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Abstract The current theory of three-pulse electron double resonance (PELDOR)
has been generalized to the case, when paramagnetic particles (spin labels) in pairs
or groups have the electron paramagnetic resonance (EPR) spectra, which overlap
essentially or coincide. The PELDOR signal modulation induced by the dipole—
dipole interaction between paramagnetic spin %2 particles in pairs embedded in
disordered systems has been analyzed comprehensively. It has been shown that the
PELDOR signal contains additional terms in contrast to the situation considered in
the current theory, when the EPR spectra of the spin labels in the pairs do not
overlap. In disordered systems, the pairs of spin labels have the characteristic
dipolar interaction frequency. According to the current theory for pairs of spin
labels, the PELDOR signal reveals the modulation with this characteristic fre-
quency. The additional terms, which are obtained in this work, do not change the
modulation frequency of the PELDOR signal for pairs of spin labels. However,
these additional terms should be taken into account when analyzing the amplitude of
the PELDOR signal and the amplitude of the modulation of the PELDOR signal.
The consistent approach to treating the PELDOR data for the groups containing
three or more spin labels has been outlined on the basis of the results for pairs of
spin labels. It has been also analyzed how the spin flips and molecular motion or
molecular isomerization can affect the manifestation of the interaction between the
spin labels in PELDOR experiments. PELDOR experiments for the stable biradicals
(biradicals I containing 1-oxyl-2,2,5,5-tetramethylpyrroline-3-yl spin labels and
biradicals II containing 3-imidazoline spin labels) have been performed. The results
have been interpreted within the theory developed in this work.
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1 Introduction

Pulse electron—electron double paramagnetic resonance (PELDOR) experiments are
widely used for determining distances between spin labels in pairs, and also the
number of dipolar-coupled spins in groups, e.g., in spin-labeled proteins, and the
distribution of distances between spin labels in groups (see, e.g., [1-7]). The
manifestation of the dipole—dipole interaction is detected in these experiments. The
dipole—dipole interaction leads to the modulation of the PELDOR signals. The
modulation frequencies are determined by the value of the dipole—dipole interaction
between spin labels.

The manifestations of the spin—spin interaction between paramagnetic centers in
solids in the pulse EPR experiments were studied comprehensively (see [8—13]).
The results of these investigations created a basis for the development of PELDOR.
It was demonstrated theoretically and experimentally that the exchange and dipole—
dipole interactions between partners in pairs of the paramagnetic particles can cause
the modulation of the electron spin echo signals [14]. This effect depends on the
excitation pattern of the electron spins in the pulse EPR experiment. The echo signal
of a given spin is modulated by the interaction between this spin and the spin of the
partner paramagnetic particle in the pair in the case, when the partner spin is also
excited by the microwave (MW) pulse. The distance between the partners in pairs
can be found from the modulation frequency of the echo signal [14, 15]. This
modulation effect makes it possible to highlight the spin—spin interaction between
particular paramagnetic particles using their selective excitation by the MW pulse.
This option is implemented in the PELDOR experiments.

The dipole—dipole interaction between paramagnetic particles distributed over
the sample volume causes the spin echo signal decay. The kinetics of this decay
depends on the spatial distribution of the paramagnetic particles. This option was
widely used when studying the distribution of paramagnetic particles in tracks of
ionizing irradiation [8, 10, 11]. The relevant results are important when interpreting
the experimental PELDOR data, since the PELDOR signal is affected by the
dipole—dipole interaction between the paramagnetic particles distributed over the
sample volume, the same as the primary electron spin echo or the stimulated echo
signals (see, e.g., [8—11]).

The first theoretical description of the three-pulse ELDOR experiment was
presented in [16]. The system of the randomly distributed pairs of the hydrogen
atom (spin A) and the hydroquinone radical (spin B), which were produced during
the photolysis of frozen solutions at 77 K, was considered. The electron
paramagnetic resonance (EPR) spectra of these particles do not overlap and the
spins A and B can be selectively excited by the MW pulses in the course of the
PELDOR experiment.

Figure 1 shows the protocol of the three-pulse ELDOR experiment. The
amplitude of the PELDOR signal exhibits the modulation described at any fixed
interval 7 as [16].

V(T,) = Vo(t)(1 — pp + pg cos(DT)), (1)
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Fig. 1 Protocol of the three-pulse PELDOR experiment [14]. The spin echo is formed by the MW
excitation of the spins A at t = 0 and 7 = 1. The additional (pump) MW pulse excites the spins B at
t =T and affects the spin echo signal. Durations of pulses at t =0, T and © are t,, f,, and 13,
respectively

where V(7) is the primary spin echo signal without the MW pump pulse, pg is the
probability of the inversion of the spins B by the MW pump pulse at t = T, and D is
the parameter of the dipole—dipole interaction

Hy_q = IDABSA,SBz, (2)

2
Dup :gAgfﬁ (1 —3cos®0) = Doap (1 — 3cos® 0). (3)
hrig

Here, rap is the distance between spins A and B, 0 is the angle between the
vector rap and the direction of the external magnetic field. Here, we assume that the
g-tensors of spin labels are practically isotropic. We suppose that the distance
between the partner spins in the pair is larger than 1 nm so that the contribution of
the short-range exchange interaction between particles can be ignored (the range of
distances preferable for PELDOR was discussed in Refs. [5, 17-19]. Possible effects
of the exchange interaction on the PELDOR signal were discussed in Refs. [20-22].

Equation (1) describes the well-known effect of the so-called instantaneous
spectral diffusion [8—11, 23, 24] induced by the “instant” change of the dipole—
dipole interaction when the selective MW pulse inverts the spin projection of
partner particles. The instantaneous spectral diffusion in the pulse EPR experiments
selectively reveals the dipole—dipole interaction between definite particles (spin
labels). With this idea in mind, the pulse EPR methodology was used to obtain
information about the spatial distribution of paramagnetic particles [8, 10-13, 16].

The suggestion to use the PELDOR methodology for characterizing complex
molecular structures, when several spin labels are inserted and they form groups of
spin labels, was presented in Ref. [25]. This approach was developed comprehen-
sively (see, e.g., [26-35]).

Let us assume that there are groups of N spin labels. The current paradigm is to
present the PELDOR signal as a product of two terms (see, e.g., [1, 5, 14, 19, 21—
23])

V(t,T) = Vo(1)V(T), (4)
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where V(T) describes the effect of the spin labels, which are pumped by the MW
pulse at the moment t = T (see Fig. 1). V(T) contains the contributions of the
dipole—dipole interaction inside the groups of spin labels and between these groups
Vintra(T) and Viger(T), respectively,

V(T) = Vintra(T) Vinter(T)- (5)

The contribution of the dipole—dipole interaction inside the groups of spin labels
will be discussed below (see Sect. 2.5). Here, we present only approximate results to
illustrate that PELDOR can give information about the number and the mutual
spatial positions of spin labels in groups. Neglecting any correlations of the
positions of spin labels in the groups, Ving (T') is presented as (see, e.g., [1, 5, 25, 30,
33, 34])

Vinra(T) 22 (1 — pg + pa(cos DT))V ' 1 — (N — 1)pg(1 — (cos DT)).  (6)

Here, (---) means averaging over orientations of the rpp vector and distances
between spin labels in these groups. Equation (6) is used for determining the
distribution of the inter-pair distances in the group of N spin labels (see, e.g., [36,
37]). It appears that the approximation used in Eq. (6) is not good for the pg that is
typical for recent PELDOR work (see [34, 43]).

It is expected that the contribution of the interaction between spin labels inside
groups Viga (T) with increasing T tends to

Vinra(T) = (1 —pp)" ' = 1 — (N — 1)ps. (7)

This asymptotic value of the PELDOR signal does not depend on the distances
between the spin labels inside the group. It depends only on the number N of spin
labels in the group. Equation (7) is used for determining the number N of spin labels
in the groups [1-7, 30].

At present, Egs. (1)—(7) are used for interpreting the PELDOR data in the cases,
when the particles in pairs or groups are nitroxide free radicals with overlapping or
coinciding EPR spectra. But Eq. (1) was derived for the situation, when partners in
the pair are paramagnetic particles with the EPR spectra, which do not overlap, so
that these partners can be excited selectively by MW pulses. Therefore, it is
necessary to study whether Eq. (1) is applicable to the systems, when both spin
labels in pairs are the same nitroxide free radicals or nitroxide free radicals with
close magnetic resonance parameters, so that their EPR spectra overlap substan-
tially. Concerning the current paradigm of treating groups of spin labels, it contains
several additional assumptions [see, e.g., Eqgs. (6), (7)], which may restrict its
application to real systems. We will consider these assumptions in more detail
below.

In this work, we generalize Eq. (1) and derive the contribution of the intra-pair
interaction to the three-pulse ELDOR signal, when the EPR spectra of the partner
spin labels in the pair overlap (or even coincide). The results obtained for the pairs
are generalized to the case of groups of spin labels. The manifestations of the spin—
lattice relaxation and the molecular dynamics in the experimental PELDOR data are
also discussed theoretically. The theoretical considerations are compared with the
PELDOR experimental data obtained when studying biradicals, which contain the
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stable nitroxide radical centers: biradicals I containing 1-oxyl-2,2,5,5-tetramethyl-
pyrroline-3-yl spin labels and biradicals II containing 3-imidazoline spin labels.

2 Theoretical Consideration
2.1 Pairs of the Spin 2 Paramagnetic Particles

Let us consider an ensemble of pairs of paramagnetic particles (spin labels) R, and
R, with the electron spins Y2, when their EPR spectra g;(w) and g-(w) overlap or
coincide. In the case of nitroxide radicals, the line widths of the EPR spectra are
mainly determined by the inhomogeneous broadening induced by the g-tensor
anisotropy and hyperfine interactions with magnetic nuclei. Usually, the contribu-
tion of the homogeneous broadening of EPR lines is one-two orders of magnitude
less than that of the inhomogeneous broadening of the EPR spectra of spin labels
[1-7]. This fact makes it possible to excite selectively different parts of the EPR
spectra in the course of the PELDOR experiment. Let us assume that the spin echo-
forming MW pulses has the frequency w, and the MW pump pulse has the
frequency wg. In the further consideration, we assume that the EPR spectra of
particles R; and R, are rather broad so that it is possible to excite electron spins R,
and R, selectively in the frequency space. In the PELDOR experiments, the MW
pulses with frequencies w, and wg excite spins with the resonance frequencies in
intervals (wa — wia, WA + ®W14) and (wg — w1, W + W;B), respectively. Here,
w14 and w;p denote the Rabi frequencies of the MW pulses. The requirement of the
frequency-selective excitation in the course of the PELDOR experiment is fulfilled
when

|wB - wA\ > 1A, WIB- (8)

Note that this condition was also assumed in the theory presented in Ref. [16].
But the condition Eq. (8) is not sufficient to justify using Eq. (1) for the case, when
the EPR spectra of the partners in pairs overlap.

Let us consider the contribution of a given pair RR; to the three-pulse ELDOR
signal (Fig. 1). Pulses with frequencies wa and wg can rotate the spins of both
partners R;, k = 1, 2. Spin dynamics of the two interacting spin labels in the
presence of pulses is rather complicated. We consider systems when the interaction
between spins in pairs is relatively small, namely, we assume that Dy < w;4, @1p.
Under this condition, the probability of the spins inversion is calculated
straightforwardly. Let us denote the resonance frequency of the spin R, as €, and
the probability of the reorientation of the spin R, by the MW pulse, which has
duration 1, the frequency wr and the Rabi frequency wir as p(Qlwg, 1,), k = 1, 2,
F = A, B. Then,

2
Wig

o} + (Q — o)

. t
p(Qlwr, 1,) = 5 sin® [\/‘U%F + (% — wF)zgp : )

Let us divide the ensemble of pairs R;R, into sub-ensembles with the different
inversion patterns of spins R; and R, by the MW pulses at the moments 7" and t
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during the three-pulse ELDOR experiment (Table 1). The shapes of the contribu-
tions of different inversion patterns are given in the last column of Table 1. During
these calculations, we assumed that the resonance frequencies of two spins Q; and
2, in the pair are independent [see Eq. (11)]. There can be situations when this
assumption is not valid.

First, let us consider the contribution of one of the partners in a pair, e.g., spin R},
to the PELDOR signal. The first pulse at = 0 rotates spin R; around the x-axis and
creates the average spin moment along the y-axis

i 2+ (@1 — 0a) 11| 10
zsm[\/wm—i—( 1= OA) 1 (10)

1 WI1A

2
\/w%A + (21 — wa)

The patterns of the excitation of spins, which do not contribute to the PELDOR
signal, are not given in Table 1. The contribution of the spin R, of the pair to the
PELDOR signal is given by expressions similar to those given in Table 1 with
subscripts 1 and 2 interchanged. The signal observed in the PELDOR experiments is
the sum of contributions of spins R; and R,.

In Table 1, the symbol (---) means averaging over the distributions of the EPR
frequencies, which are given by the EPR spectra g,(€2) and g,(£2,) of spins R; and
R,

((Q0)A(Q)) = (H(20) (@) = / £1(20)81(21)d2, / £5(22)82(2)d .
(1)

mly(21) =

Thus, the contribution of the spin R; to the three-pulse ELDOR signal is.
Vi(t,T) = P11 + P12 cos(Dt) 4 Py3 cos(DT) + Piacos(D(t — T)). (12)
Equation (12) is similar to the expression which describes the observable in the
“2 4 17 pulse train electron spin resonance method suggested in Refs. [12, 13].

Only amplitudes P,,, in Eq. (12) are different from ones given in Ref. [13] [see Eqgs.
), (0)].

Let us assume that the frequencies w, and wg are well separated so that the
probability for any spin to be inverted by the MW pulses with both frequencies, wa
and wsg, can be neglected

(p(@1] s, 1,0)p(Q1|wa, 13)) = 0, (p(Qa]@p, 1,0)p(L|wa, 1,3)) 0. (13)
Below we will estimate quantitatively the validity of this assumption (see Sect.
2.6).
Under this assumption, we obtain
Py = (mly(Q0)p(Qilwa, 1,3) ) (1 — p(Qal|ws; 12) — p(Qa]@a, 1,3)),
P, = <m1y(Q] )[)(Q] |COA, [p3)><p(Qz|CUA, tp3) >,
P13 = (mly(Q1)p(Qi|wa, 1,3) ) (p (22| ws, 1,2) ),
Py = 0.

Let us introduce new notations to simplify expressions (14):
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Table 1 Inversion patterns of spins R; and R, by the MW pulses at the moments 7 and 7, which
contribute to the PELDOR signal, and contributions of spins R; to the PELDOR signal,
v = <ml‘(Ql)p(Q| |wA, Ip3) (1 7[7(.91 |wB, tpz))>

No. of the Pulse at T’ Pulse at 7 Amplitude of the contribution of Shape of the PELDOR

inversion the spin R, to the PELDOR signal

pattern signal

1 Both spins  Only the P =vi{(1-p(lws,12)) 1
are not i@pin R, is X (1 = p(2alwa,13))) Dipole—dipole interaction
inverted inverted

is ifested
Py = v1<(1 —p(Qz\wB,lpz)) 18 not manifeste

2 Both spins Both spins (Q | . )> cos(Dr)
X WA,
are not are PEE2I0OA, T3 Modulation of the
inverted inverted primary echo
. P13 = vi{p(2|ws, )
3 Only the spin Only the (1 (Q | . ))> cos(DT)
. . . x (1 — WA, 3 .
R2 18 Spin R, is PRElon, T3 PELDOR effect is given
inverted inverted by Eq. (1)
. . Piy = vi{p(L|ws, 1)
4 Only the spin Both spins (Q | . )> cos(D(t — T))
. X WA, ty3 .
R, is are PRE2IOA: i3 Effect of the combined
inverted inverted

action of the MW pump
pulse at t = T and the
primary echo-forming
pulse att =7

v = <m1y(91)p([21\wA,tp3)>,
p2(wa) = (p(2|wa, 1,3)), (15)
p2(wg) = {p(R|ws, 1,2)).
Then, the contribution of the spin R; to the PELDOR signal is
Vi(T,7) = vi(l = pa(wa)(1 — cos[Dy21]) — p2(ws)(1 — cos[D12T))). (16)

The contribution of the spin R, to the PELDOR signal is given by the expression
similar to that for the spin R, [see Eq. (16)]

Vz(T, ‘E) = Vz(] —pl(wA)(l — COS[Dlz‘ED —pl(a)B)(l — COS[DlzT])). (168)

Here, pi(wa) and p(wg) are average probabilities of the inversion of the spin R
by the corresponding MW pulses with the frequencies w, and wg. As expected,
Eq. (16) and (16a) coincide if Ry = R,.

The comparison of Eq. (16) with Eq. (1) shows that the additional term

—pa(wa)(l — cos(Di21))

appears in the case, when the paramagnetic particles in the pairs have the
overlapping EPR spectra. This term reflects the fact that there are pairs, in which
both partners are excited by the echo-forming MW pulses, so that the dipole—
dipole interaction induces the electron spin echo modulation due to the
instantaneous spectral diffusion [8-11]. Equation (16) is reduced to Eq. (1), if
the partners in the pair have the EPR spectra, which do not overlap, because in
this case, p(wa) = 0.
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One of the major aspects of the result presented in Eq. (16) is that in contrast to
the current paradigm [see Eq. (1)], the contribution of the intra-pair dipole—dipole
interaction to the PELDOR signal V(7, ) [Eq. (16)] is not a product of the two terms
V(T) and Vi(0),

Vo(t) = vi(1 = p2(@a)(1 = cos(D127))), (17)

which gives the contribution of the intra-pair dipole—dipole interaction to the
primary spin echo signal in the absence of the MW pump pulse.

If Eq. (1) is valid, then, the ratio of the PELDOR to the primary spin echo signals
can be used to subtract the contribution of the additional MW pulse to the PELDOR
signal. This is justified when the EPR spectra of the spin labels in the pair do not
overlap [16]. In this case, dividing V(T,r) by Vy(r), one can obtain
V(T, 1)/Vo(t) = 1 — pa(wp)(1 — (cos(D12T))). This procedure is used in a number
of publications when studying the systems of spin labels with overlapping EPR
spectra (see, e.g., [1, 25-29]). However, this result is not valid when the EPR spectra
of the spin labels overlap. In this case,

V= V(T,7)/Vo(t) = 1 = paesr(t) (1 — (cos(D12T))), (18)
where

Paeff(7) = pa(@8) /(1 = pa(@a)(1 = (cos(D127))))- (19)

Equation (18) is formally similar to Eq. (1) but in contrast to Eq. (1), there appears
the 7- and p,(w,)-dependent parameter p,.¢(7) instead of the t-independent parameter
pa(wg). Note that poed(t) = pa(wp) only if pr(wa)(l — (cos(Di21))) = 0. In the
general case, pr.g(T) > pa(ws).

The PELDOR signal normalization given by Eq. (18) is not the only one used
when analyzing experimental data. Another suggestion is the normalization using
the equation (see, e.g., [40])

V= (V(T) = Vi) /(Vo = Vi), (20)

where V(T) is the experimental PELDOR signal, V, is the PELDOR signal at a large T,
Vp is the PELDOR signal at T = 0. By substituting Eq. (16) for V(T) and V, =
1 — pa(wa)(1 — cos(D1)) — p2(wg) into Eq. (20), we obtain that V,, = (cos(DT)).
Thus, in the case of the spin-label pairs, the normalization using Eq. (20) eliminates the
contribution of the new term p,(w4)(1 — cos(Dr)) introduced in this work from the
experimental data. However, this statement for the spin-label pairs is valid only in
the limit when the term Pj4cos(D(t — T)) [see Eq. (12)] can be neglected safely.
Taking into account all terms in Eq. (12) leads to a more complex expression for V.
Suppose that Voo = 1 — (pa(wa) — p)(1 — cos(D1)) — pa(wp) and Vo = 1 — pa(wa)
(1 — cos(D7)). Then, the normalized signal [Eq. (12)] gives V,, = ((p2(ws) — p)
cos(DT) + pcos(D(t —T)))/(p2(wp) — p(1 — cos(D1))). When p < p,(wg) the
normalized signal equals V, = (cos(DT)) + (p/p2(wg)) sin(D7) sin(DT), where
p = (p(|wg, 1,0) p(R|wa, 1,3)) (see Table 1). This estimation shows that correc-
tion is small when p < p,(wg).

In the case of disordered systems, there is a random distribution of the vector r 5,
which connects spin labels in the pair. Therefore, the contribution of the intra-pair
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interaction given, e.g., by Eq. (16) should be averaged over the random distribution
of the polar angle 0 between the direction of the ry, vector and the direction of the
external magnetic field. In addition, there can be the distribution f{r;,) of the
distance r, between partners in the pairs, so that Eq. (16) should be averaged over
this distribution f{r,) as well. The average contribution of the intra-pair interaction
to the echo signal is [1-7]

1 .
<V1> = E//V] (‘E, T)f(rRle) s Hr,%ledrRledQ, (21)

/f(rRlRZ)VIZeledrRlRZ =1

Here, V(T, 7) is given, e.g., by Eq. (16). The contribution of the spin R, to the
PELDOR signal can be found analogously using Eq. (16a).

Equation (21) shows that it is necessary to integrate the contributions from the
randomly distributed pairs when interpreting the PELDOR data for disordered
systems. To this end, it is necessary to find the integral of the form

{cos Dt) = %/ cos(Dy (1 — 3 cos? 0)¢) sin 0d0), (22)
sl
Dy =485

Each orientation of the pair is characterized by its dipolar frequency =+D,
(1 — 3cos?0). When the polar angle 0 varies from O to 7, the frequency Q = D,
(1 — 3cos%0) changes in the interval {—2D,, Dy}, so that the absolute value of Q
varies in the interval {0, 2Dy}. The frequency 2 = D, occurs when 6 = 7/2. i.e., on
the equator of the spherical coordinate system. The statistical weight of equatorial
points is the largest one. The distribution function of the €2 value equals.

F(Q) = (1 — %(2—Dy))g1(2) + g2(Q), 0<Q <2Dy,

where

£1(@) = ¢/(Do—~ ), (@) = c/(Dy + '), e = 1/(2300)"2). 7 s
Heaviside function.

Peculiar feature of the Q distribution is that g;(€2) has a singularity of the type
ﬂﬁ' The distribution of this dipolar frequency is well known: it leads to the
characteristic Pake doublet shape of the two-spin spectrum [38]. For further
discussion, we present the |Q| distribution (Fig. 2). Figure 2 shows that it can be
considered qualitatively as a sum of two parts. One is relatively broad and varies
rather monotonically; and we denote its integral intensity as p, The other is a
narrow part of the distribution, which includes the singular point; and we denote its
integral intensity as p.. Note that p; = 1 — p.. The fractions p, and p,. are effective
parameters to be specified in more detail below. Note that both terms g(£2) and
£2(Q) contribute to the py part of the pairs of spins while only g;({2) term contributes
to the p. part of the pairs.

The behavior of the average cosine (cos DT) [Eq. (22)] calculated for r = 3 nm
is shown in Fig. 3. The fast decay at the early stage occurs due to the destructive
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Fig. 2 Distribution F(IQl) of the frequency Q = Dy(l — 3c0s?0), r = 3 nm, Dy = 12.11 x 10° rad/s

interference of the contributions of the py part of pairs, which have the broad
distribution of frequencies (Fig. 2). The signal modulation (oscillations) at # > fgecay
is determined by the contribution of the p, part of pairs, which have the frequencies
around the singular value Dy. The amplitude of the second peak of the modulated
PELDOR signal has the value of around 0.2. Note that the modulation amplitude
decreases slowly, when the time T increases. Similar observations were obtained for
all other distances in the interval {1 nm, 10 nm}.

Due to the singularity of F(Q), one can expect that the (cos DT) modulation
frequency has to tend to Dy, when ¢ — oo. At finite 7 values, the oscillations of the
average cosine (cos(Dt)) always manifest contributions of the pairs with different
dipolar frequencies from the narrow p. part of the distribution (Fig. 2). The p. part
of the distribution depends on the observation time. Suppose that the frequencies €2
in the p. part of the distribution are in the interval Q{Dy — 0, Dy + 0}. The pairs
with the frequencies {Dy — 6, Dy + d} contribute to the average cosine (cos(Qr))
constructively, i.e., are not destroyed due to the destructive interference, if the
condition ot < 1 is fulfilled. Thus, when the time ¢ (¢ is T or 7 in the PELDOR
experiment) increases, the effective width of the constructive part of the frequency
distribution should decrease (p. decreases). As a consequence, the oscillation
(modulation) amplitude should decrease, when ¢ increases (Fig. 3). The numerical
calculations show that the “starting” value of the oscillation amplitude is close to
0.2 for different values of the distance between partners in the pair. On the basis of
this observation, we suggest that p. < 0.2. We calculated separately contributions to
the average cosine (cos(Dt)) from the pairs around the equatorial plane for the
interval of the angle 0{n/2 — Af, n/2 + A6}, i.e., the pairs from the constructive,
Pe, sub-ensemble of the pairs (see Fig. 2), and the rest pairs with the angle 0 in the
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Fig. 3 Average cosine (cos DT) calculated for r = 3 nm. The oscillation period is close to Ty = 27/
Dy = 547 ns

intervals 6 {0,7/2 — A8} and 0 {n/2 + Af, =}, i.e., the pairs from the destructive,
pa> sub-ensemble. The calculation results for A6 = 0.2 are given in Fig. 4.

When ¢ > tgecay, the pairs around the equatorial plane with the angle 0 in the
interval {m/2 —0.2,7/2 + 0.2} produce the oscillation pattern close to that
expected from the total ensemble of pairs (compare the dotted and solid lines in
Fig. 4). On the basis of this result, we assume that the PELDOR signal observed
after the early stage of the fast decay, at # > #4ccay, is mainly produced by the pairs
with the angle {n/2 — 0.2,7/2 + 0.2}.

The observation that p. < 0.2 is of importance. It means that only 20 % of the
pairs excited by the MW pulses in the PELDOR experiments are manifested in the
oscillation effect as a result of the constructive interference of their contributions.
The contributions of 80 % of the pairs to the PELDOR signal decrease rather fast
due to the destructive interference.

Equation (22) can be presented in terms of Fresnel integrals [39]

cos 2 FresnelC(/y) + FresnelS(/y) sin

cos DT) = ) (23)
( ) NG
where y = 6DyT/n. Equation (23) has an asymptotic value at DyT > 1.
T T
Dy [ cos(Dur 5. 24
(cos Dty — 12D0tCOS of =3 (24)

Asymptotically, the oscillation frequency tends to the singular frequency D.
Note that the phase of the asymptotic oscillations is shifted by n/4. This phase shift
reflects the asymmetry of the frequency distribution with respect to Q2 = Dy (Fig. 2).

The average cosine (cos(DT)) gives the contribution of the intra-pair dipole—
dipole interaction to the free induction decay signal. It is worth to note that the free
induction decay signal of the nuclear magnetization in crystals induced by the
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1,0 4

<cos(DT)>

T T 1
0 1000 2000 3000 4000
T (ns)

Fig. 4 Contributions of the pairs with the angle 0 in the intervals 0{n/2 — 0.2, /2 4+ 0.2} (dotted line)
and of the rest pairs with the angle 0 in the intervals 6{0, n/2 — 0.2} and 6{n/2 + 0.2, n} (dashed line).
The exact dependence for the average cosine (cos(DT)) calculated for all angles 0{0, n} (solid line,
compare with Fig. 3). Calculations were performed for r = 3 nm

225 .
—a"° 2 sinbr
bt

dipole—dipole interaction is phenomenologically described by €
a and b are fitting parameters (see [35], Eq. (IV.51)).

Note that (cos(D(r)t)) is the kernel of the integral equation for determining the
distribution of the distance between spin labels [16]. Keeping this in mind, we found
the approximate expression for (cos(Dt)) (23). We propose to approximate the exact
function Eq. (23) by the asymptotic value Eq. (24) in the region ¢ > *. The value #*
is to be specified in more detail. Equation (24) does not describe the behavior of the
average cosine (cos(Dt)) at Dot < 1, moreover, it diverges when Dot — 0. At
t < r*, the PELDOR signal decreases sharply due to the destructive interference of
the broad frequency distribution. We suggest to describe the PELDOR signal at
t < r* using the phenomenological function

, where

sin(nDot)

Q1) =
(cos Qr) 2Dot

(25)

This choice was dictated by the fact that the p, part of the frequency distribution
(Fig. 2) consists of the two broad flat distributions in the intervals {0, Dy} and {D,
2Dy}. The function [Eq. (25)] is the Fourier transformation of the rectangular
distribution with an effective (fitting) width nDy: f(Q) = (1/(nDy)) in the interval
Q{0,nDy}.

At the first glance, Eq. (25) gives the time dependence, which is similar to the
exact behavior of the average cosine for the pairs in disordered systems Eq. (23). In
both cases, there is a sharp decay at the early stage. At t > n/D,, there are
oscillations, the amplitude of which decreases. But these dependences have
important differences. According to Eq. (25), the oscillation amplitude decreases
much faster than that from the exact calculations. According to Eq. (24), the
amplitude of the average cosine (cos(Dt)) decreases as 1/4/7, while according to
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Eq. (25), the amplitude decreases as 1/¢t. Another important difference concerns the
oscillation frequency. Numerical calculations for different values of the fitting
parameter 1 showed that the early stage of the fast decay of the average cosine
(cos(Qr)) is described reasonably well by Eq. (25) at # = 1.5 (Fig. 5). Thus, at
t < t*, we approximate the average cosine in the form of Eq. (25). At ¢ > t*, the
average cosine Eq. (23) can be described well by Eq. (24).

Using numerical calculations, we found that the average cosine (cos(Dt)) [Eq.
(22)] can be approximated with the fitting parameters * = 2.5/Dy and n = 1.5 as

(cos DT) =~ <X(T) - X(T - 2)) (M—F 0.1)

Dy 1.5Dyt

2.5 T T
T-22) (DT—f). 2
“‘( DO) 12D,T P\ Ty (26)

Here, y(T) is the Heaviside function.

Numerical calculations performed for different distances r between partners in
the pair show that the approximate (semi-phenomenological) Eq. (26) coincides
reasonably well with the rigorous theoretical result Eq. (23) (compare two curves in
Fig. 5).

Several features of the average cosine (cos(DT)) can be used to find the dipolar
frequency D, of the pairs from the PELDOR experiments. One option is the
oscillation period of the PELDOR signal at t > r*. Another option is the oscillation
amplitude. The shape of the fast decay can be used as well to obtain the frequency
Dy (see, e.g., [6]). For example, after the fast decay, the first intersection of the
average cosine (cos(DT)) with the abscissa occurs around #q = 2.15/D.

To test the accuracy of the approximation Eq. (26), we found the Fourier
transformations of Eq. (23) and approximate Eq. (26) functions (Fig. 6). It is seen in
Fig. 6 that the Fourier transformations of Egs. (23) and (26) are in reasonable agreement.
Thus, Eq. (26) is a good approximation to the exact function given by Eq. (23).

1,0 4
0,8 4
0,6 1 }

044 |

v(T)

0,2 4

0,0 4

-0,2

T T 1
0 1000 2000 3000
T (ns)

Fig. 5 Comparison of the dependences calculated using Eq. (23) (solid line) and Eq. (26) (dashed line).
Calculations were performed for r = 3 nm, * = 2.5/D, ns
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Fig. 6 Power Fourier transform of Eq. (23) (thin line) and of Eq. (26) (thick line). Calculations were
performed for » = 1.5 nm (a) and r = 3 nm (b). The dipolar frequencies are Dy = 96.88 x 10° rad/s
and Do = 12.11 x 10° radss, respectively

By substituting Eq. (26) into Egs. (1), (12), (16)—(18), we obtain the contribution
of the intra-pair interaction to the three-pulse ELDOR signal for disordered systems.

In the case of the spin labels R, and R, with non-overlapping EPR spectra
considered in [16] (p2(w4) = 0), the PELDOR signal can be approximated as

(V(T)) = Vol2) (1 —pa+pa (X”) ot (T B g))

0.9sin(1.5DoT) 2.5 P T
T —— 1 T—— B — DT ——| .
* < 1spgr o) e\ T 121)0TCOS< 0 4)
(27)
When T > t* = 2.5/D,, the PELDOR signal [Eq. (27)] is reduced to
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V(T 7)) = Vo(1) <1 — DB JFPB\/lz—g;;cos(DoT — Z))

= Vo(t) (1 = ps + pupe(T) cos (DoT = ) ), (28)

where V(1) describes the primary spin echo signal, and

pe(T) =

Y4
12DoT

(29)

is the statistical weight of the pairs which continue to interfere constructively.
According to Eq. (28), the oscillation amplitude manifested in experiment is
determined not only by the probability pg of the spin inversion by the MW pump
pulse but also by the statistical weight p. of the pairs, which have the oscillation
frequency around the singularity of the frequency distribution.

In the case of pairs R;R, with the overlapping EPR spectra when p,(wa) # 0, the
manifestation of the dipole—dipole interaction in the PELDOR experiments is
described by the following equations.

For the spin label R in the pair R|R; [see Eq. (12)]

(AT, = 1= o) = pafon)
ton)( (10 - (—D—S))(%Hn)
o) for-3)
+pa( w3)<(7(T) (T - %)) (—0‘9 Sil.ls(lD':TDoT) + 0.1)

2.5 T
+,{(T —0> IZDOTCOS(DOT_Z>>}

When T > tgecay, Eq. (30) is reduced to

(Vi(T, 7)) = vi(1 = p2(®a) — p2(wB) + pa(@a)pe(t) cos(Dot — 1/4)
+ p2(wB)pe(T) cos(DyT — m/4))). (31)

For the spin label R, in the pair R\R, [see Eq. (16a)], we have the similar result,
only the indices 1 and 2 have to be interchanged [compare Eq. (16) and (16a)].
When T > tgecay, Eq. (16a) results in

(Vao(T, 7)) = v2(1 — p1(wa) — p1(ws) + p1(wa)pe(t) cos(Dot — 7/4)
+ p1(wp)pe(T) cos(DoT — m/4))). (31a)

The average oscillation pattern of the primary spin echo signal has the form [see
Eq. (17)]
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(Vo()) = vi(1 = p2(wa)) +v2(1 = pi(wa)) + (Vip2(@a) + vapi(wa)) (2((7)
— y(t —2.5/Dy)) (0.9 sin(1.5 Dyt) /(1.5 Dyt) + 0.1)

+ y(t = 2.5/Dy) (n/(12Dy7))"/? cos(Dyt — 7/4)) (32)
When T > tgecay, Eq. (32) is reduced to
(Vo(1)) = vi[l = pa(@a)] + v2[l — pi(wa)] + [vipa(wa)

+ vapi(oa)]y /TZOTCOS (Dor — g) (33)

, I}th follows from the numerical calculations that the decay time fgecay ~ 32—17;0 =
3qeh

It increases as 7, when the distance between partners in the pair increases. For
example, at ¥ = 4 NM fgecay = 200 ns, and at ¥ = 8 NM fgecay ~ 1600 ns.

The results concerning the modulation of the PELDOR signal from the pairs of
spin labels allow us to state the following.

In the case of single crystals, the oscillation frequency of the PELDOR signal is
angular-dependent [see, e.g., Eqgs. (1) and (2)] and the oscillation amplitude
normalized to its initial value (at T = 0) is the probability of the spin inversion by
the MW pump pulse.

In the case of disordered systems, the PELDOR signals from the randomly
oriented pairs of the spin labels interfere. Around 80 % of the pairs exhibit the
destructive interference and the rest 20 % contribute to the constructive interfer-
ence. The oscillation frequency of the PELDOR signal is close to the characteristic
value Dy = %

In contrast to the spin labels with non-overlapping EPR spectra [see Eq. (1)], the
PELDOR signal V(T,1) # Vo(r)V(T) in the case of the spin labels with
overlapping EPR spectra.

The oscillations of the PELDOR signal have the phase shift (n/4) [Eq. (33)] (see
Fig. 7)

Toan = Ty + —— = 34
max — 10 + m - m ( )

Here, Ty, = 2n/D, is the oscillation period. Note that all considerations above
were done under the assumption that the MW pulses are “instantaneous”. In a real
situation, when the pulses have finite durations, it might be not so straightforward to
subtract this phase shift in experiment (see, e.g., [29]).

2.2 Effect of the Interaction Between Pairs on the PELDOR Signal Decay

The inter-pair dipole—dipole interaction between spins in the magnetically diluted
solids results in the additional decay of the PELDOR signal. When the EPR spectra
of a pair of spin labels R; and R, do not overlap, the effect of the inter-pair
interaction on the PELDOR signal was given in Ref. [16]. Suppose that spins R, are

@ Springer



Three-Pulse ELDOR Theory Revisited 589

r_A\ 0,44 -
a | T,+1/(4D,) T,=2n/D,

-0,22 max

Fig. 7 Illustration of the phase shift of the PELDOR signal oscillations

excited by the MW pulses with the frequency wa forming the PELDOR signal and
spins R, are excited by the MW pump pulse with the frequency wsg. In this case, the
effect of the inter-pair interaction was obtained neglecting the spatial correlation of
the spin labels in pairs. Under these conditions, the effect of the inter-pair
interaction on the PELDOR signal is given as [16].

Vinter = Vinter,R1 Vinter,RZ .

The term Vi1 arises due to the contribution of the inter-pair interaction of
spins R—R;* (here two R, spin labels belong to different pairs R|R,, see Fig. 8)

Vinter,A(T) = e—bAr7 (35)
8n2g2ﬁ2

ba = —2"pi(0a) Coair-

A 9\/§h Pl( A) p

Here, g, is the g-factor of R, Cpy; is the total concentration of the pairs R R,.
Note that the total concentration C of spin labels is C = 2C;,.

The term Vi ro arises due to the contribution of the inter-pair interaction of
spins R—R,*

Vimer,B (T) = eibBTa (36)

8n2g18:
bg = Wﬁz(wB)Cpmr-

Parameters b, and bg in Eqs. (35, 36) give the echo signal decay rates due to the
instantaneous diffusion mechanism induced by the inter-pair interactions. They
depend on the concentration of the pairs and on the efficiency of the spin excitation
by the MW pulses [8—11, 24].

The results Egs. (35) and (36) can be rather straightforwardly generalized to the
case of the pairs, when the EPR spectra of partners overlap. In this case, each
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Fig. 8 Scheme of the two interacting pairs R|R,

paramagnetic center can be excited by both MW pulses with the frequencies w4 and
wg, and both spin labels contribute to the PELDOR signal. Therefore, we have to
calculate separately the contribution of spins R, and R, to the signal and then to sum
them. To simplify the consideration, let us assume that spin labels are identical, and
the EPR spectra of R; and R, coincide. The expressions below in this section are
presented for the case of identical spin labels. In this case, g-factors of partner labels
are equal and the two spins R; and R, in a pair give the same contributions to the
PELDOR signal. Under these conditions, the effect of the inter-pair interactions on
the decay of the PELDOR signal can be presented as [8—10, 16]

Vinter = <H V (e, 9k>>7 (37)

where r; is the distance between a given spin and the k-th spin in the sample; the
product includes all spins except for two spins in the pair under consideration, and
(...) means averaging over the spatial distribution of spins. The effect of the
interaction between the given spin and any pair on the PELDOR signal depends on
the spatial correlation of the spin labels in that pair. This problem was discussed in
[11]. If this effect of the spatial correlation of spin labels inside pairs is neglected,
Eq. (38) can be written as

Viner = (TT V(s 00)) = [TV, 00) = (V. 0™, (38)

where N, is the total number of spin labels in the sample, V(r, 0) describes the effect
of the interaction between two spins on the PELDOR signal, which is given by
Eq. (16).

By substituting Eq. (16) into Eq. (38) and using the Markov method [8, 38], one
obtains the effect of the inter-pair interaction on the decay of the PELDOR signal
[note that we consider the case when g-factors of the labels are equal, g, = g, = g,

Pi(wa) = pa(wa) = p(@a), pi(wp) = pr(wp) = p(wp)]

Vinter = e—b(wA)re—b(wB)T, (39)
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2 202

bwa) = 8’; jg,f p(a)C.
2
b(eg) = 8m’g*

= WP(CUB)C,

C = 2C,4; is the total concentration of the spin labels.

Here, p(wg), F = A, B, denotes the probability of the inversion of the identical
spins R, and R, by MW pulses with the frequency wg [see Eq. (16)].

Equation (39) is derived under the assumption that the spatial correlation of the
spin labels in pairs can be ignored. When the spatial correlation is taken into
account, the Viyer = (] V(rx, 0x)) (37) can be treated as follows. Let us assume that
different pairs are not correlated in space but the labels are spatially correlated
inside pairs. Then, Eq. (37) can be rewritten as

Vinter = H<Vpair(rka 9k)> = <Vpair>Npmr- (40)

Here, V- presents the effect of the dipole—dipole interaction between the given
spin and any pair on the PELDOR signal, Ny, is the total number of pairs in the
sample. To find (Vi ), let us consider a given spin label, e.g., Ry, of the pair, which
interacts with another pair R;*R,* in the sample. The effect of this interaction on the
PELDOR signal is presented as a product of terms caused by the interactions R,—
R,* and R,—R,* (Fig. 8). Using Eq. (16), the effect of the interaction R,—R;*on the
PELDOR signal can be written as

Vil(T, 1) = 1 = p(wa)(1 — cos(D(r1)7)) — p(ws)(1 —cos(D(rn)T)).  (41)
In this case, the dipole—dipole interaction is determined by the r; vector [see Fig.
®)].
The effect of the interaction R,—R,* on the contribution of the spin R to the
PELDOR signal is given by the expression similar to Eq. (41)

Via(T,7) = 1 — p(wa)(1 — cos(D(r2)1)) — p(wp)(1 — cos(D(r,)T)). (42)

Note that in this case, the dipole—dipole interaction is determined by the r, vector
(see Fig. 8).

The total effect of the interaction with the pair R, *R,* on the R, spin contribution

to the PELDOR signal is the product of the expressions given by Eqgs. (41) and (42)

VAT, 1) pair = {1 = p(@a) (1 = cos(D(r1)7)) — p(wp)(1 — cos(D(r1)T))}
X {1 = p(oa)(1 = cos(D(r2)7)) = p(wp)(1 = cos(D(r2)T))}-

Note that when the spin labels R; and R, are not identical, one has to calculate
separately the contribution of both partners in the pair to the PELDOR signal. The
effect of the interaction between the spin R, and the pair R;*R,* on the PELDOR
signal caused by the spins R, can be written using Eq. (16a) and it is given by the
expression similar to Eq. (43). We consider here the situation of the identical spin
labels R so that in the case under consideration the average contributions to the
signal of the spin labels R, and R, are equal.

(43)
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Two vectors r; and r, are correlated because their destination points should
match the condition that the length of the vector r = r; — r; is fixed. The average
value of Eq. (43) (V(T, 1),,;,) is found with allowance for this correlation of r; and
r,. To proceed further, we introduce two vectors: r. = (r; + r;)/2 andr =r; — r».
It is shown in Fig. 8 that r. connects the spin R; with the middle point between the
two spins R;* and R,*, while the second vector r connects two partners in the pair
R{*R,*. These vectors are determined by their lengths and their polar and azimuthal
angles

re = re(sin @ cos ¢, sin 0 sin @, cos 0),r = r(sinocos 5, sinasin §,cos o).  (44)

The manifestation of the dipole—dipole interaction in the PELDOR signal Eq.
(43) is determined by the lengths of the vectors r; and r, and cosines of the angles 0;
and 0, between these vectors and the direction of the external magnetic field. Using
Eq. (44), we obtain

2
r = \/’12 + rz + rer(cos @ cos o+ cos(p — f) sinOsina),

2
P = \/’12 + rz — rer(cosBcos o+ cos(p — f) sinBsina), (45)

1
cosf; = — (rccos(9+£cosrx>,
r 2

1
cos ) = — (rc cos 0 —gcos cx)
rn

Using Eq. (45), we find D(r;) and D(r;) in Egs. (41) and (42)

222
D(rn) = ghTe (l — 3 cos? 01),
1
22
D(ry) = % (1 —3cos”6,). (46)
2

Using Egs. (41)-(43), (45), and (46), we find the effect of the inter-pair
interaction on the PELDOR signal [see Eq. (40)]

V(T, ) pir= 1 — w1 — wa + wiws, (47)
where
wi = p(wa)(1 — cos(D(ry)t) + p(wp)(1 — cos(D(r)T),
wy = p(wa)(1 = cos(D(r2)t) + p(wp) (1 — cos(D(r2)T). (48)
The average value of Eq. (47) is
(VT 0 par) = (Voair) = 1= (1) = (w2} + (wiws). (49)

Note that (...) in Eq. (49) means the integration over ¢ and o in the interval (0,
m), over ¢ and f§ in the interval (0, 27) and the integration over r, values in the
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interval (0, co). The total effect of the inter-pair interaction on the PELDOR signal
can be presented as [see Egs. (40), (48), and (49)]

(Vinter) = {1 = (w1) — (wp) + <W1W2>}Npuir

1 Npair
= {1 s rdrp/sm9d9 /dgo /smfxdoc /d[)’(w1+w2fw1w2)}
= Pﬂ“ / 2drc/sm9 d@/dq)/smu do /d[)’ w1+ wa — wiws)
Npalr

Npair

(50)
The asymptotic value of (50) at Np,r — oo is
Vir = e(4:“‘f Zdrpfqmﬂdf?fd(p fsmxda fd/i Wi +Wwa—wiwa)
— o bloa)t=b(ws)T mgf Zdrrfbmed@qu)fsmacdxfd/} wiws) (51)

Here, the term e?(®A)*=(@8)T describes the effect of the inter-pair interaction on the

PELDOR signal, when the spatial correlation effects are neglected [see Eq. (39)].

To compare the contributions of the correlation term w;w, and the term w; + w,
in the exponent of Eq. (51), we calculated their values averaged over all possible
orientations of the vectors r; and r, at the fixed r. value. Denote the average values
(wy +wy) = (1/(167%)) (W1 + W) and (wyw,) = (1/(167%))W W, where

W1+W2:/sin@d@/d(j)/sinocdoc/dﬁ(wl+wz),
Wi W, :/sin@d@/dq’)/sinada/dﬁ(wlwz), (52)

Here, the term W, + W, is due to the inter-pair interaction in the absence of the
spatial correlation of spin labels inside the pair. The additional term W, W, appears
due to the spatial correlation of spin labels in pairs. The correlation means that the
distance r between the two labels in the pair is fixed, while the orientation of the
vector r (see Fig. 8) is random. It is expected that this correlation effect should
decrease when . is large enough. To get better insight in the role of the spins spatial
correlation, we calculated numerically the W; 4+ W, and W W, values for two r,
values: r. = 2r and r. = 5r (Fig. 9). Figure 9c, d shows that in the case r. = 5r, the
correlation term W;W, is two orders of magnitude less than the term W; + W,.
Thus, in this case, the correlation effect is negligible. In the case r. = 2r (see
Fig. 9a, b), the correlation term W; W, is only four times less than the term W; + W,
related to the pairs of the spatially non-correlated spin labels. This means that the
spatial correlation of the labels in the pairs affects the PELDOR manifestation of the
inter-pair dipole—dipole interaction when the distance between the pairs is
comparable with the distance between partners inside the pair. We suppose that
the concentration of the pairs is low so that the statistical weight of the cases, when
two pairs are at the distance comparable with the distance between partners inside
the pair, is negligible. Under this condition, it is correct to describe the contribution
of the inter-pair interaction to the PELDOR signal by Eq. (39), which was obtained

@ Springer



594 K. M. Salikhov et al.

a 1.0, b
0,20
= 081 0,151
+_ =
z 2
061 0,10
0,05
0,4 ‘ ‘ ‘ ‘ ‘ : : : : ‘
0 200 400 600 800 1000 0 200 400 600 800 1000
T (ns) T (ns)
c d
0,0006 -
0,035
0,0005 -
0,030
~ ~ 0,0004 -
% =
- 0,025 - -
= 20,0003
0,020 1 0,0002 1
0,015 T T ' ' 1 0,0001 . ‘ ‘ ‘ ‘
0 200 400 600 800 1000 0 200 400 600 800 1000

T (ns) T (ns)

Fig. 9 Dependence of the correlation term W;W, and the term W; + W, on T. Calculations were
performed for p(wg) = 0.2, F = A, B, r = 2 nm. Curves (a, b) correspond to the case r. = 2r; curves (c,
d) correspond to the case r. = 5r

under the assumption that any correlation in the spatial positions of the spin labels in
the pairs is neglected. However, this correlation effect is of importance when
considering manifestations of the dipole—dipole interaction in the PELDOR signal
of the spin labels in groups, since the spin labels in the group have a certain rigid
architecture and all distances between spins are comparable with each other. This
item will be further discussed below (Sect. 2.5).

2.3 Effect of Random Flips of Spins

In the previous Sects. 2.1 and 2.2, it was assumed that the spatial positions of the
spin labels and the distances between labels do not change, and the longitudinal
projection Sy of spins during the free spin evolution in the intervals between the
MW pulses is conserved. However, in real systems this assumption may be violated
due to the spin and/or molecular dynamics. Note that the effect of the dipole—dipole
interaction on the free induction decay, primary spin echo and stimulated electron
spin echo signals, when the longitudinal projection of spins changes randomly, was
studied in [8-13, 24, 41, 42].

Let us consider paramagnetic particles with spins 2. Suppose that the electron
spins can flip (flop) with the rate W in a random manner. These spin flips can be
induced either by the electron spin—lattice interaction or by the electron spin
diffusion. The random flips of the electron spins induce fluctuations of the local
magnetic field, i.e., the spectral diffusion, which operates alongside with the
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instantaneous spectral diffusion induced by the MW pulses which rotate the electron
spins. Under these conditions, the dipole—dipole interaction between the spin labels
is manifested in the spin echo experiments even without the MW pump pulse (this
subject was studied comprehensively in [8—13, 24, 41, 42]).

It was shown in Sect. 2.1 that in the general case, the four excitation patterns
contribute to the PELDOR signal (see Table 1). If the MW frequencies wa and wg
are separated well, the probability for any spin to be inverted by the MW pulses with
both frequencies wa and wp can be neglected. In this case, only three inversion
patterns contribute to the PELDOR signal [see Eq. (14)]. In the presence of spin
flips (flops), the same three inversion patterns contribute to the PELDOR signal. But
the shapes of the PELDOR signal induced by these inversion patterns change
compared to Eq. (14). These patterns and corresponding contributions to the
PELDOR signal are summarized in Table 2.

The shapes of the PELDOR signal (Table 2) were obtained using the results of
[24], where the kinetic equations were obtained and solved for the spin density of
the spin-label pairs in the situation, when the spins randomly flip (flop) due to the
spin—lattice interaction [20, Egs. (9)-(13)].

For the inversion pattern no.l (Tables 1 and 2), the partner spin in the pair is not
inverted by the spin echo-forming pulse at + = 7 (Fig. 1). As a result, the dipole—
dipole interaction between partners in the pair is not manifested in the spin echo
signal in the absence of the random spin flips (flops). Therefore, in this case, the
shape of the PELDOR signal is J; = 1 (Table 1). In the presence of the random spin
flips (flops), the dipole—dipole interaction in the pairs is randomly modulated. As a
result, the spectral diffusion occurs and the dipole—dipole interaction is manifested
in the spin echo signal [8—13, 24, 41]. The shape of this contribution to the echo
signal, J{(W,), was calculated in [24, Eq. (16)] (Table 2). It is worth to note that
J1(W,) reveals the damped oscillations with the dipolar frequency.

For the inversion pattern no. 2 (Tables 1 and 2), the partner spin in the pair is
inverted by the spin echo-forming pulse at + = 7 (Fig. 1). As a result, the dipole—
dipole interaction between partners in the pair is manifested in the spin echo signal
even in the absence of the random spin flips. In this case, the shape of the PELDOR
signal is J, = cos(D7) (Table 1). This term reflects the fact that there are pairs, in
which both partners are excited by the echo-forming MW pulses, so that the dipole—
dipole interaction induces the electron spin echo modulation due to the instanta-
neous spectral diffusion [8—12, 24]. The spectral diffusion induced by the random
modulation of the dipole—dipole interaction in the presence of the random spin flips
changes the shape of the echo signal. The shape of this contribution to the signal,
Jo(W,), was calculated in [24, Eq. (17)] (Table 2).

For the inversion pattern no. 3, the shape of the PELDOR signal J3(W,) was
found in the present work using solutions of the kinetic equations for the spin
density matrix of the spin-label pairs [24]. The spin density matrix of the pair p in
the Liouville presentation was written as

p(27) = Lo(1)P12(m)Lo(v — T) P2 () Lo(T)P1(7/2)p(0).

Here, p(0) is approximated as p(0) = (1/4)(1 — (hwo/kTo)(S1z + S2z)) [241, To
is temperature, oy is the Zeeman frequency, P;(n/2) is the super operator of the
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inversion of the spin Ry, P,(m) is the super operator of the inversion of spins R; and
Ry, Py(m) is the super operator of the inversion of the spin R,, Ly(f) is the super
operator of the free spin evolution between the actions of the MW pulses in the
course of the three-pulse ELDOR experiment (Fig. 1). Using the solution of the
kinetic equation for the spin density matrix [see [24], Egs. (12) and (13)], we found
the shape J3(W,) of the contribution to the PELDOR signal (Table 2). It was
calculated as J3(W,) = Tr((S1,) p(27)). Note that J; = 1, J, = cos(Dr), J3 =
cos(DT) when W, = 0 (see Table 2).

The contribution of the spin label R, to the PELDOR signal can be obtained from
Table 2 by interchanging indices 1 and 2.

The PELDOR signal of the pairs R(R, is

V(T,7) = vi[(1 — p2(wa) — p2(wB))J1(W2) + pa(wa)J2(W2) 4 pa2(wp)J3(Wa)]
+2[(1 = pi(@wa) — pi(w))J1(Wi) + pi(wa)J2 (W) + p1(wp)J3(Wh)].
(53)

If the EPR spectra of R; and R, are separated well and do not overlap, so that
p2(wa) = 0 and v, = 0 (we suppose that spins R; produce the PELDOR signal),
then the PELDOR signal is

V(T,t) = vi[(1 — pa(wB))J1(W2) + p2(wp)J3(W2)]. (54)

These results show that the random spin flips affect modulation of the PELDOR
signal induced by the dipole—dipole interaction. The modulation effect should
disappear, when the spin flips rate becomes large enough, i.e., when W > |D|/2. In
this case of the fast random spin flips, an additional spin flip induced by the MW
pump pulse is of no importance, and the PELDOR effect disappears. Under this
condition, the intra-pair dipole—dipole interaction gives the additional decay of the
PELDOR signal exp(—Dz‘c/(4 W)), which does not contain the dependence on
T (here, T is the time when the MW pump pulse is applied in the three-pulse
ELDOR experiment, see Fig. 1).

When the spin flips rate is small, i.e., W <|D|/2, the PELDOR signal oscillation
frequency decreases oy ~ D — 2W? /D. Due to this red shift of the oscillation
frequency, the apparent (determined in PELDOR experiments) distance between
partners in the pair can be larger than the real distance. It is well known that the
slow variation of the resonance frequency (induced in the case considered by the
spin flips) broadens the spectral lines [38] and this line broadening is Aw ~ W.
Accordingly, the increase in the spin flip rate decreases the oscillation amplitude of
the PELDOR signal and smears out the oscillations. Note that these distortions of
the PELDOR data are similar to the consequences of the distribution of distances
between partners in pairs. Note that for the pairs, which are characterized by the
magic angle, when 1 — 3cos®0 = 0, the dipole—dipole interaction frequency D = 0.

In the absence of the MW pump pulse, the contribution of the intra-pair
interaction to the primary spin echo signal is given by Eq. (53), if
p1(wp) = p2(wp) = 0. Then, Eq. (53) is reduced to

Vo(t) = vil(1 = p2(@a))J1(W2) + pa(wa)J2(W2)]
+v2[(1 = pr(wa))J1 (Wh) + pi(@a))2(W1)] (55)
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Note that the PELDOR signal [Eqgs. (53) and (54)] cannot be presented as the
product of the primary spin echo signal Vjy(t) and the MW pump effect V(T). These
results show that the spin flips can change the oscillation amplitude and shift the
oscillation frequency of the PELDOR signal. Figure 10 illustrates how random spin
flips can affect the three-pulse PELDOR signal. Calculations were performed using
Eq. (54).

It can be seen in Fig. 10 that the random spin flips can essentially disturb the
oscillation amplitude of the PELDOR signal. In the presence of random spin flips,
an additional spin flip induced by the MW pump pulse in the course of the PELDOR
experiments becomes of less importance, when the rate of random flips increases.
As a result of this effect, the amplitude of the PELDOR signal and the oscillation
amplitude become less (see Fig. 10). This decrease in amplitudes was expected.

2.4 Effect of the Conformational Transitions

Due to the molecular motion including the conformational transitions of molecular
systems, the dipole—dipole interaction can be randomly modulated as well. This will
also affect the manifestation of the dipole—dipole interaction of the spin labels in the
PELDOR signal. The conformational transitions produce the random change of the
vector r which connects the spin labels in the pair.

Due to the anisotropy of the g-tensor of spin labels, the conformational
transitions can change the resonance frequencies. As a result, the same MW pulse
can excite different EPR frequency regions of the spin labels in the course of the
molecular conformational transitions. This effect is disturbing the PELDOR signal
formation. To illustrate how the molecular conformational transitions affect the
PELDOR signal, let us consider a simple model situation, when the change of the
spin-label resonance frequencies as a result of the conformational transitions can be
ignored. This model situation refers to the spin labels which have practically
isotropic g-tensors and which have relatively small anisotropic terms in their
hyperfine interaction.

Suppose there are random jumps with the average frequency W between two
conformations so that the distance r between spin labels and the orientation of the
vector r change randomly. In this case, the dipolar frequency D can be considered as
a stochastic process D(f). Note that manifestations of the spectral diffusion in
stationary and pulse magnetic resonance experiments are described in many reviews
and monographs (see, e.g., [8§-10, 38]).

Let us assume that the distance between two-spin labels in these configurations is
ry and r,. Then, the corresponding dipolar frequencies are
_ g1825°(1 —3cos? ) _ 21825°(1 — 3cos? 0)

3 and D, = . (56)
1

D
! hr;

Let us denote

Dy +Ds

DD,
5 = :

A 5 (57)

Dy,

@ Springer



Three-Pulse ELDOR Theory Revisited 599

T T 1
0 1000 2000 3000
T (ns)

Fig. 10 Effect of spin flips on the contribution of the dipole—dipole interaction to the PELDOR signal for
the pairs when the EPR spectra of partners do not overlap (the distance between partners in pairs
r = 4 nm). Dashed line—the static limit, W = 0 (compare with Fig. 4). Solid line—W = 3 x 10° s71

The dipolar frequencies can be written as
D, =D+ A, Dy =Dy, — A. (58)
Thus, the dipolar frequency can be presented as a sum of the average frequency
D> and the stochastic process A(r)
D(1) = D1z + A(t). (59)
Due to the conformational transitions, A(¢) jumps randomly between the values A
and —A with the average frequency W. The random frequency shift A(z) (the
spectral diffusion process) induced by the conformation transitions is similar to the
modulation of the dipolar frequency shift caused by the random spin flips
considered in the previous Sect. 2.3. Therefore, we can use the results presented
above [Egs. (53) and (54)].
The PELDOR signal of the pairs R{R; is
V(T,7) = vi[(1 — p2(wa) — p2(@8)) 1 (W) + p2(@a)J2(W) + p2(ws)J3(W)
+a[(1 = pi(wa) = pi(ws))J1 (W) + p1(wa)J2(W) + pi(wB)J3(W)].
(60)
If the EPR spectra of spins R; and R, do not overlap, the PELDOR signal is (we
assume that spins R, produce the PELDOR signal)

V(T,7) = vi[(1 = pa(wB))J1(W) + pa(ws)J3(W)]. (61)
Here, we introduced the following notations:
Ji (W) = (cos X(1)),

t

x@:wum/waW@

0

where s(f) = —1 in the interval {0, t}, s (f) = 1 in the interval {7, 21},

@ Springer



600 K. M. Salikhov et al.

J2(W) = cos(Dia7){cos X (1)),
where s(f) = 1 in the interval {0, 27},
J3(W) = cos(D12T){cos X (1)),

where s(f) = —1 in the interval {0, T}, s(f) = 1 in the interval {7, t}, s(f) = —1 in
the interval {7, 27}.

Here, (...) means averaging over all realizations of the stochastic process A(7).
For this particular process of the spectral diffusion, the average values J{(W) and
Jo(W) were calculated in [34, Eqgs. (10) and (11)]. The average value J3(W) was
calculated in the present work. The results are
2

(W) = eZW’{l + gsin(ZQr) 221 sin (Qr)}
J2(W) = cos(Djpt)e *"* [cos(ZQt) + gsin(er)} ,

—2Wr 2 w .
J3(W) = cos(DaT)e 2V [(1 + Q2> <cos(2QT) Qsm(2QT)>

(cos(zgr) gsin(ZQr)) VQV<1+ Qj) Sin(2Q('E—T))}, (62)

2
0

where 0 = (A/2)*—W?
The ratio of the rate W to the frequency jump |A| may differ depending on the

distance between the two spin labels in the pair and on the orientation of the pair
with respect to the external magnetic field in both conformations.

jl(W) — 672W1:’

J2(W) = cos(Da1) cos(At)e 2V = %e’wr [cos(D;T) 4 cos(D,1)],

J3(W) = cos(D,T) cos(AT)e V" = %e’zwr [cos(DT) + cos(D,T)]. (63)

Thus, in the limit of the relatively slow conformational transitions, the PELDOR
signal of the spin-label pairs will exhibit oscillations with the dipolar frequencies of
all conformations. The oscillation amplitude is reduced due to the finite lifetime of
the conformations of the molecular structure, where the spin labels are embedded.
The manifestation of the molecular motion including the conformational transitions
in the shape of the EPR spectra is studied well. It is well known that the slow
molecular motion leads to the broadening of the EPR spectral lines. Note that there
is also the shift of the resonance frequencies.

In the case W > |A|, Eq. (62) tends to

J1<W) =e W,
(W) = cos(Dyp1)e 7 (64)
J’;(W) = (D12T)e awt
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In the limit of the rather fast molecular transitions, the PELDOR signal oscillates
with the frequency, which is the average value of the dipolar frequencies of both
conformations. This fact is the manifestation of the well-known exchange narrowing
effect in the EPR spectroscopy.

The frequency shift A depends on the variation of a length of the vector r between the
spin labels and its orientation when the molecular conformation changes. Therefore, the
results presented in Egs. (62)—(64) should be averaged over all these orientations.

The specific manifestations of the molecular transformations in the PELDOR
signal can be helpful. Let us assume that two oscillation frequencies were detected
in the experiment. Several situations can give this result. Firstly, there may be two
sub-ensembles of the spin-label pairs which have different distances between labels.
Secondly, there may be triads of spins of the type AB,, which will also induce the
oscillations of the PELDOR signal with two distinctive frequencies. Thirdly, two
oscillation frequencies may arise due to the existence of two conformations of the
molecular system, where a pair of the spin labels is embedded. The conformation
transition rate is strongly temperature-dependent. This third option can be, in
principle, tested by analyzing the temperature dependence of the PELDOR signal
oscillations for spin labels with favorable relaxation behavior.

2.5 Groups of Spin Labels

The distance between two spin labels can be determined by detecting modulation of
the PELDOR signal in the disordered system. This distance serves as a constraint
condition when choosing the molecular structure [1-7].

It can be expected that more information about the structure of a system can be
obtained using more than two spin labels. Then, the number of constraints increases
so that the molecular structure under investigation can be specified better. Keeping
this in mind, the PELDOR signal for group of spin labels was investigated
comprehensively in many publications (the discussion of this problem can be found
in Refs. [1-7, 19, 34, 36, 40, 43]). In these works, it was demonstrated that the
modulation of the PELDOR signal makes it possible to measure the distances
between the spins in groups. It was demonstrated that the determination of these
frequencies can be complicated due to the spatial correlation effects [19] and
presence of the combination frequencies which lead to the appearance of ghost
distances between spin labels in groups [40]. To avoid these potential difficulties, it
is recommended to use rather weak MW pump pulses. Naturally, the sensitivity
decreases in this case. Note, it was suggested in Ref. [40] also a semiempirical
correction of the background-corrected data to attenuate the influence of combi-
nation frequencies in the distance distribution.

Nowadays, the PELDOR methodology is commonly used to determine the
number of spin labels and the distribution of distances between the spin labels in the
group. In principle, the PELDOR data make it possible to determine the inter-spin
distances and the angles between vectors connecting the spins in groups (see, e.g.,
[19, 34, 40]).

The current paradigm of the PELDOR study of the spin-label groups is developed
for the spin labels A and B, which have the non-overlapping EPR spectra. In
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practice, the spin labels are used, the EPR spectra of which overlap. In this section,
we extend our results obtained for the pairs of spin labels with the overlapping EPR
spectra to the groups of spins.

Let us consider a group of N spin labels with spin § = 1/2. The contribution of
the interaction between the spin labels inside the group to the PELDOR signal is
given by [25]

V= (1/N)ann¢kvkn7 (65)

where V,,, determines the effect on the signal of the chosen k-th spin caused by the
interaction with the n-th partner in the group This effect was discussed in Sect. 2.1.

In disordered systems, the PELDOR signal contains the contributions of the spin-
label groups with different spatial orientations. We suppose that as a whole the spin
group is oriented randomly but the relative orientations of the vectors inside the group,
e.g., of two ry, and ry,,,, vectors, are fixed. Therefore, it is necessary to take into account
this correlation in the directions of the vectors when averaging V [Eq. (65)] over all
possible orientations of the spin groups. The average V value is found as [25]

(V) = (1/N)Ze( Mk Vi) (66)

There is a number of publications (see, e.g., [S, 25] ), where the correlations in
the spatial positions of the spins inside groups are neglected and the average V value
is presented as the product of the average terms Vj, of the each n-th partner spin
label

(V) = (1/N)Zey e (Vien) - (67)

Equation (67) can be written in the explicit form using the results presented in
Sect. 2.1. This approximation can give reasonable results, when the probability of
the inversion of the spins by the MW pump pulse is small, p(wp) < 1.

In the general case, the average value [Eq. (66)] depends on the correlation in the
mutual spatial positions of the spin labels in groups. Here, we consider the PELDOR
signal in two situations.

The first model system Let us consider the situation, when the EPR spectra of the
spins R, and R, do not overlap. This case is comprehensively considered in the
current PELDOR theory (see, e.g., [1, 5, 25, 30, 33, 34]). Here, we shortly
summarize the known results and present some results of numerical simulations
which illustrate some features of spin-label groups PELDOR signal modulation: the
appearance of the combined frequencies of the modulation, the manifestation of the
spatial correlation of spin labels in the group. These features are relevant to the spin
labels with the overlapping EPR spectra as well and the results for this model
situation will serve as a reference situation when considering further the PELDOR
signal for the spin labels with overlapping EPR spectra.

So let us imagine the spin-label groups of the type ABy _ ;: the spin label R; is
excited by the MW pulses which form the spin echo signal (R, is a spin label of the
type A [8, 9]) and it is not excited by the MW pump pulse, while the spin label R; is
excited only by the MW pump pulse (R, is the spin label of the type B [8, 9]). In this
case, the effect of the n-th spin label R, on the PELDOR signal induced by the spin
Ry is given by Eq. (1): Vi,(T) = 1 — pga(wg) (1 — cos(Dy,,T)).
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The effect of the N — 1 spin labels R, of a group on the PELDOR signal is
described as

(V) = <Zﬁj(1 — prolop) (1 - cos(DlnT)))>. (68)

We denote pro(wg) = p,. Here, we assume that the MW pump pulse excites all
spins R, in the group in the same manner. Then, Eq. (68) can be rewritten as a series
(see, e.g., [40])

Vi) = (1= p2)V (1 = p2)V PpaZ,(cos(DinT))
+ (1= p2)V P2 = w(cos(D1nT) cos(DyT)) + -+, n
=2,3,...N. (69)

The first term on the right-hand side of Eq. (69) depends on the number N of
spins and does not depend on the distances between spin labels. The second term on
the right-hand side of Eq. (69) contains the average cosines (cos(D;,T)), which
were discussed above in Sect. 2.1 in detail. According to this discussion, at times 7'
larger than the time of the fast decay (7Dg;, > 1) the average cosine
(cos(D1,T)) = (n/(lZDmnT))l/zcos(DmnT — m/4) [see Eq. (24)]. This term leads
to the modulation (oscillations) of the PELDOR signal. There are N — 1 frequencies
{Do1,} but some frequencies can be close to each other or coincide if some
distances between spin labels are close to each other or equal. The term of the
(cos(DT)) type determines the modulation pattern of the PELDOR signal in the
case of spin-label pairs. In the case of the ABy _ | spin-label groups, the additional
(combination) oscillation frequencies appear, which arise from the second (p3), third
(p%) and higher order terms in the series [Eq. (69)] containing products of two
cosines and other terms containing products of 3, 4,...,N — 1 cosines, i.e., terms
like (cos(Dy,T) cos(DyT)cos(Dy,,T)) (see the comprehensive discussion of this
item in Refs. [19, 36, 40]).

The effect on PELDOR signal of the spatial correlation of the spin labels in
groups is recognized. Here, we present one more quantitative illustration of the
significance of the spatial correlations of spin labels in the PELDOR signal.

Let us consider the average of the product of two cosines [see the third term in
Eq. (69)]

(cos(D1,T) cos(DyT)) = (1/2) ({cos((D1n + D1x)T)) + {(cos((Dy, — D1x)T))).
(70)

This term leads to the additional oscillation frequencies Q. = (D;,, + D;;) and
Q_ = (D;, — D). As it was demonstrated, e.g., in [19], the distributions of the
frequencies 2, and ©_ depend on the correlation in the mutual spatial orientation
of the vectors ry; and ry,,. Let us denote the angle between these vectors as ¢ and the
angle of the rotation of the vector r,, around the direction of the vector ry; as (.
Then, the cosines of the angles between the directions of the external magnetic field
and the vectors ry; and ry, are given by c; = cos(0) and ¢, = cos(0) cos(dp)
— sin(0) sin(d) cos({), respectively [19]. Then, one has
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le = DOlk(] — 3COS2 9) = DOlk(] — 36%), OS QS T

71
D]n:DOIn(l—?)Cﬁ),OSHSTC,OSCSZTC. ( )

Using Egs. (71), one can find the distributions of the frequencies €, and Q_.
These distributions can be found straightforwardly in the particular case, when the
ri; and rq, vectors are located on the same line, i.e., the angle ¢ = 0 or 7, so that
cx = ¢, = cos(0). In this case, the distribution of the combination frequencies has
singularities at (Q_)sing. = (Dot + Do1x) and (Q_)ing. = (Do1, — Doix)- The same
singularities are expected for the non-correlated situation. However, in the general
case, when the mutual orientation of the ry; and r;, vectors is correlated, the
distributions of the frequencies Q,=(D,, + Dy) and Q_ = (D;, — D;;) can
change [19]. To illustrate the possible scale of the spatial correlation effect, we
calculated the distributions of the frequencies 2, and Q_ using the Monte Carlo
method for several architectures of spin systems. Some results are presented in
Fig. 11.

Figure 11 demonstrates that the spatial correlation of the spin labels affects
essentially the distribution of the combination frequencies. The distribution of the
frequency _ manifests a maximum at Q_ = (Dy; — Dy,) as it was expected on a
basis of the qualitative speculations. The situation is more complicated for the
distribution of the frequency 2, = (D; + D,). In principle, there is always a
singularity at Q, = (Dg; + Dp,). But this is not the major feature of this
distribution. The pronounced maximum is shifted with respect to the frequency
Q. = (Dg; + Dyy). For example, when r; = r, = 5 nm and the angle between
vectors ry and r; is ¢ = n/2, the pronounced singularity of the distribution of the
frequency €, occurs not at Q, = 2D, (as it might be expected) but at 2, = D,
(Fig. 11a). Note that in this case, the distribution of the combination frequency
Q. = (D; + D») is similar to the distribution of the dipolar frequencies in pairs
(compare Figs. 2, 11a). There is only a very “minor” (not pronounced) singularity
at 2, = 2D,. Note that in this case, the broad part of the distribution has low
intensity.

In other two examples shown in Fig. 11b, c, the pronounced maxima of the
distribution of the combination frequency €2, is also shifted considerably to values
lower than the Dy; + Dg,. Another remarkable feature of these distributions is the
relatively small fractions of the systems, which have frequencies around the singular
frequencies. In fact, the intensity of the distributions around the singular points is
much less pronounced than it was for the dipolar frequencies D in the case of the
pairs (compare Figs. 2, 11b, c). Thus, in this case, the fraction of the systems, which
contribute to the constructive interference at 7 > Tyecay, is much less than that in the
case of the spin-label pairs. At the same time, the fraction of the systems, which give
the destructive interference, increases, since the broad part of the distribution is of
relatively high intensity (Fig. 11b, c).

The distributions in Fig. 11 are in fact the Fourier transforms of the average
cosines {(cos((Dy + D,)T)) and (cos((D; — D;)T)). Direct calculations in the
time domain presented in (Fig. 12) are in agreement with expectations on the basis
of the distributions (data in the frequency domain) shown in Fig. 11.
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Fig. 11 Distribution functions for the combination frequencies Q= 1D; 4+ D,l (thick curves) and
Q_ = IDy — Dl (thin curves). Simulations are done with the following parameters: a r; = r, = 5 nm,
¢=m/2;bri=r,=5nm, ¢ =n/3;¢cr,=2nm, r, =3 nm, ¢ = /2

In time-domain representation, the effect of the spatial correlation can be
characterized by the comparison of two quantities: the exact value of the product of
two cosine terms, Jeor = (cos(DT) cos(D,T)), taking into account the spatial
correlation of the positions of spins, and the approximate value of this product of
cosines Jnoncorr = (c0s(D;T)){cos(D,T)) neglecting the spatial correlation effect.

Calculations were performed for the same distances between the spin label A and
two spin labels B, r; and r,, and angles ¢ between the vectors r; and r,, which were
used in the calculations of the distribution of the combination frequencies (Fig. 11).
The calculation results are shown in Fig. 12.

Figure 12 shows that J(T) decays fast in the interval T{0, Tyecay} and then, at
T > Tyecay it varies non-monotonically and demonstrates a kind of a modulation
pattern. The exact J.,, and approximate J,oncor average values deviate at
T > Tyecay, after the fast decay. This deviation is the most pronounced in Fig. 12a.
Qualitatively, the behavior of J.o and Jyoncorr 1S Similar to the time dependence of
the average cosine (cos(DT)), i.e., only the small fraction of the triads continues to
give the constructive interference contribution to the oscillations of J at T > Tyecay-
Comparison of Figs. 2 and 12 shows that at T > Tgccay, the modulation amplitude
induced by the term (cos(D;T)cos(D,T)) does not exceed p.. = 0.1 and it
decreases faster than that induced by the term (cos(D;T))or{cos(D,T)) (see Sect.
2.1). The deviation between J.o; and Jyoneorr 1S pronounced most strongly, when the
distances between spins are the same, r; = ry, ¢ = 7/2 (Fig. 12a). In this case, at
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Fig. 12 Exact average value of (cos(D;T)cos(D,T)) (solid curves) and approximate average value of
this cosines product calculated as (cos(D;T)){cos(D,T)) (dot curves). Simulations are done for the
following parameters: a ri=r,=5nm, ¢ =7/2; b ry=r,=5nm, ¢ =7n/3; ¢) r, =2nm,
r, =3 nm, ¢ =72

T > Tyecay» the approximate result Jogneorr oOscillates with the frequency
Dio + Do = 2D,. At the same time, the exact result J.,, oscillates not with the
frequency 2D, but with the frequency close to Dy in accordance with the
distribution of combination frequencies shown in Fig. 11a.

Note that the model situation of the groups with N = 3 was studied compre-
hensively in Ref. [19]. It was demonstrated that the spatial correlation effect
discussed becomes important when the probability of the spin inversion increases.
According to [19], the promising strategy of the PELDOR experiments when
studying the triads or larger (VN > 3) spin-label groups ABy _ | is the variation of
the probability pgo(wg) of the spin inversion by the MW pump pulse. When
pr2(wp) < 1, the linear term ) ., (cos(D,,T)) dominates in the signal modulation
and the PELDOR signal can give a set of frequencies {Dg;,}. As a result, it is
possible to determine a set of distances between spin labels A and B. Note that for
the ABy _ | groups, the number of the oscillation frequencies is N — 1. When
Pr2(wp) increases, many combination frequencies can contribute to the modulation
pattern of the PELDOR signal, and the contributions of different harmonics can
interfere destructively. As a result, the modulation of the PELDOR signal can be
smeared out.

The second model system Let us consider the Ry group of identical spin labels R.
Thus, this model refers to the spin labels with totally overlapping EPR spectra. In
addition, we assume that the EPR spectrum of the spin labels R is wide enough so
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that it is possible to excite electron spins of R selectively in the frequency space. In
PELDOR experiments, the MW pulses with frequencies w, and wg excite spins
with the resonance frequencies in intervals (w4 — @;a, WA + ®;4) and (wg — @,
wp + w;p), respectively. In this case, the contribution of the intra-group dipole—
dipole interaction to the three-pulse ELDOR signal is described by Eq. (66), where
the n-th spin-label effect on the signal from the k-th spin label is given by Eq. (16).
The average contribution of any spin label of the group to the PELDOR signal is
given as

(V) = (1/N) 2T (1 = (p(@4))(1 = cos(Dyt)) — (p(p))) + (p(ws)) cos(DT)))
= (1/N)Z (M (1 — Ly + pg cos(Dia T))

= (]/N)2k< n;ék(] — Lkn) ( /N)Ean# cos(DknT)l'lm#k’an(l — Lkm) + - >
(72)
Here, the notations Ay, = (p(wp)) + (p(wa))(1 — cos(Dy, 1), pp = (p(wp)) are
introduced. Note that there are evident relations Ay, = A Din = Dok,
cos(D,T) = cos(Dy,T). The group of the N spin labels has N(N — 1)/2 character-
istic frequencies {Dyy,}. Note that the Eq. (72) is reduced to Eq. (8) in Ref. [40]

when (p(wa)) = 0, i.e., when the EPR spectra of the spin labels do not overlap.
The PELDOR signal [Eq. (72)] has the term V|, which does not depend on 7:

Vo = (1/N)Zi (I (1 = Ag))
= (1/N) 2Lzt (1 = (p(wB)) = (p(wa)) + (p(@4)) cos(Dwr))).  (73)

The term V, depends on the t value. However, in the PELDOR experiments, 7 is
long enough so it might be justified to ignore all oscillating terms in Eq. (72). Then,

N-1
Vo = (1 = {p(ws)) — {p(@a)))” . (74)
When the probability pg of the spin-label inversion by the MW pump pulse is
small enough, the oscillations of the PELDOR signal induced by the intra-group
interaction are mainly determined by the terms in Eq. (72), which are linear in
cosine terms

Vl(T) = (1/N)Ek2”7gk<COS(DknT)>Hm7gk‘an(1 — Lkm)- (75)

Assuming that Ay, ~ (p(wp)) + (p(wa)) and using Eq. (24) at relatively large T
values (T > Tyecay), it is possible to approximate V(7) [Eq. (75)] as

Vi(T) =~ (1/N)2ps(1 — pa — ps)" *%4Z0 = k(1) (12Dgsn T)) *cos (Do T — 7/4).
(76)

There are N (N — 1)/2 characteristic frequencies Dy, determined by the
distances ry,, between the spin labels in the Ry group. In fact, some distances can be
close or even coincide depending on the architecture of the R, group. Let us
introduce the distribution function f{r) normalized to 1, which gives the probability
for any two partners in the group to have the distance r between them, while
Ir (r)r2dr = 1. Then, Eq. (76) can be written as (at T > Taecay)
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V(T > taeeay) = pu(1 —pa —p)* 2(N = 1) / F)rdry 5 ngTcos [Do(r)r - ﬂ

~ps(l —pa—ps)" 2(N — 1)/f(r)r2dr(0.2cos [Dg(r)T—gD.

(77)
Using Eqgs. (74) and (77), the PELDOR signal [Eq. (72)] can be written as

V(T > tgecay) = (1 — pa —ps)" (1 — pa — s
+02(N — 1)pp / cos [Do(r)r - ﬂ F)Rdr+--).  (78)

When pg and/or the number N of the spin labels in the group increases, the terms
with products of cosines can become more significant.
In the current literature [1-6], the approximate Eq. (79) is used

Vinza (T > taceay) 2 (1 = pp)" (1 = pg + (N = D)pg{cos(Do(nT))r).  (79)

The comparison of Eq. (78) with the Eq. (79) shows that they predict the
same oscillation frequencies. However, Eqs. (78) and (79) predict the relatively
different contributions of the non-oscillating and oscillating terms. This subject
was already discussed in Sect. 2.1 for spin-label pairs. Thus, the results of our
consideration might be important, when the modulation amplitude of the
normalized PELDOR signal is used to obtain the number of spin labels in the
group.

The results presented for the PELDOR signal modulation induced by the
dipole—dipole interaction in the groups of spin labels with overlapping EPR
spectra show that the modulation pattern differs, in principle, from the case of the
groups of spin labels with non-overlapping EPR spectra (current theory case, see,
e.g., Eq. (8) in Ref. [40]), the numerous new terms appear in the expression for
the PELDOR signal [see Eq. (72)]. In fact, in both cases (in current theory and the
theory presented in this work), a set of the PELDOR signal modulation
frequencies is the same, since in both cases, the spin dynamics of the system
proceeds with the same spin-Hamiltonian. In both cases, the same characteristic
dipolar frequencies and their combinations operate. But the current theory and the
present theory predict, in principle, different amplitudes for the contributions with
different frequencies.

Thus, the interference picture, the modulation pattern of the observed
PELDOR signal can differ in the framework of the present theory compared
to the current theoretical description. Note, in the case of the spin-label pairs,
it was pointed out that the effect of the new terms in the PELDOR signal of
the spin labels with overlapping EPR spectra can be eliminated using the
proper signal normalization procedure [Eq. (20)] if the probability to invert
the same spin by the both, ws and wg frequencies, MW pulses is negligibly
small.
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2.6 Estimation of the Validity of the Assumption Eq. (13).

It was shown (Table 1) that for the pairs R|R,, when the partners have the EPR
spectra, which overlap, the three-pulse ELDOR signal contains the terms with
cos(DT) and cos(D(t — T)). According to Table 1, the amplitude of the cos(DT)
term is

P13 = (m1,(Q0)p(Qi]wa, 1,3) (1 = p(Qi|wp, 12) ) ) (P (L2l @s, 10) (1 = p(Qaloa, 13) )
= vip2(wp) = vipa(wa, )
(80)

and the amplitude of the cos(D(t — T)) term is

Pis = (mly(Q0)p(Qilwa, t3) (1 = p(2i]ws, 12)) ) (P (L2l s, 12)p (Q2]@a, 1p3) )
= vip2(wa, wp).
(81)
Here, pr(wa,wg)) = <p (92|wB, tpz)p(92|wA, tp3)> is the average probability
that the same spin R, with the resonance frequency €2, is inverted by the MW pump
pulse with the frequency wg at the moment 7 and by the echo- forming pulse
with the frequency w, at the moment t; vy = (ml,(Q)p(Qi|wa,13)
(1 —p(Q1|a)B,t,,2))> (Table 1).
The exact expression for the PELDOR signal without the assumption Eq. (13) is
[compare with approximate expression given by Eq. (16)]

Vi(T,t) = vi(1 — pa(wa) — p2(wB) + p2(wa, w) + (p2(wa)
— p2(wa, wp)) cos(Dt) + (p2(wp) — p2(wa, wp)) cos(DT)
+ pa(wa, wp) cos(D(t —T))). (82)
The contribution of the spin R, to the PELDOR signal is given by the expression
similar to that for the spin R, [see Eq. (16a)]

Va(T, 1) = va(1 = pi(wa) — pi(ws) + pi(wa, ws) + (p1(wa)
— p1(wa, wp))cos(D1) + (p1(ws) — p1(wa, wp))cos(DT)
+ pi(@a, wp)cos(D(r — T))), (83)

where py(wa, w5)) = (p(Qi|ws, 1,2)p(21]wa, 1,3) ).
If R, and R, are the same spin labels, their total contributions to the PELDOR
signal is

V(T,t) = v(1 — p(wa) — p(ws) + p(wa, wB) + (P(wa) — p(wa, wg)) cos(Dr)
+ (p(wp) — p(wa, wp)) cos(DT) + p(wa, wg) cos(D(t — T))).

(84)

Here, p(w4) = <p(Q\wA,tp3)>,p(a)B) = <p(Q|cuB,t,,2)>.
In Sects. 2.1, 2.2, 2.3, 2.4, 2.5, we assumed that

p(wa, wp) < p(ws). (85)

To estimate the validity of this assumption, the numerical calculations were
performed for biradicals I containing 1-oxyl-2,2,5,5-tetramethylpyrroline-3-yl spin
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labels and biradicals II containing 3-imidazoline spin labels. The structures of these
biradicals are presented in Fig. 15.

Using the spectra in Fig. 15b, d, we calculated p(wa,wg), p(wa) and p(wg).
The results are given in Table 3. Note that during these calculations, we use the
total EPR spectrum of the biradical. During these calculations, we assumed that
the EPR spectra of the spin labels are close to the EPR spectrum of the biradicals
studied.

We calculated the parameters relevant to our experiments, which are discussed in
Sect. 3 (Table 3, the second and fifth columns). We calculated also the possible
contribution of the term (cos(D(t — T))) which occurs, when the frequency wg of
the MW pump pulse is close to the frequency wa of the echo-forming MW pulses
(Table 3, the third and sixth columns). As it was expected, the p,(wa,mp) value
increases, when these two frequencies m, and wg come closer, and the p,(wa,wg)
value becomes negligible, when these frequencies are removed far (Table 3, the
fourth and seventh columns). It can be seen that under the conditions in our
experiments the inequality p,(wa, wp) < p2(wg) is fulfilled so that the assumption
Eq. (13) is justified in the typical experimental situations (see. Table 3, the second
and fifth columns).

The excitation of the same spin by the MW pulses with both frequencies w4 and
wg can affect the PELDOR signal in several ways. It decreases the amplitude of the
term containing cos(DT) [see Egs. (80), (82), and (84)]. There appears a new term
containing cos(D(t — T)) [Table 1 and Eqgs. (82) and (84)]. This term has an
interesting feature. When T increases, dephasing of oscillations with different
frequencies D decreases since t — T decreases (Fig. 13). This possibility was
mentioned in Ref. [6]. as well with reference to the “2 + 1” pulse train electron
spin echo method [12, 13].

The T-dependences of the average cosine (cos(DT)) term (Fig. 3) and that of the
average cosine (cos(D(t — T))) term (Fig. 13) are opposite in the interval {0, t}. To
illustrate the manifestation of the average cosine (cos(D(t —T))) term, we
calculated the quantity c¢;{cos(DT)) + cz{(cos(D(t — T))) and compared it with the
average cosine (cos(DT)) (Fig. 14).

It can be seen that the average cosine (cos(D(t — T))) term leads to the decrease
of the amplitude of the PELDOR signal at 7= 0 and to the decrease of the
modulation amplitude. This means that average cosine (cos(D(t — T))) term can
affect the amplitude of the normalized PELDOR signal. Thus, when interpreting the
PELDOR experimental data, one should keep in mind that due to the excitation of
the same spin by MW pulses with both frequencies w, and wsg, the apparent
modulation amplitude of the PELDOR signal is less than that expected disregarding
this excitation. The contribution of the average cosine (cos(D(t — T))) term to the
PELDOR signal affects the phase of the signal modulation as well.

3 Experimental Data and Their Analysis

To test the results of our theory, we performed the PELDOR experiments on the
biradicals I containing 1-oxyl-2,2,5,5-tetramethylpyrroline-3-yl spin labels and
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Fig. 13 Average cosine (cos(D(t —T))) calculated for r=3nm, Dy= 11.5 x 10° radss,
T = 2,000 ns. The oscillation period is close to Ty = 2n/Dy = 547 ns (compare with Fig. 3)

biradicals II containing 3-imidazoline spin labels (Fig. 15). The paramagnetic
centers in these biradicals are identical and their EPR spectra overlap completely.

All experiments were performed at Q-band on an Elexsys E-580 spectrometer
(Bruker) equipped with a Bruker Flexline probehead EN5107D2. Q-band
measurements were performed to eliminate the modulation of the PELDOR signal
due to the hyperfine interaction between electron spins and distant protons. Three-
pulse ELDOR was carried out using the sequence (1/2),,,,a-T-(7)B-(T-T)~(T) v -
t-echo for different t values. The lengths of the = and n/2 pulses were 52 and 26 ns,
respectively. All measurements were performed at 80 K. Temperature was
controlled using an ER4118CF cryostat and an ITC503 temperature controller
(Oxford).

The PELDOR signal Ve,,(T, 1) at T = 0 is reduced to the primary spin echo
signal Vep(t) obtained without applying the MW pump pulse, Ve,o(T =0,
T) = Vexp(7). This fact makes it possible to find the initial amplitude of the
PELDOR signal. The normalized PELDOR signal was found as V,, = Ve,(T, 1)/
Vexp(T). According to the discussion in the Sect. 2.1 [see Egs. (18)—(20) and the
discussion around these equations] this particular normalization procedure can be
useful to demonstrate a presence of the new terms in the PELDOR signal.

The results of the PELDOR experiments and simulations are shown in Figs. (16)
and (17). The simulations were performed using Eq. (18). The simulations
according to the current theory [Eq. (1)] were shown as well. To simulate the
PELDOR curves, the probabilities p(wa) and p(wg) of the spin inversion by the
MW pulses are needed. They were found using the EPR spectra (Fig. 15) and
Eq. (9) (Table 3, the second and fifth columns). The distances between two spin
labels in biradicals were determined from the PELDOR signal modulation
frequency. For biradical 1, this distance r = 3.8 nm, for biradical II, » = 1.8 nm.

Figure 16a, ¢ shows that in the case of biradical I, the experimental normalized
PELDOR signal V, does not manifest the t-dependence, while in the case of
biradical II (Fig. 16b, d) there is the t-dependence. According to the current
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Fig. 14 Average cosine (cos(DT)) (solid curves) and c;{cos(DT)) + c2(cos(D(t — T))) (dotted curves)
calculated for r =3 nm, Dy = 11.5 x 10° rad/s, 7 = 2,000 ns: a c; =09, co=0.1; b ¢; =0.8,
Cy = 0.2

PELDOR theory, V,, should not depend on t [Eq. (1)]. But the current theory does
not hold, when the EPR spectra of spins in the biradical overlap. When these spectra
overlap, the normalized PELDOR signal should demonstrate the t7-dependence [Eq.
(18)]. Thus, the experimental data for biradical II are qualitatively in agreement
with our theory. According to our theory [Eq. (18)], the t-dependence of the
PELDOR signal should be less pronounced, when p(w,) decreases [Eq. (19)]. The
calculated p(w,) value (see Table 3) shows that it is about 25 % less for biradical 1.
There is another reason why the t-dependence of the normalized PELDOR signal is
less pronounced for biradical I than for biradical II. According to Eq. (18), the -
dependence of the normalized PELDOR signal is determined by the effective
parameter pe(7),
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Fig. 15 Scheme of biradicals I (a), II (c) and their echo detected Q-band EPR spectra, correspondingly
(b, d). Hatched rectangles indicate the frequency ranges efficiently excited by the MW pulses with wa
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Vi = 1 = peie (7) (1 — (cos(DT))), (86)

Peit(t) = p(wp)/(1 — p(wa){cos(D1))). (87)
According to Eq. (24), when Dyt > 2,

(cos(Dr)) = (n/(12Dg7))"*cos(Dor).

In our PELDOR experiments, (/(12Dyt))"* is 0.108 and 0.125 for biradicals I
and II, respectively. Therefore, the effective value of p(w,) [Eq. (87)] is about 15 %
less for biradical 1.

Thus, our theory has a potential to interpret qualitatively the experimental
observation concerning the t-dependence of the normalized PELDOR signals for
biradical I and biradical II.

However, the situation is more complicated concerning the quantitative
description of the modulation amplitude of the PELDOR signal. According to Eq.
(86), the normalized PELDOR signal is

Vi = 1 = pett(wp)(1 — (cos(DT))), where pest(wp)
= Ptheor(WB) /(1 = ptheor(wa ) (1 — (cos(D1))).

Since pmeo(®a) < 1, then,
peff(wB) ~ ptheor(wB)(l +ptheor(wA)(l - <COS(D‘C)>) > plheor(wB)-

It appears that the simulations with the theoretically computed parameters
Piheor(®a) and pgeor(wp) do not describe perfectly the PELDOR signals (see
Fig. 16¢c, d). The simulations give even worse results if the effective parameters
Peti(®wa) and per(wp) are used since per(wp) > Pmeor(®wp). To obtain good
agreement between simulations and experimental data, the following fitting
parameters should be used: pdws) = 0.08, pfwp) = 0.072 for biradical I and
pi{wa) = 0.18, p(wg) = 0.12 for biradical II. The results of the simulations with
these fitting parameters are presented in Fig. 16a, b. We see that good agreement is
achieved when the simulations are done with the parameter p(wg), which is less
than the values obtained by the theoretical calculations (Table 3).

To test the fitting parameters pg(w,) and pg(wg) obtained from the fitting the t-
dependence of the PELDOR signal (Fig. 16), the PELDOR signals were studied in
the extended range of T values (Fig. 17).

Figure 17 shows that the fitting parameters p{w,) and pfwg) obtained when
studying the t-dependence of the PELDOR signals are reasonably good fitting
parameters for the 7-dependence of the PELDOR signals as well. The fitting
parameters pw,) and py(wg) differ from their calculated values pyeor(was) and
ptheor(wB)~

The observation that the p{wg) value is less than the pgeo(wg) value can be
explained as follows. One option is to take into account the possibility of the
inversion of a sub-ensemble of spins by the MW pulses of both frequencies, w, and
wg. This option was discussed in Sect. 2.6. It was shown that under conditions of
our experiments, this effect reduces p(wg) but the reduction is rather small, it is
around 0.005-0.01 (a few percents) for our experimental situation. Another option is
the effect of the contribution of the term containing (cos(D(t —T))) to the
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PELDOR signal. It was shown in Sect. 2.6 (Fig. 14) that this term can reduce the
initial amplitude of the PELDOR signal and it decreases the amplitude of the
PELDOR signal oscillations. Spectral diffusion induced by the spin-lattice
relaxation of spins (Sect. 2.3) and the molecular isomerization (Sect. 2.4) can be
also responsible for the reduction of the oscillation amplitude of the PELDOR
signal. The discrepancy of the parameters pg(wg) and pgeo (@) can also arise from
the experimental errors when determining the initial behavior of the PELDOR
signal, the initial amplitude of the PELDOR signal. We plan to study this problem
separately.

4 Conclusions

Experimental PELDOR data contain information about the architecture of spatial
positions of the spin labels. This information is of major importance since it can be
used when studying, e.g., structures of proteins and other biologically actual
compounds. If the spin labels are site-directed, the spin labels architecture gives a
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Fig. 16 Dependence of the normalized PELDOR signal on the 7 value and its simulations for biradicals
I: (a) for fitting parameters pwa), pr(wg); (¢) for calculated parameters pupeor(®a), Pheor(®p) and for
biradicals II: (b) for fitting parameters p{w,), pwp); (d) for calculated parameters pimeor(Wa), Peheor(WB)-
Experimental data are squares and circles. Simulations using Eq. (18) are shown as solid lines. Dashed
lines are simulations using Eq. (1). The fitting and calculated parameters p(w,), p(wg) are given in the
text and Table 3. In the case of biradical I, T = 1,064 and 1,632 ns, in the case of biradical II, T = 190
and 252 ns
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Fig. 17 Normalized experimental PELDOR data (squares) and their simulations for biradicals I (a,
¢) and II (b, d). Solid lines show simulations using Eq. (18). Dashed lines show simulations using Eq. (1).
The (a, b) present the simulations with the theoretically calculated parameters pieor(a), Piheor(ws). The
(c, d) present the simulations with the fitting parameters pg{wa), pf(wg). In the case of biradical I,
T = 2,952 ns, in the case of biradical II, T = 596 ns

“contour” of these visually disordered molecular (supramolecular) systems, which
can serve as constraints when determining the structure of proteins etc.

The PELDOR experiments can be instructive not only concerning the structure of
systems studied but also concerning their spin and molecular dynamics. It is better
to perform the structural studies at low temperatures, when the molecular motion
(including conformational transitions of macromolecules) and spin—lattice relaxa-
tion process proceed slowly and do not disturb the PELDOR data. The random spin
flips due to the spin—lattice relaxation or the spin diffusion or the molecular mobility
can reduce the modulation amplitude and frequencies of the PELDOR signal
modulation.

The best PELDOR strategy for studying the architecture of spin groups would be
to use the spin labels A and B, which have the non-overlapping EPR spectra. In this
case, the current paradigm of the PELDOR application can be successfully used. In
practice, the spin labels are used, the EPR spectra of which overlap. In this work, we
presented the generalization of the current PELDOR theory for the spin labels with
the overlapping EPR spectra. In this work, we extended the three-pulse ELDOR
theory for the spin labels in pairs and groups to the case, when the spin labels EPR
spectra overlap. The three-pulse ELDOR signal for the spin labels with overlapping
EPR spectra was analyzed theoretically in detail.

In the general case, the PELDOR signal has new contributions. One contribution
arises from the fact that the spin echo-forming MW pulses can excite both spin
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labels in pairs and several spin labels in groups. As a result, the conventional
primary spin echo modulation effect is manifested in the PELDOR signal. Another
contribution is due to the excitation of the same spin label by the MW echo-forming
pulse and the pump pulse in the PELDOR experiment. These new contributions
interfere with the contribution to the PELDOR signal considered in the current
(conventional) theory.

The modulation pattern of the PELDOR signal is a sum of oscillations
(harmonics) with characteristic frequencies of the dipole—dipole interactions
between spin labels and their linear combinations. A set of possible oscillation
frequencies for the spin-label systems considered is the same in the current theory
and in the generalized theory presented in this work, since these frequencies are
determined by the same spin-Hamiltonian. But relative contributions of different
harmonics predicted by the current theory and by the theory presented in this work
are, in principle, different. Thus, the current and the generalized here theory can, in
principle, lead to different distance distributions. The results of our consideration
might be of importance when the modulation amplitude of the PELDOR signal is
used, e.g., to obtain the number of spin labels in the groups. For example, neglecting
the new terms in the PELDOR signal results in a p,100 % error when the number of
the spin labels in the groups is determined (here, p, is the probability of the
inversion of the same spin label by the MW echo-forming pulse and the pump pulse
in the PELDOR experiment).

It was shown that the manifestation of the intra-pair dipole—dipole interaction in
the PELDOR signal cannot be presented as a product of the primary echo signal in
the absence of the MW pump pulse and the factor, which describes the effect of the
MW pump pulse on the PELDOR signal. This observation affects the strategy of
interpreting the experimental data. In fact, when the multiplicative behavior is valid,
it is rather straightforward to subtract the contribution of the MW pump pulse to the
PELDOR signal from the experimental data. In this case, the PELDOR effect can be
characterized by the ratio of the data of the two experiments: PELDOR and primary
echo.

In this work, we were focused on the three-pulse ELDOR. At present, the four-
pulse ELDOR is widely and successfully exploited. The four-pulse ELDOR theory
for the spin labels with overlapping EPR spectra is under development and will be
presented in a separate publication.
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