eqs. (1)–(7) are used for interpreting the PELDOR data in the cases,

when the particles in pairs or groups are nitroxide free radicals with overlapping or

coinciding EPR spectra. But Eq. (1) was derived for the situation, when partners in

the pair are paramagnetic particles with the EPR spectra, which do not overlap, so

that these partners can be excited selectively by MW pulses. Therefore, it is

necessary to study whether Eq. (1) is applicable to the systems, when both spin

labels in pairs are the same nitroxide free radicals or nitroxide free radicals with

close magnetic resonance parameters, so that their EPR spectra overlap substan-

tially. Concerning the current paradigm of treating groups of spin labels, it contains

several additional assumptions [see, e.g., Eqs. (6), (7)], which may restrict its

application to real systems. We will consider these assumptions in more detail

below.

In this work, we generalize Eq. (1) and derive the contribution of the intra-pair

interaction to the three-pulse ELDOR signal, when the EPR spectra of the partner

spin labels in the pair overlap (or even coincide). The results obtained for the pairs

are generalized to the case of groups of spin labels. The manifestations of the spin–

lattice relaxation and the molecular dynamics in the experimental PELDOR data are

also discussed theoretically. The theoretical considerations are compared with the

PELDOR experimental data obtained when studying biradicals, which contain the
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stable nitroxide radical centers: biradicals I containing 1-oxyl-2,2,5,5-tetramethyl-

pyrroline-3-yl spin labels and biradicals II containing 3-imidazoline spin labels.

2 Theoretical Consideration

2.1 Pairs of the Spin � Paramagnetic Particles

Let us consider an ensemble of pairs of paramagnetic particles (spin labels) R1 and

R2 with the electron spins �, when their EPR spectra g1(x) and g2(x) overlap or

coincide. In the case of nitroxide radicals, the line widths of the EPR spectra are

mainly determined by the inhomogeneous broadening induced by the g-tensor

anisotropy and hyperfine interactions with magnetic nuclei. Usually, the contribu-

tion of the homogeneous broadening of EPR lines is one-two orders of magnitude

less than that of the inhomogeneous broadening of the EPR spectra of spin labels

[1–7]. This fact makes it possible to excite selectively different parts of the EPR

spectra in the course of the PELDOR experiment. Let us assume that the spin echo-

forming MW pulses has the frequency xA and the MW pump pulse has the

frequency xB. In the further consideration, we assume that the EPR spectra of

particles R1 and R2 are rather broad so that it is possible to excite electron spins R1

and R2 selectively in the frequency space. In the PELDOR experiments, the MW

pulses with frequencies xA and xB excite spins with the resonance frequencies in

intervals (xA - x1A, xA ? x1A) and (xB - x1B, xB ? x1B), respectively. Here,

x1A and x1B denote the Rabi frequencies of the MW pulses. The requirement of the

frequency-selective excitation in the course of the PELDOR experiment is fulfilled

when

jxB � xAj[ x1A;x1B: ð8Þ
Note that this condition was also assumed in the theory presented in Ref. [16].

But the condition Eq. (8) is not sufficient to justify using Eq. (1) for the case, when

the EPR spectra of the partners in pairs overlap.

Let us consider the contribution of a given pair R1R2 to the three-pulse ELDOR

signal (Fig. 1). Pulses with frequencies xA and xB can rotate the spins of both

partners Rk, k = 1, 2. Spin dynamics of the two interacting spin labels in the

presence of pulses is rather complicated. We consider systems when the interaction

between spins in pairs is relatively small, namely, we assume that D0 \x1A, x1B.

Under this condition, the probability of the spins inversion is calculated

straightforwardly. Let us denote the resonance frequency of the spin Rk as Xk and

the probability of the reorientation of the spin Rk by the MW pulse, which has

duration tp, the frequency xF and the Rabi frequency x1F as p(Xk|xF, tp), k = 1, 2,

F = A, B. Then,

p XkjxF; tp

� �
¼ x2

1F

x2
1F þ ðXk � xFÞ2

sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1F þ Xk � xFð Þ2
q

tp

2

� �
: ð9Þ

Let us divide the ensemble of pairs R1R2 into sub-ensembles with the different

inversion patterns of spins R1 and R2 by the MW pulses at the moments T and s
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during the three-pulse ELDOR experiment (Table 1). The shapes of the contribu-

tions of different inversion patterns are given in the last column of Table 1. During

these calculations, we assumed that the resonance frequencies of two spins X1 and

X2 in the pair are independent [see Eq. (11)]. There can be situations when this

assumption is not valid.

First, let us consider the contribution of one of the partners in a pair, e.g., spin R1,

to the PELDOR signal. The first pulse at t = 0 rotates spin R1 around the x-axis and

creates the average spin moment along the y-axis

m1y X1ð Þ ¼ � 1

2

x1Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1A þ ðX1 � xAÞ2
q sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1A þ X1 � xAð Þ2
q

tp1

� �
: ð10Þ

The patterns of the excitation of spins, which do not contribute to the PELDOR

signal, are not given in Table 1. The contribution of the spin R2 of the pair to the

PELDOR signal is given by expressions similar to those given in Table 1 with

subscripts 1 and 2 interchanged. The signal observed in the PELDOR experiments is

the sum of contributions of spins R1 and R2.

In Table 1, the symbol � � �h i means averaging over the distributions of the EPR

frequencies, which are given by the EPR spectra g1(X1) and g2(X2) of spins R1 and

R2,

f1ðX1Þf2ðX2Þh i ¼ f1ðX1Þh i f2ðX2Þh i ¼
Z

f1ðX1Þg1ðX1ÞdX1

Z
f2ðX2Þg2ðX2ÞdX2:

ð11Þ
Thus, the contribution of the spin R1 to the three-pulse ELDOR signal is.

V1 s; Tð Þ ¼ P11 þ P12 cosðDsÞ þ P13 cos DTð Þ þ P14 cosðDðs� TÞÞ: ð12Þ
Equation (12) is similar to the expression which describes the observable in the

‘‘2 ? 1’’ pulse train electron spin resonance method suggested in Refs. [12, 13].

Only amplitudes Pmn in Eq. (12) are different from ones given in Ref. [13] [see Eqs.

(4), (6)].

Let us assume that the frequencies xA and xB are well separated so that the

probability for any spin to be inverted by the MW pulses with both frequencies, xA

and xB, can be neglected

hpðX1 xB; tp2ÞpðX1

�� ��xA; tp3Þi � 0; hpðX2 xB; tp2ÞpðX2

�� ��xA; tp3Þi � 0: ð13Þ
Below we will estimate quantitatively the validity of this assumption (see Sect.

2.6).

Under this assumption, we obtain

P11 ¼ m1y X1ð Þp X1jxA; tp3

� �� 	
1� p X2jxB; tp2

� �
� p X2jxA; tp3

� �� 	
;

P12 ¼ m1y X1ð Þp X1jxA; tp3

� �� 	
p X2jxA; tp3

� �� 	
;

P13 ¼ m1y X1ð Þp X1jxA; tp3

� �� 	
p X2jxB; tp2

� �� 	
;

P14 ¼ 0:

ð14Þ

Let us introduce new notations to simplify expressions (14):
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v1 � m1y X1ð Þp X1jxA; tp3

� �� 	
;

p2 xAð Þ � p X2jxA; tp3

� �� 	
;

p2 xBð Þ � p X2jxB; tp2

� �� 	
:

ð15Þ

Then, the contribution of the spin R1 to the PELDOR signal is

V1 T ; sð Þ ¼ v1 1� p2 xAð Þ 1� cos D12s½ �ð Þ � p2 xBð Þ 1� cos D12T½ �ð Þð Þ: ð16Þ
The contribution of the spin R2 to the PELDOR signal is given by the expression

similar to that for the spin R1 [see Eq. (16)]

V2 T; sð Þ ¼ v2 1� p1 xAð Þ 1� cos D12s½ �ð Þ � p1 xBð Þ 1� cos D12T½ �ð Þð Þ: ð16aÞ
Here, p1(xA) and p1(xB) are average probabilities of the inversion of the spin R1

by the corresponding MW pulses with the frequencies xA and xB. As expected,

Eq. (16) and (16a) coincide if R1 : R2.

The comparison of Eq. (16) with Eq. (1) shows that the additional term

�p2ðxAÞ 1� cos D12sð Þð Þ

appears in the case, when the paramagnetic particles in the pairs have the

overlapping EPR spectra. This term reflects the fact that there are pairs, in which

both partners are excited by the echo-forming MW pulses, so that the dipole–

dipole interaction induces the electron spin echo modulation due to the

instantaneous spectral diffusion [8–11]. Equation (16) is reduced to Eq. (1), if

the partners in the pair have the EPR spectra, which do not overlap, because in

this case, p2(xA) = 0.

Table 1 Inversion patterns of spins R1 and R2 by the MW pulses at the moments T and s, which

contribute to the PELDOR signal, and contributions of spins R1 to the PELDOR signal,

v1 � m1y X1ð Þp X1jxA; tp3

� �
1� p X1jxB; tp2

� �� �� 	

No. of the

inversion

pattern

Pulse at T Pulse at s Amplitude of the contribution of

the spin R1 to the PELDOR

signal

Shape of the PELDOR

signal

1 Both spins

are not

inverted

Only the

spin R1 is

inverted

P11 ¼ v1 1� p X2jxB; tp2

� �� ��

� 1� p X2jxA; tp3

� �� �	
1

Dipole–dipole interaction

is not manifested

2 Both spins

are not

inverted

Both spins

are

inverted

P12 ¼ v1 1� p X2jxB; tp2

� �� ��

�p X2jxA; tp3

� �	 cos(Ds)

Modulation of the

primary echo

3 Only the spin

R2 is

inverted

Only the

spin R1 is

inverted

P13 ¼ v1 p X2jxB; tp2

� ��

� 1� p X2jxA; tp3

� �� �	 cos(DT)

PELDOR effect is given

by Eq. (1)

4 Only the spin

R2 is

inverted

Both spins

are

inverted

P14 ¼ v1 p X2jxB; tp2

� ��

�p X2jxA; tp3

� �	 cos(D(s - T))

Effect of the combined

action of the MW pump

pulse at t = T and the

primary echo-forming

pulse at t = s
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One of the major aspects of the result presented in Eq. (16) is that in contrast to

the current paradigm [see Eq. (1)], the contribution of the intra-pair dipole–dipole

interaction to the PELDOR signal V(T, s) [Eq. (16)] is not a product of the two terms

V(T) and V0(s),

V0ðsÞ ¼ v1ð1� p2ðxAÞð1� cosðD12sÞÞÞ; ð17Þ

which gives the contribution of the intra-pair dipole–dipole interaction to the

primary spin echo signal in the absence of the MW pump pulse.

If Eq. (1) is valid, then, the ratio of the PELDOR to the primary spin echo signals

can be used to subtract the contribution of the additional MW pulse to the PELDOR

signal. This is justified when the EPR spectra of the spin labels in the pair do not

overlap [16]. In this case, dividing V(T,s) by V0(s), one can obtain

V T ; sð Þ=V0 sð Þ ¼ 1� p2ðxBÞ 1� cos D12Tð Þh ið Þ. This procedure is used in a number

of publications when studying the systems of spin labels with overlapping EPR

spectra (see, e.g., [1, 25–29]). However, this result is not valid when the EPR spectra

of the spin labels overlap. In this case,

Vn � V T ; sð Þ=V0 sð Þ ¼ 1� p2eff sð Þ 1� cos D12Tð Þh ið Þ; ð18Þ

where

p2eff sð Þ ¼ p2ðxBÞ=ð1� p2ðxAÞ 1� cos D12sð Þh ið ÞÞ: ð19Þ
Equation (18) is formally similar to Eq. (1) but in contrast to Eq. (1), there appears

the s- and p2(xA)-dependent parameter p2eff(s) instead of the s-independent parameter

p2(xB). Note that p2eff(s) = p2(xB) only if p2ðxAÞ 1� cos D12sð Þh ið Þ ¼ 0. In the

general case, p2eff sð Þ[ p2 xBð Þ.
The PELDOR signal normalization given by Eq. (18) is not the only one used

when analyzing experimental data. Another suggestion is the normalization using

the equation (see, e.g., [40])

Vn ¼ ðV Tð Þ � V1Þ=ðV0 � V1Þ; ð20Þ

where V(T) is the experimental PELDOR signal, V1 is the PELDOR signal at a large T,

V0 is the PELDOR signal at T = 0. By substituting Eq. (16) for V(T) and V1 ¼
1� p2ðxAÞ 1� cos Dsð Þð Þ � p2ðxBÞ into Eq. (20), we obtain that Vn ¼ cos DTð Þh i.
Thus, in the case of the spin-label pairs, the normalization using Eq. (20) eliminates the

contribution of the new term p2(xA)(1 - cos(Ds)) introduced in this work from the

experimental data. However, this statement for the spin-label pairs is valid only in

the limit when the term P14cos(D(s - T)) [see Eq. (12)] can be neglected safely.

Taking into account all terms in Eq. (12) leads to a more complex expression for Vn.

Suppose that V1 ¼ 1� ðp2ðxAÞ � pÞ 1� cos Dsð Þð Þ � p2ðxBÞ and V0 ¼ 1� p2ðxAÞ
1� cos Dsð Þð Þ. Then, the normalized signal [Eq. (12)] gives Vn ¼ ðp2ðxBÞ � pÞð

cos DTð Þ þ p cos D s� Tð Þð ÞÞ= p2ðxBÞ � p 1� cos Dsð Þð Þð Þ. When p \ p2(xB) the

normalized signal equals Vn � cos DTð Þh i þ ðp=p2ðxBÞÞ sin Dsð Þ sin DTð Þ, where

p ¼ pðX2jxB; tp2Þ pðX2jxA; tp3Þ
� 	

(see Table 1). This estimation shows that correc-

tion is small when p \ p2(xB).

In the case of disordered systems, there is a random distribution of the vector r12,

which connects spin labels in the pair. Therefore, the contribution of the intra-pair
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interaction given, e.g., by Eq. (16) should be averaged over the random distribution

of the polar angle h between the direction of the r12 vector and the direction of the

external magnetic field. In addition, there can be the distribution f(r12) of the

distance r12 between partners in the pairs, so that Eq. (16) should be averaged over

this distribution f(r12) as well. The average contribution of the intra-pair interaction

to the echo signal is [1–7]

V1h i ¼
1

2

ZZ
V1 s; Tð Þf rR1R2ð Þ sin hr2

R1R2drR1R2dh; ð21Þ
Z

f rR1R2ð Þr2
R1R2drR1R2 ¼ 1:

Here, V1(T, s) is given, e.g., by Eq. (16). The contribution of the spin R2 to the

PELDOR signal can be found analogously using Eq. (16a).

Equation (21) shows that it is necessary to integrate the contributions from the

randomly distributed pairs when interpreting the PELDOR data for disordered

systems. To this end, it is necessary to find the integral of the form

cos Dth i ¼ 1

2

Z
cos D0 1� 3 cos2 h

� �
t

� �
sin hdh; ð22Þ

D0 ¼
g1g2b

2

�hr3
:

Each orientation of the pair is characterized by its dipolar frequency ±D0

(1 - 3cos2h). When the polar angle h varies from 0 to p, the frequency X = D0

(1 - 3cos2h) changes in the interval {-2D0, D0}, so that the absolute value of X
varies in the interval {0, 2D0}. The frequency X = D0 occurs when h = p/2. i.e., on

the equator of the spherical coordinate system. The statistical weight of equatorial

points is the largest one. The distribution function of the X value equals.

FðXÞ ¼ ð1� vðX� D0ÞÞg1ðXÞ þ g2ðXÞ; 0	X	 2D0;

where

g1ðXÞ ¼ c=ððD0 � XÞ1=2; g2ðXÞ ¼ c=ðD0 þ XÞ1=2Þ; c ¼ 1= 2 3D0ð Þ1=2

 �

, v is

Heaviside function.

Peculiar feature of the X distribution is that g1(X) has a singularity of the type
1ffiffiffiffiffiffiffiffiffi

D0�X
p . The distribution of this dipolar frequency is well known: it leads to the

characteristic Pake doublet shape of the two-spin spectrum [38]. For further

discussion, we present the Xj j distribution (Fig. 2). Figure 2 shows that it can be

considered qualitatively as a sum of two parts. One is relatively broad and varies

rather monotonically; and we denote its integral intensity as pd. The other is a

narrow part of the distribution, which includes the singular point; and we denote its

integral intensity as pc. Note that pd = 1 - pc. The fractions pd and pc are effective

parameters to be specified in more detail below. Note that both terms g1(X) and

g2(X) contribute to the pd part of the pairs of spins while only g1(X) term contributes

to the pc part of the pairs.

The behavior of the average cosine cos DTh i [Eq. (22)] calculated for r = 3 nm

is shown in Fig. 3. The fast decay at the early stage occurs due to the destructive
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interference of the contributions of the pd part of pairs, which have the broad

distribution of frequencies (Fig. 2). The signal modulation (oscillations) at t [ tdecay

is determined by the contribution of the pc part of pairs, which have the frequencies

around the singular value D0. The amplitude of the second peak of the modulated

PELDOR signal has the value of around 0.2. Note that the modulation amplitude

decreases slowly, when the time T increases. Similar observations were obtained for

all other distances in the interval r{1 nm, 10 nm}.

Due to the singularity of F(X), one can expect that the cos DTh i modulation

frequency has to tend to D0, when t!1. At finite t values, the oscillations of the

average cosine cos Dtð Þh i always manifest contributions of the pairs with different

dipolar frequencies from the narrow pc part of the distribution (Fig. 2). The pc part

of the distribution depends on the observation time. Suppose that the frequencies X
in the pc part of the distribution are in the interval XfD0 � d; D0 þ dg. The pairs

with the frequencies fD0 � d; D0 þ dg contribute to the average cosine cos Xtð Þh i
constructively, i.e., are not destroyed due to the destructive interference, if the

condition dt
 1 is fulfilled. Thus, when the time t (t is T or s in the PELDOR

experiment) increases, the effective width of the constructive part of the frequency

distribution should decrease (pc decreases). As a consequence, the oscillation

(modulation) amplitude should decrease, when t increases (Fig. 3). The numerical

calculations show that the ‘‘starting’’ value of the oscillation amplitude is close to

0.2 for different values of the distance between partners in the pair. On the basis of

this observation, we suggest that pc B 0.2. We calculated separately contributions to

the average cosine cos Dtð Þh i from the pairs around the equatorial plane for the

interval of the angle hfp=2� Dh; p=2þ Dhg, i.e., the pairs from the constructive,

pc, sub-ensemble of the pairs (see Fig. 2), and the rest pairs with the angle h in the

0 5 10 15 20 25

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8
p

c

p
d

p
d

F
(Ω

)

Ω (106 rad/s)

Fig. 2 Distribution F(|X|) of the frequency X = D0(1 - 3cos2h), r = 3 nm, D0 = 12.11 9 106 rad/s
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intervals h f0; p=2� Dhg and h fp=2þ Dh; pg , i.e., the pairs from the destructive,

pd, sub-ensemble. The calculation results for Dh ¼ 0:2 are given in Fig. 4.

When t [ tdecay, the pairs around the equatorial plane with the angle h in the

interval fp=2� 0:2; p=2þ 0:2g produce the oscillation pattern close to that

expected from the total ensemble of pairs (compare the dotted and solid lines in

Fig. 4). On the basis of this result, we assume that the PELDOR signal observed

after the early stage of the fast decay, at t [ tdecay, is mainly produced by the pairs

with the angle fp=2� 0:2; p=2þ 0:2g.
The observation that pc B 0.2 is of importance. It means that only 20 % of the

pairs excited by the MW pulses in the PELDOR experiments are manifested in the

oscillation effect as a result of the constructive interference of their contributions.

The contributions of 80 % of the pairs to the PELDOR signal decrease rather fast

due to the destructive interference.

Equation (22) can be presented in terms of Fresnel integrals [39]

cos DTh i ¼
cos py

6
FresnelC

ffiffiffi
y
p� �
þ FresnelS

ffiffiffi
y
p� �

sin py
6ffiffiffi

y
p ; ð23Þ

where y = 6D0T/p. Equation (23) has an asymptotic value at D0T � 1.

cos Dth i !
ffiffiffiffiffiffiffiffiffiffiffiffi

p
12D0t

r
cos D0t � p

4


 �
: ð24Þ

Asymptotically, the oscillation frequency tends to the singular frequency D0.

Note that the phase of the asymptotic oscillations is shifted by p/4. This phase shift

reflects the asymmetry of the frequency distribution with respect to X ¼ D0 (Fig. 2).

The average cosine cos DTð Þh i gives the contribution of the intra-pair dipole–

dipole interaction to the free induction decay signal. It is worth to note that the free

induction decay signal of the nuclear magnetization in crystals induced by the
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Fig. 3 Average cosine cos DTh i calculated for r = 3 nm. The oscillation period is close to T0 = 2p/
D0 = 547 ns
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dipole–dipole interaction is phenomenologically described by e�a2 t2=2 sin bt
bt

, where

a and b are fitting parameters (see [35], Eq. (IV.51)).

Note that cos D rð Þtð Þh i is the kernel of the integral equation for determining the

distribution of the distance between spin labels [16]. Keeping this in mind, we found

the approximate expression for cos Dtð Þh i (23). We propose to approximate the exact

function Eq. (23) by the asymptotic value Eq. (24) in the region t [ t*. The value t*

is to be specified in more detail. Equation (24) does not describe the behavior of the

average cosine cos Dtð Þh i at D0t \ 1, moreover, it diverges when D0t! 0. At

t \ t*, the PELDOR signal decreases sharply due to the destructive interference of

the broad frequency distribution. We suggest to describe the PELDOR signal at

t \ t* using the phenomenological function

hcos Xti ¼ sinðgD0tÞ
gD0t

: ð25Þ

This choice was dictated by the fact that the pd part of the frequency distribution

(Fig. 2) consists of the two broad flat distributions in the intervals {0, D0} and {D0,

2D0}. The function [Eq. (25)] is the Fourier transformation of the rectangular

distribution with an effective (fitting) width gD0: f ðXÞ ¼ ð1=ðgD0ÞÞ in the interval

Xf0; gD0g.
At the first glance, Eq. (25) gives the time dependence, which is similar to the

exact behavior of the average cosine for the pairs in disordered systems Eq. (23). In

both cases, there is a sharp decay at the early stage. At t [p/D0, there are

oscillations, the amplitude of which decreases. But these dependences have

important differences. According to Eq. (25), the oscillation amplitude decreases

much faster than that from the exact calculations. According to Eq. (24), the

amplitude of the average cosine cos Dtð Þh i decreases as 1=
ffiffi
t
p

, while according to
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Fig. 4 Contributions of the pairs with the angle h in the intervals h{p/2 - 0.2, p/2 ? 0.2} (dotted line)
and of the rest pairs with the angle h in the intervals h{0, p/2 - 0.2} and h{p/2 ? 0.2, p} (dashed line).
The exact dependence for the average cosine cos DTð Þh i calculated for all angles h{0, p} (solid line,
compare with Fig. 3). Calculations were performed for r = 3 nm
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Eq. (25), the amplitude decreases as 1/t. Another important difference concerns the

oscillation frequency. Numerical calculations for different values of the fitting

parameter g showed that the early stage of the fast decay of the average cosine

cos Xtð Þh i is described reasonably well by Eq. (25) at g ¼ 1:5 (Fig. 5). Thus, at

t \ t*, we approximate the average cosine in the form of Eq. (25). At t [ t*, the

average cosine Eq. (23) can be described well by Eq. (24).

Using numerical calculations, we found that the average cosine cos Dtð Þh i [Eq.

(22)] can be approximated with the fitting parameters t* = 2.5/D0 and g ¼ 1:5 as

cos DTh i � v Tð Þ � v T � 2:5

D0

� 
� 

0:9 sin 1:5D0tð Þ

1:5D0t
þ 0:1

� 


þ v T � 2:5

D0

� 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

12D0T

r
cos D0T � p

4


 �
: ð26Þ

Here, v Tð Þ is the Heaviside function.

Numerical calculations performed for different distances r between partners in

the pair show that the approximate (semi-phenomenological) Eq. (26) coincides

reasonably well with the rigorous theoretical result Eq. (23) (compare two curves in

Fig. 5).

Several features of the average cosine cos DTð Þh i can be used to find the dipolar

frequency D0 of the pairs from the PELDOR experiments. One option is the

oscillation period of the PELDOR signal at t [ t*. Another option is the oscillation

amplitude. The shape of the fast decay can be used as well to obtain the frequency

D0 (see, e.g., [6]). For example, after the fast decay, the first intersection of the

average cosine cos DTð Þh i with the abscissa occurs around t0 = 2.15/D0.

To test the accuracy of the approximation Eq. (26), we found the Fourier

transformations of Eq. (23) and approximate Eq. (26) functions (Fig. 6). It is seen in

Fig. 6 that the Fourier transformations of Eqs. (23) and (26) are in reasonable agreement.

Thus, Eq. (26) is a good approximation to the exact function given by Eq. (23).
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Fig. 5 Comparison of the dependences calculated using Eq. (23) (solid line) and Eq. (26) (dashed line).
Calculations were performed for r = 3 nm, t* = 2.5/D0 ns
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By substituting Eq. (26) into Eqs. (1), (12), (16)–(18), we obtain the contribution

of the intra-pair interaction to the three-pulse ELDOR signal for disordered systems.

In the case of the spin labels R1 and R2 with non-overlapping EPR spectra

considered in [16] (p2 xAð Þ ¼ 0), the PELDOR signal can be approximated as

hVðTÞi � V0ðsÞ 1� pB þ pB vðTÞ � v T � 2:5

D0

� 
� 
�

� 0:9 sin 1:5D0Tð Þ
1:5D0T

þ 0:1

� 

þ pBv T � 2:5

D0

� 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

12D0T

r
cos D0T � p

4


 �

:

ð27Þ
When T [ t* = 2.5/D0, the PELDOR signal [Eq. (27)] is reduced to
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Fig. 6 Power Fourier transform of Eq. (23) (thin line) and of Eq. (26) (thick line). Calculations were
performed for r = 1.5 nm (a) and r = 3 nm (b). The dipolar frequencies are D0 = 96.88 9 106 rad/s
and D0 = 12.11 9 106 rad/s, respectively
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VðT ; sÞh i � V0 sð Þ 1� pB þ pB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

12D0T

r
cos D0T � p

4


 �� 


¼ V0 sð Þ 1� pB þ pBpc Tð Þ cos D0T � p
4


 �
 �
; ð28Þ

where V0(s) describes the primary spin echo signal, and

pc Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
12D0T

r
ð29Þ

is the statistical weight of the pairs which continue to interfere constructively.

According to Eq. (28), the oscillation amplitude manifested in experiment is

determined not only by the probability pB of the spin inversion by the MW pump

pulse but also by the statistical weight pc of the pairs, which have the oscillation

frequency around the singularity of the frequency distribution.

In the case of pairs R1R2 with the overlapping EPR spectra when p2ðxAÞ 6¼ 0, the

manifestation of the dipole–dipole interaction in the PELDOR experiments is

described by the following equations.

For the spin label R1 in the pair R1R2 [see Eq. (12)]

V1 T; sð Þh i � v1 1� p2 xAð Þ � p2 xBð Þ
�

þ p2 xAð Þ v sð Þ � v s� 2:5

D0

� 
� 

0:9 sin 1:5D0sð Þ

1:5D0s
þ 0:1

� 
�

þv s� 2:5

D0

� 
 ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

12D0s

r
cos D0s�

p
4


 �


þ p2 xBð Þ v Tð Þ � v T � 2:5

D0

� 
� 

0:9 sin 1:5D0Tð Þ

1:5D0T
þ 0:1

� 
�

þv T � 2:5

D0

� 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

12D0T

r
cos D0T � p

4


 �
�
:

ð30Þ

When T [ tdecay, Eq. (30) is reduced to

V1 T; sð Þh i ) v1ð1� p2ðxAÞ � p2ðxBÞ þ p2ðxAÞpc sð Þ cosðD0s� p=4Þ
þ p2ðxBÞpc Tð Þ cosðD0T � p=4ÞÞÞ: ð31Þ

For the spin label R2 in the pair R1R2 [see Eq. (16a)], we have the similar result,

only the indices 1 and 2 have to be interchanged [compare Eq. (16) and (16a)].

When T [ tdecay, Eq. (16a) results in

V2 T ; sð Þh i ) v2ð1� p1ðxAÞ � p1ðxBÞ þ p1ðxAÞpc sð Þ cosðD0s� p=4Þ
þ p1ðxBÞpc Tð Þ cosðD0T � p=4ÞÞÞ: ð31aÞ

The average oscillation pattern of the primary spin echo signal has the form [see

Eq. (17)]
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V0 sð Þh i � v1ð1� p2ðxAÞÞ þ v2ð1� p1ðxAÞÞ þ ðv1p2ðxAÞ þ v2p1ðxAÞÞ ðvððsÞ

� vðs� 2:5=D0ÞÞ ð0:9 sinð1:5 D0sÞ=ð1:5 D0sÞ þ 0:1Þ

þ vðs� 2:5=D0Þ ðp=ð12D0sÞÞ1=2
cosðD0s� p=4ÞÞ ð32Þ

When T [ tdecay, Eq. (32) is reduced to

V0ðsÞh i � v1 1� p2 xAð Þ½ � þ v2 1� p1 xAð Þ½ � þ ½v1p2 xAð Þ

þ v2p1 xAð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

p
12D0s

r
cos D0s�

p
4


 �
: ð33Þ

It follows from the numerical calculations that the decay time tdecay � 2p
3D0
¼

2pr3�h
3g1g2b

2

.

It increases as r3, when the distance between partners in the pair increases. For

example, at r = 4 nm tdecay � 200 ns, and at r = 8 nm tdecay � 16 00 ns.

The results concerning the modulation of the PELDOR signal from the pairs of

spin labels allow us to state the following.

In the case of single crystals, the oscillation frequency of the PELDOR signal is

angular-dependent [see, e.g., Eqs. (1) and (2)] and the oscillation amplitude

normalized to its initial value (at T = 0) is the probability of the spin inversion by

the MW pump pulse.

In the case of disordered systems, the PELDOR signals from the randomly

oriented pairs of the spin labels interfere. Around 80 % of the pairs exhibit the

destructive interference and the rest 20 % contribute to the constructive interfer-

ence. The oscillation frequency of the PELDOR signal is close to the characteristic

value D0 ¼ g1g2b
2

�hr3 .

In contrast to the spin labels with non-overlapping EPR spectra [see Eq. (1)], the

PELDOR signal V T ; sð Þ 6¼ V0 sð ÞV Tð Þ in the case of the spin labels with

overlapping EPR spectra.

The oscillations of the PELDOR signal have the phase shift (p/4) [Eq. (33)] (see

Fig. 7)

Tmax ¼ T0 þ
p

4D0

¼ 9p
4D0

: ð34Þ

Here, T0 = 2p/D0 is the oscillation period. Note that all considerations above

were done under the assumption that the MW pulses are ‘‘instantaneous’’. In a real

situation, when the pulses have finite durations, it might be not so straightforward to

subtract this phase shift in experiment (see, e.g., [29]).

2.2 Effect of the Interaction Between Pairs on the PELDOR Signal Decay

The inter-pair dipole–dipole interaction between spins in the magnetically diluted

solids results in the additional decay of the PELDOR signal. When the EPR spectra

of a pair of spin labels R1 and R2 do not overlap, the effect of the inter-pair

interaction on the PELDOR signal was given in Ref. [16]. Suppose that spins R1 are
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excited by the MW pulses with the frequency xA forming the PELDOR signal and

spins R2 are excited by the MW pump pulse with the frequency xB. In this case, the

effect of the inter-pair interaction was obtained neglecting the spatial correlation of

the spin labels in pairs. Under these conditions, the effect of the inter-pair

interaction on the PELDOR signal is given as [16].

Vinter ¼ Vinter;R1Vinter;R2:

The term Vinter,R1 arises due to the contribution of the inter-pair interaction of

spins R1–R1* (here two R1 spin labels belong to different pairs R1R2, see Fig. 8)

Vinter;A sð Þ ¼ e�bAs; ð35Þ

bA ¼
8p2g2

1b
2

9
ffiffiffi
3
p

�h
p1 xAð ÞCpair:

Here, g1 is the g-factor of R1, Cpair is the total concentration of the pairs R1R2.

Note that the total concentration C of spin labels is C = 2Cpair.

The term Vinter,R2 arises due to the contribution of the inter-pair interaction of

spins R1–R2*

Vinter;B sð Þ ¼ e�bBT ; ð36Þ

bB ¼
8p2g1g2b

2

9
ffiffiffi
3
p

�h
p2 xBð ÞCpair:

Parameters bA and bB in Eqs. (35, 36) give the echo signal decay rates due to the

instantaneous diffusion mechanism induced by the inter-pair interactions. They

depend on the concentration of the pairs and on the efficiency of the spin excitation

by the MW pulses [8–11, 24].

The results Eqs. (35) and (36) can be rather straightforwardly generalized to the

case of the pairs, when the EPR spectra of partners overlap. In this case, each
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Fig. 7 Illustration of the phase shift of the PELDOR signal oscillations
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paramagnetic center can be excited by both MW pulses with the frequencies xA and

xB, and both spin labels contribute to the PELDOR signal. Therefore, we have to

calculate separately the contribution of spins R1 and R2 to the signal and then to sum

them. To simplify the consideration, let us assume that spin labels are identical, and

the EPR spectra of R1 and R2 coincide. The expressions below in this section are

presented for the case of identical spin labels. In this case, g-factors of partner labels

are equal and the two spins R1 and R2 in a pair give the same contributions to the

PELDOR signal. Under these conditions, the effect of the inter-pair interactions on

the decay of the PELDOR signal can be presented as [8–10, 16]

Vinter ¼
Y

Vðrk; hkÞ
D E

; ð37Þ

where rk is the distance between a given spin and the k-th spin in the sample; the

product includes all spins except for two spins in the pair under consideration, and

. . .h i means averaging over the spatial distribution of spins. The effect of the

interaction between the given spin and any pair on the PELDOR signal depends on

the spatial correlation of the spin labels in that pair. This problem was discussed in

[11]. If this effect of the spatial correlation of spin labels inside pairs is neglected,

Eq. (38) can be written as

Vinter ¼
Y

Vðrk; hkÞ
D E

�
Y

Vðrk; hkÞh i ¼ Vðr; hÞh iN0 ; ð38Þ

where N0 is the total number of spin labels in the sample, V(r, h) describes the effect

of the interaction between two spins on the PELDOR signal, which is given by

Eq. (16).

By substituting Eq. (16) into Eq. (38) and using the Markov method [8, 38], one

obtains the effect of the inter-pair interaction on the decay of the PELDOR signal

[note that we consider the case when g-factors of the labels are equal, g1 = g2 = g,

p1(xA) = p2(xA) = p(xA), p1(xB) = p2(xB) = p(xB)]

Vinter ¼ e�bðxAÞse�bðxBÞT ; ð39Þ

Fig. 8 Scheme of the two interacting pairs R1R2
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b xAð Þ ¼ 8p2g2b2

9
ffiffiffi
3
p

�h
p xAð ÞC;

b xBð Þ ¼ 8p2g2b2

9
ffiffiffi
3
p

�h
p xBð ÞC;

C = 2Cpair is the total concentration of the spin labels.

Here, p(xF), F = A, B, denotes the probability of the inversion of the identical

spins R1 and R2 by MW pulses with the frequency xF [see Eq. (16)].

Equation (39) is derived under the assumption that the spatial correlation of the

spin labels in pairs can be ignored. When the spatial correlation is taken into

account, the Vinter ¼
Q

Vðrk; hkÞh i (37) can be treated as follows. Let us assume that

different pairs are not correlated in space but the labels are spatially correlated

inside pairs. Then, Eq. (37) can be rewritten as

Vinter ¼
Y

Vpairðrk; hkÞ
� 	

¼ Vpair

� 	Npair : ð40Þ

Here, Vpair presents the effect of the dipole–dipole interaction between the given

spin and any pair on the PELDOR signal, Npair is the total number of pairs in the

sample. To find Vpair

� 	
, let us consider a given spin label, e.g., R1, of the pair, which

interacts with another pair R1*R2* in the sample. The effect of this interaction on the

PELDOR signal is presented as a product of terms caused by the interactions R1–

R1* and R1–R2* (Fig. 8). Using Eq. (16), the effect of the interaction R1–R1*on the

PELDOR signal can be written as

V11ðT; sÞ ¼ 1� pðxAÞð1� cosðD r1ð ÞsÞÞ � pðxBÞ 1� cos D r1ð ÞTð Þð Þ: ð41Þ
In this case, the dipole–dipole interaction is determined by the r1 vector [see Fig.

(8)].

The effect of the interaction R1–R2* on the contribution of the spin R1 to the

PELDOR signal is given by the expression similar to Eq. (41)

V12 T; sð Þ ¼ 1� p xAð Þ 1� cos D r2ð Þsð Þð Þ � p xBð Þ 1� cos D r2ð ÞTð Þð Þ: ð42Þ
Note that in this case, the dipole–dipole interaction is determined by the r2 vector

(see Fig. 8).

The total effect of the interaction with the pair R1*R2* on the R1 spin contribution

to the PELDOR signal is the product of the expressions given by Eqs. (41) and (42)

V T ; sð Þpair ¼ 1� p xAð Þ 1� cos D r1ð Þsð Þð Þ � p xBð Þ 1� cos D r1ð ÞTð Þð Þf g
� 1� p xAð Þ 1� cos D r2ð Þsð Þð Þ � p xBð Þ 1� cos D r2ð ÞTð Þð Þf g:

ð43Þ

Note that when the spin labels R1 and R2 are not identical, one has to calculate

separately the contribution of both partners in the pair to the PELDOR signal. The

effect of the interaction between the spin R2 and the pair R1*R2* on the PELDOR

signal caused by the spins R2 can be written using Eq. (16a) and it is given by the

expression similar to Eq. (43). We consider here the situation of the identical spin

labels R so that in the case under consideration the average contributions to the

signal of the spin labels R1 and R2 are equal.
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Two vectors r1 and r2 are correlated because their destination points should

match the condition that the length of the vector r = r1 - r2 is fixed. The average

value of Eq. (43) hV T ; sð Þpairi is found with allowance for this correlation of r1 and

r2. To proceed further, we introduce two vectors: rc = (r1 ? r2)/2 and r = r1 - r2.

It is shown in Fig. 8 that rc connects the spin R1 with the middle point between the

two spins R1* and R2*, while the second vector r connects two partners in the pair

R1*R2*. These vectors are determined by their lengths and their polar and azimuthal

angles

rc ¼ rc sin h cos u; sin h sin u; cos hð Þ; r ¼ rðsin a cos b; sin a sin b; cos aÞ: ð44Þ
The manifestation of the dipole–dipole interaction in the PELDOR signal Eq.

(43) is determined by the lengths of the vectors r1 and r2 and cosines of the angles h1

and h2 between these vectors and the direction of the external magnetic field. Using

Eq. (44), we obtain

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
c þ

r2

4
þ rcrðcos h cos aþ cosðu� bÞ sin h sin aÞ

r

;

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
c þ

r2

4
� rcrðcos h cos aþ cosðu� bÞ sin h sin aÞ

r

; ð45Þ

cos h1 ¼
1

r1

rc cos hþ r

2
cos a


 �
;

cos h2 ¼
1

r2

rc cos h� r

2
cos a


 �
:

Using Eq. (45), we find D(r1) and D(r2) in Eqs. (41) and (42)

D r1ð Þ ¼
g2b2

�hr3
1

1� 3 cos2 h1

� �
;

D r2ð Þ ¼
g2b2

�hr3
2

1� 3 cos2 h2

� �
: ð46Þ

Using Eqs. (41)–(43), (45), and (46), we find the effect of the inter-pair

interaction on the PELDOR signal [see Eq. (40)]

V T ; sð Þpair¼ 1� w1 � w2 þ w1w2; ð47Þ

where

w1 ¼ p xAð Þð1� cos D r1ð Þsð Þ þ p xBð Þð1� cos D r1ð ÞTð Þ;
w2 ¼ p xAð Þð1� cos D r2ð Þsð Þ þ p xBð Þð1� cos D r2ð ÞTð Þ: ð48Þ

The average value of Eq. (47) is

V T ; sð Þpair

D E
¼ Vpair

� 	
¼ 1� w1h i � w2h i þ w1w2h i: ð49Þ

Note that . . .h i in Eq. (49) means the integration over h and a in the interval (0,

p), over u and b in the interval (0, 2p) and the integration over rc values in the
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interval (0;1). The total effect of the inter-pair interaction on the PELDOR signal

can be presented as [see Eqs. (40), (48), and (49)]

hVinteri ¼ f1� hw1i � hw2i þ hw1w2igNpair

¼ 1� 1

4pV

Z
r2

c drc

Z
sin h dh

Z
du

Z
sin a da

Z
dbðw1 þ w2 � w1w2Þ

� �Npair

¼ 1� Cpair

ð4pÞ2Npair

Z
r2

c drc

Z
sin h dh

Z
du
Z

sin a da
Z

dbðw1 þ w2 � w1w2Þ
( )Npair

ð50Þ
The asymptotic value of (50) at Npair !1 is

Vinter ¼ e
�Cpair

4pð Þ2

R
r2

c drc

R
sin h dh

R
du
R

sin a da
R

db w1þw2�w1w2ð Þ

¼ e�b xAð Þs�b xBð ÞT e
Cpair

ð4pÞ2

R
r2

c drc

R
sin h dh

R
du
R

sin a da
R

db w1w2ð Þ ð51Þ
Here, the term e�b xAð Þs�b xBð ÞT describes the effect of the inter-pair interaction on the

PELDOR signal, when the spatial correlation effects are neglected [see Eq. (39)].

To compare the contributions of the correlation term w1w2 and the term w1 ? w2

in the exponent of Eq. (51), we calculated their values averaged over all possible

orientations of the vectors r1 and r2 at the fixed rc value. Denote the average values

w1 þ w2h i ¼ 1= 16p2ð Þð Þ W1 þW2ð Þ and w1w2h i ¼ 1= 16p2ð Þð ÞW1W2; where

W1 þW2 ¼
Z

sin h dh
Z

d/
Z

sin a da
Z

dbðw1 þ w2Þ;

W1W2 ¼
Z

sin h dh
Z

d/
Z

sin a da
Z

dbðw1w2Þ; ð52Þ

Here, the term W1 ? W2 is due to the inter-pair interaction in the absence of the

spatial correlation of spin labels inside the pair. The additional term W1W2 appears

due to the spatial correlation of spin labels in pairs. The correlation means that the

distance r between the two labels in the pair is fixed, while the orientation of the

vector r (see Fig. 8) is random. It is expected that this correlation effect should

decrease when rc is large enough. To get better insight in the role of the spins spatial

correlation, we calculated numerically the W1 ? W2 and W1W2 values for two rc

values: rc = 2r and rc = 5r (Fig. 9). Figure 9c, d shows that in the case rc = 5r, the

correlation term W1W2 is two orders of magnitude less than the term W1 ? W2.

Thus, in this case, the correlation effect is negligible. In the case rc = 2r (see

Fig. 9a, b), the correlation term W1W2 is only four times less than the term W1 ? W2

related to the pairs of the spatially non-correlated spin labels. This means that the

spatial correlation of the labels in the pairs affects the PELDOR manifestation of the

inter-pair dipole–dipole interaction when the distance between the pairs is

comparable with the distance between partners inside the pair. We suppose that

the concentration of the pairs is low so that the statistical weight of the cases, when

two pairs are at the distance comparable with the distance between partners inside

the pair, is negligible. Under this condition, it is correct to describe the contribution

of the inter-pair interaction to the PELDOR signal by Eq. (39), which was obtained
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under the assumption that any correlation in the spatial positions of the spin labels in

the pairs is neglected. However, this correlation effect is of importance when

considering manifestations of the dipole–dipole interaction in the PELDOR signal

of the spin labels in groups, since the spin labels in the group have a certain rigid

architecture and all distances between spins are comparable with each other. This

item will be further discussed below (Sect. 2.5).

2.3 Effect of Random Flips of Spins

In the previous Sects. 2.1 and 2.2, it was assumed that the spatial positions of the

spin labels and the distances between labels do not change, and the longitudinal

projection SZ of spins during the free spin evolution in the intervals between the

MW pulses is conserved. However, in real systems this assumption may be violated

due to the spin and/or molecular dynamics. Note that the effect of the dipole–dipole

interaction on the free induction decay, primary spin echo and stimulated electron

spin echo signals, when the longitudinal projection of spins changes randomly, was

studied in [8–13, 24, 41, 42].

Let us consider paramagnetic particles with spins �. Suppose that the electron

spins can flip (flop) with the rate W in a random manner. These spin flips can be

induced either by the electron spin–lattice interaction or by the electron spin

diffusion. The random flips of the electron spins induce fluctuations of the local

magnetic field, i.e., the spectral diffusion, which operates alongside with the
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Fig. 9 Dependence of the correlation term W1W2 and the term W1 ? W2 on T. Calculations were
performed for p(xF) = 0.2, F = A, B, r = 2 nm. Curves (a, b) correspond to the case rc = 2r; curves (c,
d) correspond to the case rc = 5r
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instantaneous spectral diffusion induced by the MW pulses which rotate the electron

spins. Under these conditions, the dipole–dipole interaction between the spin labels

is manifested in the spin echo experiments even without the MW pump pulse (this

subject was studied comprehensively in [8–13, 24, 41, 42]).

It was shown in Sect. 2.1 that in the general case, the four excitation patterns

contribute to the PELDOR signal (see Table 1). If the MW frequencies xA and xB

are separated well, the probability for any spin to be inverted by the MW pulses with

both frequencies xA and xB can be neglected. In this case, only three inversion

patterns contribute to the PELDOR signal [see Eq. (14)]. In the presence of spin

flips (flops), the same three inversion patterns contribute to the PELDOR signal. But

the shapes of the PELDOR signal induced by these inversion patterns change

compared to Eq. (14). These patterns and corresponding contributions to the

PELDOR signal are summarized in Table 2.

The shapes of the PELDOR signal (Table 2) were obtained using the results of

[24], where the kinetic equations were obtained and solved for the spin density of

the spin-label pairs in the situation, when the spins randomly flip (flop) due to the

spin–lattice interaction [20, Eqs. (9)–(13)].

For the inversion pattern no.1 (Tables 1 and 2), the partner spin in the pair is not

inverted by the spin echo-forming pulse at t = s (Fig. 1). As a result, the dipole–

dipole interaction between partners in the pair is not manifested in the spin echo

signal in the absence of the random spin flips (flops). Therefore, in this case, the

shape of the PELDOR signal is J1 = 1 (Table 1). In the presence of the random spin

flips (flops), the dipole–dipole interaction in the pairs is randomly modulated. As a

result, the spectral diffusion occurs and the dipole–dipole interaction is manifested

in the spin echo signal [8–13, 24, 41]. The shape of this contribution to the echo

signal, J1(W2), was calculated in [24, Eq. (16)] (Table 2). It is worth to note that

J1(W2) reveals the damped oscillations with the dipolar frequency.

For the inversion pattern no. 2 (Tables 1 and 2), the partner spin in the pair is

inverted by the spin echo-forming pulse at t = s (Fig. 1). As a result, the dipole–

dipole interaction between partners in the pair is manifested in the spin echo signal

even in the absence of the random spin flips. In this case, the shape of the PELDOR

signal is J2 = cos(Ds) (Table 1). This term reflects the fact that there are pairs, in

which both partners are excited by the echo-forming MW pulses, so that the dipole–

dipole interaction induces the electron spin echo modulation due to the instanta-

neous spectral diffusion [8–12, 24]. The spectral diffusion induced by the random

modulation of the dipole–dipole interaction in the presence of the random spin flips

changes the shape of the echo signal. The shape of this contribution to the signal,

J2(W2), was calculated in [24, Eq. (17)] (Table 2).

For the inversion pattern no. 3, the shape of the PELDOR signal J3(W2) was

found in the present work using solutions of the kinetic equations for the spin

density matrix of the spin-label pairs [24]. The spin density matrix of the pair q in

the Liouville presentation was written as

q 2sð Þ ¼ L0 sð ÞP12 pð ÞL0 s� Tð ÞP2 pð ÞL0 Tð ÞP1 p=2ð Þq 0ð Þ:
Here, q(0) is approximated as q 0ð Þ ¼ 1=4ð Þ 1� �hx0=kT0ð Þ S1Z þ S2Zð Þð Þ [24], T0

is temperature, x0 is the Zeeman frequency, P1(p/2) is the super operator of the
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inversion of the spin R1, P12(p) is the super operator of the inversion of spins R1 and

R2, P2(p) is the super operator of the inversion of the spin R2, L0(t) is the super

operator of the free spin evolution between the actions of the MW pulses in the

course of the three-pulse ELDOR experiment (Fig. 1). Using the solution of the

kinetic equation for the spin density matrix [see [24], Eqs. (12) and (13)], we found

the shape J3(W2) of the contribution to the PELDOR signal (Table 2). It was

calculated as J3(W2) = Tr((S1y) q(2s)). Note that J1 ) 1, J2 ) cos Dsð Þ, J3 )
cos DTð Þ when W2 ) 0 (see Table 2).

The contribution of the spin label R2 to the PELDOR signal can be obtained from

Table 2 by interchanging indices 1 and 2.

The PELDOR signal of the pairs R1R2 is

V T; sð Þ ¼ v1 1� p2 xAð Þ � p2 xBð Þð ÞJ1 W2ð Þ þ p2 xAð ÞJ2 W2ð Þ þ p2 xBð ÞJ3 W2ð Þ½ �
þ v2 1� p1 xAð Þ � p1 xBð Þð ÞJ1 W1ð Þ þ p1 xAð ÞJ2 W1ð Þ þ p1 xBð ÞJ3 W1ð Þ½ �:

ð53Þ
If the EPR spectra of R1 and R2 are separated well and do not overlap, so that

p2(xA) = 0 and v2 = 0 (we suppose that spins R1 produce the PELDOR signal),

then the PELDOR signal is

V T ; sð Þ ¼ v1 1� p2 xBð Þð ÞJ1 W2ð Þ þ p2 xBð ÞJ3 W2ð Þ½ �: ð54Þ
These results show that the random spin flips affect modulation of the PELDOR

signal induced by the dipole–dipole interaction. The modulation effect should

disappear, when the spin flips rate becomes large enough, i.e., when W � Dj j=2. In

this case of the fast random spin flips, an additional spin flip induced by the MW

pump pulse is of no importance, and the PELDOR effect disappears. Under this

condition, the intra-pair dipole–dipole interaction gives the additional decay of the

PELDOR signal exp(-D2s/(4 W)), which does not contain the dependence on

T (here, T is the time when the MW pump pulse is applied in the three-pulse

ELDOR experiment, see Fig. 1).

When the spin flips rate is small, i.e., W\ Dj j=2, the PELDOR signal oscillation

frequency decreases xosc � D� 2W2=D. Due to this red shift of the oscillation

frequency, the apparent (determined in PELDOR experiments) distance between

partners in the pair can be larger than the real distance. It is well known that the

slow variation of the resonance frequency (induced in the case considered by the

spin flips) broadens the spectral lines [38] and this line broadening is Dx � W .

Accordingly, the increase in the spin flip rate decreases the oscillation amplitude of

the PELDOR signal and smears out the oscillations. Note that these distortions of

the PELDOR data are similar to the consequences of the distribution of distances

between partners in pairs. Note that for the pairs, which are characterized by the

magic angle, when 1 - 3cos2h = 0, the dipole–dipole interaction frequency D = 0.

In the absence of the MW pump pulse, the contribution of the intra-pair

interaction to the primary spin echo signal is given by Eq. (53), if

p1ðxBÞ ¼ p2ðxBÞ ¼ 0. Then, Eq. (53) is reduced to

V0 sð Þ ¼ v1 1� p2 xAð Þð ÞJ1 W2ð Þ þ p2 xAð ÞJ2 W2ð Þ½ �
þ v2 1� p1 xAð Þð ÞJ1 W1ð Þ þ p1 xAð ÞÞJ2 W1ð Þ½ � ð55Þ
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Note that the PELDOR signal [Eqs. (53) and (54)] cannot be presented as the

product of the primary spin echo signal V0(s) and the MW pump effect V(T). These

results show that the spin flips can change the oscillation amplitude and shift the

oscillation frequency of the PELDOR signal. Figure 10 illustrates how random spin

flips can affect the three-pulse PELDOR signal. Calculations were performed using

Eq. (54).

It can be seen in Fig. 10 that the random spin flips can essentially disturb the

oscillation amplitude of the PELDOR signal. In the presence of random spin flips,

an additional spin flip induced by the MW pump pulse in the course of the PELDOR

experiments becomes of less importance, when the rate of random flips increases.

As a result of this effect, the amplitude of the PELDOR signal and the oscillation

amplitude become less (see Fig. 10). This decrease in amplitudes was expected.

2.4 Effect of the Conformational Transitions

Due to the molecular motion including the conformational transitions of molecular

systems, the dipole–dipole interaction can be randomly modulated as well. This will

also affect the manifestation of the dipole–dipole interaction of the spin labels in the

PELDOR signal. The conformational transitions produce the random change of the

vector r which connects the spin labels in the pair.

Due to the anisotropy of the g-tensor of spin labels, the conformational

transitions can change the resonance frequencies. As a result, the same MW pulse

can excite different EPR frequency regions of the spin labels in the course of the

molecular conformational transitions. This effect is disturbing the PELDOR signal

formation. To illustrate how the molecular conformational transitions affect the

PELDOR signal, let us consider a simple model situation, when the change of the

spin-label resonance frequencies as a result of the conformational transitions can be

ignored. This model situation refers to the spin labels which have practically

isotropic g-tensors and which have relatively small anisotropic terms in their

hyperfine interaction.

Suppose there are random jumps with the average frequency W between two

conformations so that the distance r between spin labels and the orientation of the

vector r change randomly. In this case, the dipolar frequency D can be considered as

a stochastic process D(t). Note that manifestations of the spectral diffusion in

stationary and pulse magnetic resonance experiments are described in many reviews

and monographs (see, e.g., [8–10, 38]).

Let us assume that the distance between two-spin labels in these configurations is

r1 and r2. Then, the corresponding dipolar frequencies are

D1 ¼
g1g2b

2ð1� 3 cos2 h1Þ
�hr3

1

and D2 ¼
g1g2b

2ð1� 3 cos2 h2Þ
�hr3

2

: ð56Þ

Let us denote

D12 ¼
D1 þ D2

2
;D ¼ D1 � D2

2
: ð57Þ
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The dipolar frequencies can be written as

D1 ¼ D12 þ D; D2 ¼ D12 � D: ð58Þ
Thus, the dipolar frequency can be presented as a sum of the average frequency

D12 and the stochastic process D(t)

D tð Þ ¼ D12 þ D tð Þ: ð59Þ
Due to the conformational transitions, D(t) jumps randomly between the values D

and -D with the average frequency W. The random frequency shift D(t) (the

spectral diffusion process) induced by the conformation transitions is similar to the

modulation of the dipolar frequency shift caused by the random spin flips

considered in the previous Sect. 2.3. Therefore, we can use the results presented

above [Eqs. (53) and (54)].

The PELDOR signal of the pairs R1R2 is

V T ; sð Þ ¼ v1 1� p2 xAð Þ � p2 xBð Þð ÞJ1 Wð Þ þ p2 xAð ÞJ2 Wð Þ þ p2 xBð ÞJ3 Wð Þ½ �
þ v2 1� p1 xAð Þ � p1 xBð Þð ÞJ1 Wð Þ þ p1 xAð ÞJ2 Wð Þ þ p1 xBð ÞJ3 Wð Þ½ �:

ð60Þ
If the EPR spectra of spins R1 and R2 do not overlap, the PELDOR signal is (we

assume that spins R1 produce the PELDOR signal)

V T ; sð Þ ¼ v1 1� p2 xBð Þð ÞJ1 Wð Þ þ p2 xBð ÞJ3 Wð Þ½ �: ð61Þ
Here, we introduced the following notations:

J1ðWÞ ¼ hcos XðtÞi;

X tð Þ ¼ ð1=2Þ
Z t

0

s yð ÞD yð Þdy

where s(t) = -1 in the interval {0, s}, s (t) = 1 in the interval {s, 2s},
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Fig. 10 Effect of spin flips on the contribution of the dipole–dipole interaction to the PELDOR signal for
the pairs when the EPR spectra of partners do not overlap (the distance between partners in pairs
r = 4 nm). Dashed line—the static limit, W = 0 (compare with Fig. 4). Solid line—W = 3 9 105 s-1
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J2ðWÞ ¼ cosðD12sÞhcos XðtÞi;

where s(t) = 1 in the interval {0, 2s},

J3ðWÞ ¼ cosðD12TÞhcos XðtÞi;

where s(t) = -1 in the interval {0, T}, s(t) = 1 in the interval {T, s}, s(t) = -1 in

the interval {s, 2s}.

Here, . . .h i means averaging over all realizations of the stochastic process D(t).

For this particular process of the spectral diffusion, the average values J1(W) and

J2(W) were calculated in [34, Eqs. (10) and (11)]. The average value J3(W) was

calculated in the present work. The results are

J1 Wð Þ ¼ e�2Ws 1þW

Q
sin 2Qsð Þ þ 2W2

Q2
sin2ðQsÞ

� �
;

J2 Wð Þ ¼ cosðD12sÞe�2Ws cos 2Qsð Þ þW

Q
sin 2Qsð Þ

� �
;

J3 Wð Þ ¼ cosðD12TÞe�2Ws 1þW2

Q2

� 

cos 2QTð Þ þW

Q
sin 2QTð Þ

� 
�

�W2

Q2
cos 2Qsð Þ þW

Q
sin 2Qsð Þ

� 

þW

Q
1þW2

Q2

� 

sin 2Q s� Tð Þð Þ

�
; ð62Þ

where Q2 ¼ D=2ð Þ2�W2.

The ratio of the rate W to the frequency jump Dj j may differ depending on the

distance between the two spin labels in the pair and on the orientation of the pair

with respect to the external magnetic field in both conformations.

In the case W\ Dj j, Eq. (62) tends to

J1 Wð Þ ¼ e�2Ws,

J2 Wð Þ ¼ cosðD12sÞ cosðDsÞe�2Ws ¼ 1

2
e�2Ws cos D1sð Þ þ cos D2sð Þ½ �;

J3 Wð Þ ¼ cosðD12TÞ cosðDTÞe�2Ws ¼ 1

2
e�2Ws cos D1Tð Þ þ cos D2Tð Þ½ �: ð63Þ

Thus, in the limit of the relatively slow conformational transitions, the PELDOR

signal of the spin-label pairs will exhibit oscillations with the dipolar frequencies of

all conformations. The oscillation amplitude is reduced due to the finite lifetime of

the conformations of the molecular structure, where the spin labels are embedded.

The manifestation of the molecular motion including the conformational transitions

in the shape of the EPR spectra is studied well. It is well known that the slow

molecular motion leads to the broadening of the EPR spectral lines. Note that there

is also the shift of the resonance frequencies.

In the case W [ Dj j, Eq. (62) tends to

J1 Wð Þ ¼ e�
D2

4W
s:

J2 Wð Þ ¼ cosðD12sÞe�
D2

4W
s;

J3 Wð Þ ¼ cosðD12TÞe�D2

4W
s;

ð64Þ
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In the limit of the rather fast molecular transitions, the PELDOR signal oscillates

with the frequency, which is the average value of the dipolar frequencies of both

conformations. This fact is the manifestation of the well-known exchange narrowing

effect in the EPR spectroscopy.

The frequency shift D depends on the variation of a length of the vector r between the

spin labels and its orientation when the molecular conformation changes. Therefore, the

results presented in Eqs. (62)–(64) should be averaged over all these orientations.

The specific manifestations of the molecular transformations in the PELDOR

signal can be helpful. Let us assume that two oscillation frequencies were detected

in the experiment. Several situations can give this result. Firstly, there may be two

sub-ensembles of the spin-label pairs which have different distances between labels.

Secondly, there may be triads of spins of the type AB2, which will also induce the

oscillations of the PELDOR signal with two distinctive frequencies. Thirdly, two

oscillation frequencies may arise due to the existence of two conformations of the

molecular system, where a pair of the spin labels is embedded. The conformation

transition rate is strongly temperature-dependent. This third option can be, in

principle, tested by analyzing the temperature dependence of the PELDOR signal

oscillations for spin labels with favorable relaxation behavior.

2.5 Groups of Spin Labels

The distance between two spin labels can be determined by detecting modulation of

the PELDOR signal in the disordered system. This distance serves as a constraint

condition when choosing the molecular structure [1–7].

It can be expected that more information about the structure of a system can be

obtained using more than two spin labels. Then, the number of constraints increases

so that the molecular structure under investigation can be specified better. Keeping

this in mind, the PELDOR signal for group of spin labels was investigated

comprehensively in many publications (the discussion of this problem can be found

in Refs. [1–7, 19, 34, 36, 40, 43]). In these works, it was demonstrated that the

modulation of the PELDOR signal makes it possible to measure the distances

between the spins in groups. It was demonstrated that the determination of these

frequencies can be complicated due to the spatial correlation effects [19] and

presence of the combination frequencies which lead to the appearance of ghost

distances between spin labels in groups [40]. To avoid these potential difficulties, it

is recommended to use rather weak MW pump pulses. Naturally, the sensitivity

decreases in this case. Note, it was suggested in Ref. [40] also a semiempirical

correction of the background-corrected data to attenuate the influence of combi-

nation frequencies in the distance distribution.

Nowadays, the PELDOR methodology is commonly used to determine the

number of spin labels and the distribution of distances between the spin labels in the

group. In principle, the PELDOR data make it possible to determine the inter-spin

distances and the angles between vectors connecting the spins in groups (see, e.g.,

[19, 34, 40]).

The current paradigm of the PELDOR study of the spin-label groups is developed

for the spin labels A and B, which have the non-overlapping EPR spectra. In
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practice, the spin labels are used, the EPR spectra of which overlap. In this section,

we extend our results obtained for the pairs of spin labels with the overlapping EPR

spectra to the groups of spins.

Let us consider a group of N spin labels with spin S = 1/2. The contribution of

the interaction between the spin labels inside the group to the PELDOR signal is

given by [25]

V ¼ 1=Nð ÞRkPn 6¼kVkn; ð65Þ

where Vkn determines the effect on the signal of the chosen k-th spin caused by the

interaction with the n-th partner in the group This effect was discussed in Sect. 2.1.

In disordered systems, the PELDOR signal contains the contributions of the spin-

label groups with different spatial orientations. We suppose that as a whole the spin

group is oriented randomly but the relative orientations of the vectors inside the group,

e.g., of two rkn and rkm, vectors, are fixed. Therefore, it is necessary to take into account

this correlation in the directions of the vectors when averaging V [Eq. (65)] over all

possible orientations of the spin groups. The average V value is found as [25]

Vh i ¼ 1=Nð ÞRk Pn 6¼k Vkn

� 	
: ð66Þ

There is a number of publications (see, e.g., [5, 25] ), where the correlations in

the spatial positions of the spins inside groups are neglected and the average V value

is presented as the product of the average terms Vkn of the each n-th partner spin

label

Vh i � 1=Nð ÞRkPn 6¼k Vknh i: ð67Þ
Equation (67) can be written in the explicit form using the results presented in

Sect. 2.1. This approximation can give reasonable results, when the probability of

the inversion of the spins by the MW pump pulse is small, p xBð Þ 
 1.

In the general case, the average value [Eq. (66)] depends on the correlation in the

mutual spatial positions of the spin labels in groups. Here, we consider the PELDOR

signal in two situations.

The first model system Let us consider the situation, when the EPR spectra of the

spins R1 and R2 do not overlap. This case is comprehensively considered in the

current PELDOR theory (see, e.g., [1, 5, 25, 30, 33, 34]). Here, we shortly

summarize the known results and present some results of numerical simulations

which illustrate some features of spin-label groups PELDOR signal modulation: the

appearance of the combined frequencies of the modulation, the manifestation of the

spatial correlation of spin labels in the group. These features are relevant to the spin

labels with the overlapping EPR spectra as well and the results for this model

situation will serve as a reference situation when considering further the PELDOR

signal for the spin labels with overlapping EPR spectra.

So let us imagine the spin-label groups of the type ABN - 1: the spin label R1 is

excited by the MW pulses which form the spin echo signal (R1 is a spin label of the

type A [8, 9]) and it is not excited by the MW pump pulse, while the spin label R2 is

excited only by the MW pump pulse (R2 is the spin label of the type B [8, 9]). In this

case, the effect of the n-th spin label R2 on the PELDOR signal induced by the spin

R1 is given by Eq. (1): V1n Tð Þ ¼ 1� pR2 xBð Þ 1� cos D1nTð Þð Þ.
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The effect of the N - 1 spin labels R2 of a group on the PELDOR signal is

described as

V1h i ¼ P
n¼N

n¼2
1� pR2ðxBÞ 1� cos D1nTð Þð Þð Þ

� �
: ð68Þ

We denote pR2(xB) : p2. Here, we assume that the MW pump pulse excites all

spins R2 in the group in the same manner. Then, Eq. (68) can be rewritten as a series

(see, e.g., [40])

V1h i ¼ 1� p2ð ÞN�1þ 1� p2ð ÞN�2
p2Rnhcos D1nTð Þi

þ 1� p2ð ÞN�3
p2

2Rk [ nhcos D1nTð Þ cos D1kTð Þi þ � � � ; n

¼ 2; 3; . . .N: ð69Þ
The first term on the right-hand side of Eq. (69) depends on the number N of

spins and does not depend on the distances between spin labels. The second term on

the right-hand side of Eq. (69) contains the average cosines cos D1nTð Þh i, which

were discussed above in Sect. 2.1 in detail. According to this discussion, at times T

larger than the time of the fast decay (TD01n [ 1) the average cosine

cos D1nTð Þh i ) p= 12D01nTð Þð Þ1=2
cos D01nT � p=4ð Þ [see Eq. (24)]. This term leads

to the modulation (oscillations) of the PELDOR signal. There are N - 1 frequencies

{D01n} but some frequencies can be close to each other or coincide if some

distances between spin labels are close to each other or equal. The term of the

cos DTð Þh i type determines the modulation pattern of the PELDOR signal in the

case of spin-label pairs. In the case of the ABN - 1 spin-label groups, the additional

(combination) oscillation frequencies appear, which arise from the second (p2
2), third

(p2
3) and higher order terms in the series [Eq. (69)] containing products of two

cosines and other terms containing products of 3; 4; . . .;N � 1 cosines, i.e., terms

like cos D1nTð Þ cos D1kTð Þ cos D1mTð Þh i (see the comprehensive discussion of this

item in Refs. [19, 36, 40]).

The effect on PELDOR signal of the spatial correlation of the spin labels in

groups is recognized. Here, we present one more quantitative illustration of the

significance of the spatial correlations of spin labels in the PELDOR signal.

Let us consider the average of the product of two cosines [see the third term in

Eq. (69)]

cos D1nTð Þ cos D1kTð Þh i ¼ 1=2ð Þ cos D1n þ D1kð ÞTð Þh i þ cos D1n � D1kð ÞTð Þh ið Þ:
ð70Þ

This term leads to the additional oscillation frequencies X? = (D1n ? D1k) and

X- = (D1n - D1k). As it was demonstrated, e.g., in [19], the distributions of the

frequencies X? and X- depend on the correlation in the mutual spatial orientation

of the vectors r1k and r1n. Let us denote the angle between these vectors as / and the

angle of the rotation of the vector r1n around the direction of the vector r1k as f.

Then, the cosines of the angles between the directions of the external magnetic field

and the vectors r1k and r1n are given by ck = cos(h) and cn = cos(h) cos(/)

- sin(h) sin(/) cos(f), respectively [19]. Then, one has
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D1k ¼ D01k 1� 3 cos2 h
� �

¼ D01k 1� 3c2
k

� �
; 0	 h	 p;

D1n ¼ D01n 1� 3c2
n

� �
; 0	 h	 p; 0	 f	 2p:

ð71Þ

Using Eqs. (71), one can find the distributions of the frequencies X? and X-.

These distributions can be found straightforwardly in the particular case, when the

r1k and r1n vectors are located on the same line, i.e., the angle / = 0 or p, so that

ck = cn = cos(h). In this case, the distribution of the combination frequencies has

singularities at (X?)sing. = (D01n ? D01k) and (X-)sing. = (D01n - D01k). The same

singularities are expected for the non-correlated situation. However, in the general

case, when the mutual orientation of the r1k and r1n vectors is correlated, the

distributions of the frequencies X?=(D1n ? D1k) and X- = (D1n - D1k) can

change [19]. To illustrate the possible scale of the spatial correlation effect, we

calculated the distributions of the frequencies X? and X- using the Monte Carlo

method for several architectures of spin systems. Some results are presented in

Fig. 11.

Figure 11 demonstrates that the spatial correlation of the spin labels affects

essentially the distribution of the combination frequencies. The distribution of the

frequency X- manifests a maximum at X- = (D01 - D02) as it was expected on a

basis of the qualitative speculations. The situation is more complicated for the

distribution of the frequency X? = (D1 ? D2). In principle, there is always a

singularity at X? = (D01 ? D02). But this is not the major feature of this

distribution. The pronounced maximum is shifted with respect to the frequency

X? = (D01 ? D02). For example, when r1 = r2 = 5 nm and the angle between

vectors r1 and r2 is / = p/2, the pronounced singularity of the distribution of the

frequency X? occurs not at X? = 2D0 (as it might be expected) but at X? = D0

(Fig. 11a). Note that in this case, the distribution of the combination frequency

X? = (D1 ? D2) is similar to the distribution of the dipolar frequencies in pairs

(compare Figs. 2, 11a). There is only a very ‘‘minor’’ (not pronounced) singularity

at X? = 2D0. Note that in this case, the broad part of the distribution has low

intensity.

In other two examples shown in Fig. 11b, c, the pronounced maxima of the

distribution of the combination frequency X? is also shifted considerably to values

lower than the D01 ? D02. Another remarkable feature of these distributions is the

relatively small fractions of the systems, which have frequencies around the singular

frequencies. In fact, the intensity of the distributions around the singular points is

much less pronounced than it was for the dipolar frequencies D in the case of the

pairs (compare Figs. 2, 11b, c). Thus, in this case, the fraction of the systems, which

contribute to the constructive interference at T [ Tdecay, is much less than that in the

case of the spin-label pairs. At the same time, the fraction of the systems, which give

the destructive interference, increases, since the broad part of the distribution is of

relatively high intensity (Fig. 11b, c).

The distributions in Fig. 11 are in fact the Fourier transforms of the average

cosines cos D1 þ D2ð ÞTð Þh i and cos D1 � D2ð ÞTð Þh i. Direct calculations in the

time domain presented in (Fig. 12) are in agreement with expectations on the basis

of the distributions (data in the frequency domain) shown in Fig. 11.
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In time-domain representation, the effect of the spatial correlation can be

characterized by the comparison of two quantities: the exact value of the product of

two cosine terms, Jcorr ¼ cos D1Tð Þ cos D2Tð Þh i, taking into account the spatial

correlation of the positions of spins, and the approximate value of this product of

cosines Jnoncorr ¼ cos D1Tð Þh i cos D2Tð Þh i neglecting the spatial correlation effect.

Calculations were performed for the same distances between the spin label A and

two spin labels B, r1 and r2, and angles / between the vectors r1 and r2, which were

used in the calculations of the distribution of the combination frequencies (Fig. 11).

The calculation results are shown in Fig. 12.

Figure 12 shows that J(T) decays fast in the interval T{0, Tdecay} and then, at

T [ Tdecay it varies non-monotonically and demonstrates a kind of a modulation

pattern. The exact Jcorr and approximate Jnoncorr average values deviate at

T [ Tdecay, after the fast decay. This deviation is the most pronounced in Fig. 12a.

Qualitatively, the behavior of Jcorr and Jnoncorr is similar to the time dependence of

the average cosine cos DTð Þh i, i.e., only the small fraction of the triads continues to

give the constructive interference contribution to the oscillations of J at T [ Tdecay.

Comparison of Figs. 2 and 12 shows that at T [ Tdecay, the modulation amplitude

induced by the term cos D1Tð Þ cos D2Tð Þh i does not exceed pcc = 0.1 and it

decreases faster than that induced by the term cos D1Tð Þh ior cos D2Tð Þh i (see Sect.

2.1). The deviation between Jcorr and Jnoncorr is pronounced most strongly, when the

distances between spins are the same, r1 = r2, / = p/2 (Fig. 12a). In this case, at
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Fig. 11 Distribution functions for the combination frequencies X?= |D1 ? D2| (thick curves) and
X- = |D1 - D2| (thin curves). Simulations are done with the following parameters: a r1 = r2 = 5 nm,
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T [ Tdecay, the approximate result Jnoncorr oscillates with the frequency

D10 ? D20 = 2D0. At the same time, the exact result Jcorr oscillates not with the

frequency 2D0 but with the frequency close to D0 in accordance with the

distribution of combination frequencies shown in Fig. 11a.

Note that the model situation of the groups with N = 3 was studied compre-

hensively in Ref. [19]. It was demonstrated that the spatial correlation effect

discussed becomes important when the probability of the spin inversion increases.

According to [19], the promising strategy of the PELDOR experiments when

studying the triads or larger (N [ 3) spin-label groups ABN - 1 is the variation of

the probability pR2(xB) of the spin inversion by the MW pump pulse. When

pR2 xBð Þ 
 1, the linear term
P

n cos D1nTð Þh i dominates in the signal modulation

and the PELDOR signal can give a set of frequencies {D01n}. As a result, it is

possible to determine a set of distances between spin labels A and B. Note that for

the ABN - 1 groups, the number of the oscillation frequencies is N - 1. When

pR2(xB) increases, many combination frequencies can contribute to the modulation

pattern of the PELDOR signal, and the contributions of different harmonics can

interfere destructively. As a result, the modulation of the PELDOR signal can be

smeared out.

The second model system Let us consider the RN group of identical spin labels R.

Thus, this model refers to the spin labels with totally overlapping EPR spectra. In

addition, we assume that the EPR spectrum of the spin labels R is wide enough so
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Fig. 12 Exact average value of cos D1Tð Þcos D2Tð Þh i (solid curves) and approximate average value of
this cosines product calculated as cos D1Tð Þh i cos D2Tð Þh i (dot curves). Simulations are done for the
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that it is possible to excite electron spins of R selectively in the frequency space. In

PELDOR experiments, the MW pulses with frequencies xA and xB excite spins

with the resonance frequencies in intervals (xA - x1A, xA ? x1A) and (xB - x1B,

xB ? x1B), respectively. In this case, the contribution of the intra-group dipole–

dipole interaction to the three-pulse ELDOR signal is described by Eq. (66), where

the n-th spin-label effect on the signal from the k-th spin label is given by Eq. (16).

The average contribution of any spin label of the group to the PELDOR signal is

given as

Vh i ¼ 1=Nð ÞRk Pn6¼k ð1� pðxAÞh i 1� cos Dknsð Þð Þ � pðxBÞh iÞ þ pðxBÞh i cos DknTð Þð Þ
� 	

¼ 1=Nð ÞRk Pn6¼kð1� Lkn þ pB cos DknTð Þ
� 	

¼ 1=Nð ÞRk Pn 6¼kð1� LknÞ þ 1=Nð ÞRkRn6¼k cos DknTð ÞPm 6¼k;npBð1� LkmÞ þ � � �
� 	

:

ð72Þ
Here, the notations Kkn ¼ pðxBÞh i þ pðxAÞh ið1� cos Dknsð Þ; pB ¼ pðxBÞh i are

introduced. Note that there are evident relations Kkn = Knk, Dkn = Dnk,

cos(DnkT) = cos(DknT). The group of the N spin labels has N(N - 1)/2 character-

istic frequencies {D0kn}. Note that the Eq. (72) is reduced to Eq. (8) in Ref. [40]

when pðxAÞh i ¼ 0, i.e., when the EPR spectra of the spin labels do not overlap.

The PELDOR signal [Eq. (72)] has the term V0, which does not depend on T:

V0 ¼ 1=Nð ÞRk Pn6¼kð1� KknÞ
� 	

¼ 1=Nð ÞRk Pn6¼k 1� pðxBÞh i � pðxAÞh i þ pðxAÞh i cos Dknsð Þð Þ
� 	

: ð73Þ
The term V0 depends on the s value. However, in the PELDOR experiments, s is

long enough so it might be justified to ignore all oscillating terms in Eq. (72). Then,

V0 ¼ 1� pðxBÞh i � pðxAÞh ið ÞN�1: ð74Þ
When the probability pB of the spin-label inversion by the MW pump pulse is

small enough, the oscillations of the PELDOR signal induced by the intra-group

interaction are mainly determined by the terms in Eq. (72), which are linear in

cosine terms

V1 Tð Þ ¼ 1=Nð ÞRkRn6¼k cos DknTð Þh iPm6¼k;npBð1� LkmÞ: ð75Þ
Assuming that Kkn � pðxBÞh i þ pðxAÞh i and using Eq. (24) at relatively large T

values (T [ Tdecay), it is possible to approximate V1(T) [Eq. (75)] as

V1 Tð Þ � 1=Nð Þ 2pB 1� pA � pBð ÞN�2RkRn [ k p= 12D0knTð Þð Þ1=2
cosðD0knT � p=4Þ:

ð76Þ
There are N (N - 1)/2 characteristic frequencies D0kn determined by the

distances rkn between the spin labels in the RN group. In fact, some distances can be

close or even coincide depending on the architecture of the RN group. Let us

introduce the distribution function f(r) normalized to 1, which gives the probability

for any two partners in the group to have the distance r between them, whileR
f rð Þr2dr ¼ 1. Then, Eq. (76) can be written as (at T [ Tdecay)
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V1 T [ tdecay

� �
¼ pB 1� pA � pBð ÞN�2

N � 1ð Þ
Z

f rð Þr2dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

12D0T

r
cos D0 rð ÞT � p

4

h i

� pB 1� pA � pBð ÞN�2
N � 1ð Þ

Z
f rð Þr2dr 0:2 cos D0 rð ÞT � p

4

h i
 �
:

ð77Þ
Using Eqs. (74) and (77), the PELDOR signal [Eq. (72)] can be written as

VðT [ tdecayÞ � 1� pA � pBð ÞN�2ð1� pA � pB

þ 0:2 N � 1ð ÞpB

Z
cos D0 rð ÞT � p

4

h i
f rð Þr2dr þ � � �Þ: ð78Þ

When pB and/or the number N of the spin labels in the group increases, the terms

with products of cosines can become more significant.

In the current literature [1–6], the approximate Eq. (79) is used

Vintra T [ tdecay

� �
� 1� pBð ÞN�2

1� pB þ N � 1ð ÞpBhcos D0 rð ÞTð Þirð Þ: ð79Þ
The comparison of Eq. (78) with the Eq. (79) shows that they predict the

same oscillation frequencies. However, Eqs. (78) and (79) predict the relatively

different contributions of the non-oscillating and oscillating terms. This subject

was already discussed in Sect. 2.1 for spin-label pairs. Thus, the results of our

consideration might be important, when the modulation amplitude of the

normalized PELDOR signal is used to obtain the number of spin labels in the

group.

The results presented for the PELDOR signal modulation induced by the

dipole–dipole interaction in the groups of spin labels with overlapping EPR

spectra show that the modulation pattern differs, in principle, from the case of the

groups of spin labels with non-overlapping EPR spectra (current theory case, see,

e.g., Eq. (8) in Ref. [40]), the numerous new terms appear in the expression for

the PELDOR signal [see Eq. (72)]. In fact, in both cases (in current theory and the

theory presented in this work), a set of the PELDOR signal modulation

frequencies is the same, since in both cases, the spin dynamics of the system

proceeds with the same spin-Hamiltonian. In both cases, the same characteristic

dipolar frequencies and their combinations operate. But the current theory and the

present theory predict, in principle, different amplitudes for the contributions with

different frequencies.

Thus, the interference picture, the modulation pattern of the observed

PELDOR signal can differ in the framework of the present theory compared

to the current theoretical description. Note, in the case of the spin-label pairs,

it was pointed out that the effect of the new terms in the PELDOR signal of

the spin labels with overlapping EPR spectra can be eliminated using the

proper signal normalization procedure [Eq. (20)] if the probability to invert

the same spin by the both, xA and xB frequencies, MW pulses is negligibly

small.
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2.6 Estimation of the Validity of the Assumption Eq. (13).

It was shown (Table 1) that for the pairs R1R2, when the partners have the EPR

spectra, which overlap, the three-pulse ELDOR signal contains the terms with

cos(DT) and cos(D(s - T)). According to Table 1, the amplitude of the cos(DT)

term is

P13 ¼ m1y X1ð Þp X1jxA; tp3

� �
1� p X1jxB; tp2

� �� �� 	
p X2jxB; tp2

� �
1� p X2jxA; tp3

� �� �� 	

¼ v1p2ðxBÞ � v1p2ðxA;xBÞ
ð80Þ

and the amplitude of the cos(D(s - T)) term is

P14 ¼ m1y X1ð Þp X1jxA; tp3

� �
1� p X1jxB; tp2

� �� �� 	
p X2jxB; tp2

� �
p X2jxA; tp3

� �� 	

¼ v1p2ðxA;xBÞ:
ð81Þ

Here, p2ðxA;xBÞÞ � p X2jxB; tp2

� �
p X2jxA; tp3

� �� 	
is the average probability

that the same spin R2 with the resonance frequency X2 is inverted by the MW pump

pulse with the frequency xB at the moment T and by the echo-forming pulse

with the frequency xA at the moment s; v1 � m1y X1ð Þp X1jxA; tp3

� ��

1� p X1jxB; tp2

� �� �
i (Table 1).

The exact expression for the PELDOR signal without the assumption Eq. (13) is

[compare with approximate expression given by Eq. (16)]

V1 T ; sð Þ ¼ v1ð1� p2ðxAÞ � p2ðxBÞ þ p2ðxA;xBÞ þ ðp2ðxAÞ
� p2ðxA;xBÞÞ cos Dsð Þ þ ðp2ðxBÞ � p2ðxA;xBÞÞ cos DTð Þ
þ p2ðxA;xBÞ cosðDðs� TÞÞÞ: ð82Þ

The contribution of the spin R2 to the PELDOR signal is given by the expression

similar to that for the spin R1 [see Eq. (16a)]

V2 T ; sð Þ ¼ v2ð1� p1ðxAÞ � p1ðxBÞ þ p1ðxA;xBÞ þ ðp1ðxAÞ
� p1ðxA;xBÞÞcos Dsð Þ þ ðp1ðxBÞ � p1ðxA;xBÞÞcos DTð Þ
þ p1ðxA;xBÞcosðDðs� TÞÞÞ; ð83Þ

where p1ðxA;xBÞÞ � p X1jxB; tp2

� �
p X1jxA; tp3

� �� 	
.

If R1 and R2 are the same spin labels, their total contributions to the PELDOR

signal is

V T ; sð Þ ¼ vð1� pðxAÞ � pðxBÞ þ pðxA;xBÞ þ ðpðxAÞ � pðxA;xBÞÞ cos Dsð Þ
þ ðpðxBÞ � pðxA;xBÞÞ cos DTð Þ þ pðxA;xBÞ cosðDðs� TÞÞÞ:

ð84Þ
Here, pðxAÞ ¼ p XjxA; tp3

� �� 	
; pðxBÞ ¼ p XjxB; tp2

� �� 	
.

In Sects. 2.1, 2.2, 2.3, 2.4, 2.5, we assumed that

pðxA;xBÞ 
 pðxBÞ: ð85Þ
To estimate the validity of this assumption, the numerical calculations were

performed for biradicals I containing 1-oxyl-2,2,5,5-tetramethylpyrroline-3-yl spin
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labels and biradicals II containing 3-imidazoline spin labels. The structures of these

biradicals are presented in Fig. 15.

Using the spectra in Fig. 15b, d, we calculated p(xA,xB), p(xA) and p(xB).

The results are given in Table 3. Note that during these calculations, we use the

total EPR spectrum of the biradical. During these calculations, we assumed that

the EPR spectra of the spin labels are close to the EPR spectrum of the biradicals

studied.

We calculated the parameters relevant to our experiments, which are discussed in

Sect. 3 (Table 3, the second and fifth columns). We calculated also the possible

contribution of the term cosðDðs� TÞÞh i which occurs, when the frequency xB of

the MW pump pulse is close to the frequency xA of the echo-forming MW pulses

(Table 3, the third and sixth columns). As it was expected, the p2(xA,xB) value

increases, when these two frequencies xA and xB come closer, and the p2(xA,xB)

value becomes negligible, when these frequencies are removed far (Table 3, the

fourth and seventh columns). It can be seen that under the conditions in our

experiments the inequality p2ðxA;xBÞ 
 p2ðxBÞ is fulfilled so that the assumption

Eq. (13) is justified in the typical experimental situations (see. Table 3, the second

and fifth columns).

The excitation of the same spin by the MW pulses with both frequencies xA and

xB can affect the PELDOR signal in several ways. It decreases the amplitude of the

term containing cos(DT) [see Eqs. (80), (82), and (84)]. There appears a new term

containing cos(D(s - T)) [Table 1 and Eqs. (82) and (84)]. This term has an

interesting feature. When T increases, dephasing of oscillations with different

frequencies D decreases since s - T decreases (Fig. 13). This possibility was

mentioned in Ref. [6]. as well with reference to the ‘‘2 ? 1’’ pulse train electron

spin echo method [12, 13].

The T-dependences of the average cosine cos DTð Þh i term (Fig. 3) and that of the

average cosine cos Dðs� TÞð Þh i term (Fig. 13) are opposite in the interval {0, s}. To

illustrate the manifestation of the average cosine cos Dðs� TÞð Þh i term, we

calculated the quantity c1 cos DTð Þh i þ c2 cos Dðs� TÞð Þh i and compared it with the

average cosine cos DTð Þh i (Fig. 14).

It can be seen that the average cosine cos Dðs� TÞð Þh i term leads to the decrease

of the amplitude of the PELDOR signal at T = 0 and to the decrease of the

modulation amplitude. This means that average cosine cos Dðs� TÞð Þh i term can

affect the amplitude of the normalized PELDOR signal. Thus, when interpreting the

PELDOR experimental data, one should keep in mind that due to the excitation of

the same spin by MW pulses with both frequencies xA and xB, the apparent

modulation amplitude of the PELDOR signal is less than that expected disregarding

this excitation. The contribution of the average cosine cos Dðs� TÞð Þh i term to the

PELDOR signal affects the phase of the signal modulation as well.

3 Experimental Data and Their Analysis

To test the results of our theory, we performed the PELDOR experiments on the

biradicals I containing 1-oxyl-2,2,5,5-tetramethylpyrroline-3-yl spin labels and
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biradicals II containing 3-imidazoline spin labels (Fig. 15). The paramagnetic

centers in these biradicals are identical and their EPR spectra overlap completely.

All experiments were performed at Q-band on an Elexsys E-580 spectrometer

(Bruker) equipped with a Bruker Flexline probehead EN5107D2. Q-band

measurements were performed to eliminate the modulation of the PELDOR signal

due to the hyperfine interaction between electron spins and distant protons. Three-

pulse ELDOR was carried out using the sequence (p/2)mwA-T-(p)mwB-(s-T)-(p)mwA-

s-echo for different s values. The lengths of the p and p/2 pulses were 52 and 26 ns,

respectively. All measurements were performed at 80 K. Temperature was

controlled using an ER4118CF cryostat and an ITC503 temperature controller

(Oxford).

The PELDOR signal Vexp(T, s) at T = 0 is reduced to the primary spin echo

signal Vexp(s) obtained without applying the MW pump pulse, Vexp(T = 0,

s) = Vexp(s). This fact makes it possible to find the initial amplitude of the

PELDOR signal. The normalized PELDOR signal was found as Vn = Vexp(T, s)/

Vexp(s). According to the discussion in the Sect. 2.1 [see Eqs. (18)–(20) and the

discussion around these equations] this particular normalization procedure can be

useful to demonstrate a presence of the new terms in the PELDOR signal.

The results of the PELDOR experiments and simulations are shown in Figs. (16)

and (17). The simulations were performed using Eq. (18). The simulations

according to the current theory [Eq. (1)] were shown as well. To simulate the

PELDOR curves, the probabilities p(xA) and p(xB) of the spin inversion by the

MW pulses are needed. They were found using the EPR spectra (Fig. 15) and

Eq. (9) (Table 3, the second and fifth columns). The distances between two spin

labels in biradicals were determined from the PELDOR signal modulation

frequency. For biradical I, this distance r = 3.8 nm, for biradical II, r = 1.8 nm.

Figure 16a, c shows that in the case of biradical I, the experimental normalized

PELDOR signal Vn does not manifest the s-dependence, while in the case of

biradical II (Fig. 16b, d) there is the s-dependence. According to the current

0 500 1000 1500 2000

-0,25

0,00

0,25

0,50

0,75

1,00

<
C

os
(D

(τ
-T

))
>

T (ns)

Fig. 13 Average cosine cos D s� Tð Þð Þh i calculated for r = 3 nm, D0 = 11.5 9 106 rad/s,
s = 2,000 ns. The oscillation period is close to T0 = 2p/D0 = 547 ns (compare with Fig. 3)
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PELDOR theory, Vn should not depend on s [Eq. (1)]. But the current theory does

not hold, when the EPR spectra of spins in the biradical overlap. When these spectra

overlap, the normalized PELDOR signal should demonstrate the s-dependence [Eq.

(18)]. Thus, the experimental data for biradical II are qualitatively in agreement

with our theory. According to our theory [Eq. (18)], the s-dependence of the

PELDOR signal should be less pronounced, when p(xA) decreases [Eq. (19)]. The

calculated p(xA) value (see Table 3) shows that it is about 25 % less for biradical I.

There is another reason why the s-dependence of the normalized PELDOR signal is

less pronounced for biradical I than for biradical II. According to Eq. (18), the s-

dependence of the normalized PELDOR signal is determined by the effective

parameter peff(s),

0 500 1000 1500 2000
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0,0
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T (ns)

0 500 1000 1500 2000

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

T (ns)

Fig. 14 Average cosine cos DTð Þh i (solid curves) and c1 cos DTð Þh i þ c2 cos D s� Tð Þð Þh i (dotted curves)
calculated for r = 3 nm, D0 = 11.5 9 106 rad/s, s = 2,000 ns: a c1 = 0.9, c2 = 0.1; b c1 = 0.8,
c2 = 0.2
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Fig. 15 Scheme of biradicals I (a), II (c) and their echo detected Q-band EPR spectra, correspondingly
(b, d). Hatched rectangles indicate the frequency ranges efficiently excited by the MW pulses with xA

and xB frequencies
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Vn ¼ 1� peff sð Þ 1� cos DTð Þh ið Þ; ð86Þ
peff sð Þ ¼ p xBð Þ= 1� p xAð Þ cos Dsð Þh ið Þ: ð87Þ

According to Eq. (24), when D0s[ 2p,

cos Dsð Þh i ¼ p= 12D0sð Þð Þ1=2
cos D0sð Þ:

In our PELDOR experiments, (p/(12D0s))1/2 is 0.108 and 0.125 for biradicals I

and II, respectively. Therefore, the effective value of p(xA) [Eq. (87)] is about 15 %

less for biradical I.

Thus, our theory has a potential to interpret qualitatively the experimental

observation concerning the s-dependence of the normalized PELDOR signals for

biradical I and biradical II.

However, the situation is more complicated concerning the quantitative

description of the modulation amplitude of the PELDOR signal. According to Eq.

(86), the normalized PELDOR signal is

Vn ¼ 1� peff xBð Þ 1� cos DTð Þh ið Þ; where peff xBð Þ
¼ ptheor xBð Þ=ð1� ptheor xAð Þ 1� cos Dsð Þh ið Þ:

Since ptheor(xA) \ 1, then,

peff xBð Þ � ptheor xBð Þð1þ ptheor xAð Þ 1� cos Dsð Þh ið Þ[ ptheor xBð Þ:
It appears that the simulations with the theoretically computed parameters

ptheor(xA) and ptheor(xB) do not describe perfectly the PELDOR signals (see

Fig. 16c, d). The simulations give even worse results if the effective parameters

peff(xA) and peff(xB) are used since peff(xB) [ ptheor(xB). To obtain good

agreement between simulations and experimental data, the following fitting

parameters should be used: pf(xA) = 0.08, pf(xB) = 0.072 for biradical I and

pf(xA) = 0.18, pf(xB) = 0.12 for biradical II. The results of the simulations with

these fitting parameters are presented in Fig. 16a, b. We see that good agreement is

achieved when the simulations are done with the parameter p(xB), which is less

than the values obtained by the theoretical calculations (Table 3).

To test the fitting parameters pf(xA) and pf(xB) obtained from the fitting the s-

dependence of the PELDOR signal (Fig. 16), the PELDOR signals were studied in

the extended range of T values (Fig. 17).

Figure 17 shows that the fitting parameters pf(xA) and pf(xB) obtained when

studying the s-dependence of the PELDOR signals are reasonably good fitting

parameters for the T-dependence of the PELDOR signals as well. The fitting

parameters pf(xA) and pf(xB) differ from their calculated values ptheor(xA) and

ptheor(xB).

The observation that the pf(xB) value is less than the ptheor(xB) value can be

explained as follows. One option is to take into account the possibility of the

inversion of a sub-ensemble of spins by the MW pulses of both frequencies, xA and

xB. This option was discussed in Sect. 2.6. It was shown that under conditions of

our experiments, this effect reduces p(xB) but the reduction is rather small, it is

around 0.005–0.01 (a few percents) for our experimental situation. Another option is

the effect of the contribution of the term containing cos Dðs� TÞð Þh i to the
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PELDOR signal. It was shown in Sect. 2.6 (Fig. 14) that this term can reduce the

initial amplitude of the PELDOR signal and it decreases the amplitude of the

PELDOR signal oscillations. Spectral diffusion induced by the spin–lattice

relaxation of spins (Sect. 2.3) and the molecular isomerization (Sect. 2.4) can be

also responsible for the reduction of the oscillation amplitude of the PELDOR

signal. The discrepancy of the parameters pf(xB) and ptheor(xB) can also arise from

the experimental errors when determining the initial behavior of the PELDOR

signal, the initial amplitude of the PELDOR signal. We plan to study this problem

separately.

4 Conclusions

Experimental PELDOR data contain information about the architecture of spatial

positions of the spin labels. This information is of major importance since it can be

used when studying, e.g., structures of proteins and other biologically actual

compounds. If the spin labels are site-directed, the spin labels architecture gives a
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Fig. 16 Dependence of the normalized PELDOR signal on the s value and its simulations for biradicals
I: (a) for fitting parameters pf(xA), pf(xB); (c) for calculated parameters ptheor(xA), ptheor(xB) and for
biradicals II: (b) for fitting parameters pf(xA), pf(xB); (d) for calculated parameters ptheor(xA), ptheor(xB).
Experimental data are squares and circles. Simulations using Eq. (18) are shown as solid lines. Dashed
lines are simulations using Eq. (1). The fitting and calculated parameters p(xA), p(xB) are given in the
text and Table 3. In the case of biradical I, s = 1,064 and 1,632 ns, in the case of biradical II, s = 190
and 252 ns
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‘‘contour’’ of these visually disordered molecular (supramolecular) systems, which

can serve as constraints when determining the structure of proteins etc.

The PELDOR experiments can be instructive not only concerning the structure of

systems studied but also concerning their spin and molecular dynamics. It is better

to perform the structural studies at low temperatures, when the molecular motion

(including conformational transitions of macromolecules) and spin–lattice relaxa-

tion process proceed slowly and do not disturb the PELDOR data. The random spin

flips due to the spin–lattice relaxation or the spin diffusion or the molecular mobility

can reduce the modulation amplitude and frequencies of the PELDOR signal

modulation.

The best PELDOR strategy for studying the architecture of spin groups would be

to use the spin labels A and B, which have the non-overlapping EPR spectra. In this

case, the current paradigm of the PELDOR application can be successfully used. In

practice, the spin labels are used, the EPR spectra of which overlap. In this work, we

presented the generalization of the current PELDOR theory for the spin labels with

the overlapping EPR spectra. In this work, we extended the three-pulse ELDOR

theory for the spin labels in pairs and groups to the case, when the spin labels EPR

spectra overlap. The three-pulse ELDOR signal for the spin labels with overlapping

EPR spectra was analyzed theoretically in detail.

In the general case, the PELDOR signal has new contributions. One contribution

arises from the fact that the spin echo-forming MW pulses can excite both spin
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Fig. 17 Normalized experimental PELDOR data (squares) and their simulations for biradicals I (a,
c) and II (b, d). Solid lines show simulations using Eq. (18). Dashed lines show simulations using Eq. (1).
The (a, b) present the simulations with the theoretically calculated parameters ptheor(xA), ptheor(xB). The
(c, d) present the simulations with the fitting parameters pf(xA), pf(xB). In the case of biradical I,
s = 2,952 ns, in the case of biradical II, s = 596 ns
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labels in pairs and several spin labels in groups. As a result, the conventional

primary spin echo modulation effect is manifested in the PELDOR signal. Another

contribution is due to the excitation of the same spin label by the MW echo-forming

pulse and the pump pulse in the PELDOR experiment. These new contributions

interfere with the contribution to the PELDOR signal considered in the current

(conventional) theory.

The modulation pattern of the PELDOR signal is a sum of oscillations

(harmonics) with characteristic frequencies of the dipole–dipole interactions

between spin labels and their linear combinations. A set of possible oscillation

frequencies for the spin-label systems considered is the same in the current theory

and in the generalized theory presented in this work, since these frequencies are

determined by the same spin-Hamiltonian. But relative contributions of different

harmonics predicted by the current theory and by the theory presented in this work

are, in principle, different. Thus, the current and the generalized here theory can, in

principle, lead to different distance distributions. The results of our consideration

might be of importance when the modulation amplitude of the PELDOR signal is

used, e.g., to obtain the number of spin labels in the groups. For example, neglecting

the new terms in the PELDOR signal results in a p2100 % error when the number of

the spin labels in the groups is determined (here, p2 is the probability of the

inversion of the same spin label by the MW echo-forming pulse and the pump pulse

in the PELDOR experiment).

It was shown that the manifestation of the intra-pair dipole–dipole interaction in

the PELDOR signal cannot be presented as a product of the primary echo signal in

the absence of the MW pump pulse and the factor, which describes the effect of the

MW pump pulse on the PELDOR signal. This observation affects the strategy of

interpreting the experimental data. In fact, when the multiplicative behavior is valid,

it is rather straightforward to subtract the contribution of the MW pump pulse to the

PELDOR signal from the experimental data. In this case, the PELDOR effect can be

characterized by the ratio of the data of the two experiments: PELDOR and primary

echo.

In this work, we were focused on the three-pulse ELDOR. At present, the four-

pulse ELDOR is widely and successfully exploited. The four-pulse ELDOR theory

for the spin labels with overlapping EPR spectra is under development and will be

presented in a separate publication.
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