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Abstract The carbonate reservoir has a number of properties such as multi-type

pore space, strong heterogeneity, and complex pore structure, which make the

classification of reservoir pore structure extremely difficult. According to nuclear

magnetic resonance (NMR) T2 spectrum characteristics of carbonate rock, an

automatic pore structure classification and discrimination method based on the T2

spectrum decomposition is proposed. The objective function is constructed based on

the multi-variate Gaussian distribution properties of the NMR T2 spectrum. The

particle swarm optimization algorithm was used to solve the objective function and

get the initial values and then the generalized reduced gradient algorithm was

proposed for solving the objective function, which ensured the stability and con-

vergence of the solution. Based on the featured parameters of the Gaussian function

such as normalized weights, spectrum peaks and standard deviations, the combi-

natory spectrum parameters (by multiplying peak value and normalized weight for

every peak) are constructed. According to the principle of fuzzy clustering, the

carbonate rock pore structure is classified automatically and the discrimination

function of each pore structure type is obtained using Fisher discrimination analysis.

The classification results were analyzed with the corresponding casting thin section

and scanning electron microscopy. The study shows that the type of the pore

structure based on the NMR T2 spectrum decomposition is strongly consistent with

other methods, which provides a good basis for the quantitative characterization of
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the carbonate rock reservoir pore space and lays a foundation of the carbonate rock

reservoir classification based on NMR logging.

1 Introduction

Carbonate is the main oil and gas reservoir in the world. Statistics showed that

carbonate stands for 48.66 % of total recoverable oil reserve and 45.26 % of total

recoverable gas reserve [1]. There are also many carbonate reservoirs in China such

as Tarim, Sichuan, and Erdos basin. As we know, carbonate has many types of the

reservoir space including pores, dissolution vugs and fractures, etc. The pore

structure of the carbonate reservoir is more complex than that of the conventional

clastic reservoir and shows great heterogeneity for the effects of sedimentary,

geologic, digenetic and epigenetic alteration, which contributes to great difficulty in

pore structure evaluation and well logging analysis.

Many people conducted researches on the pore structure characterization for

carbonate reservoir. Generally, the methods of the pore structure evaluation and

classification of the carbonate reservoir can be summarized as geological, seismic,

well logging and petrophysical ones, where the petrophysical method is the most

direct and effective method, which also acts as the bridge of ‘core calibration well

logging’. The nuclear magnetic resonance (NMR) core analysis is an important

petrophysical method for the pore structure evaluation, which overcomes the

drawback of the mercury injection capillary pressure analysis, since only limited

scales of pore throat can be injected by mercury under fixed pressure. Furthermore,

it overcomes the drawbacks of thin section and scanning electron microscopy since

they are greatly affected by the heterogeneity of a sample. The NMR core analysis

and NMR well logging are widely used for the carbonate reservoir characterization.

Tan and Zhao [13] gave detailed NMR well logging responses of different pore

structures for the carbonate reservoir. Yan et al. [16, 17] carried out NMR core

experiments for the carbonate sample and proposed methods for the pore structure

classification and the effectiveness of judgment by NMR. Lang et al. [7] presented a

method for reservoir type discrimination by NMR imaging and NMR T2 spectrum.

Li et al. [8], Westphal et al. [4], and Rohilla and Hirasaki [12] also proposed ways of

using NMR for the carbonate reservoir evaluation and pore space characterization.

NMR T2 spectrum often shows multi-peak property with the effect of pore space types

and theirs components. The authors propose an automatic pore structure classification

technology based on the NMR T2 spectrum of the carbonate reservoir. Featured

parameters of the NMR T2 spectrum were achieved by the spectrum decomposition using

the PSO–GRG algorithm. The combinatory spectrum parameters were constructed, and

the fuzzy clustering method and Fisher discrimination analysis were then proposed for

the pore structure classification and discrimination automatically.

2 NMR T2 Properties of Carbonate Samples

According to the basic principle of NMR, if the bulk relaxation and diffusion

relaxation are omitted, the transverse relaxation time can be stated as:
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1

T2

¼ q
S

V
; ð1Þ

where T2 is the transverse relaxation time (ms); q is the transverse bulk relaxation

ratio (lm/ms); S is the pore surface area (cm2); V is the pore volume (cm3).

Since the specific surface area is the function of the pore radius for the regular

distributed pore system, Eq. (1) can be expressed as:

1

T2

¼ q
Fs

r
; ð2Þ

where Fs is the pore shape factor having value of 3 for the sphere-like pore and 2 for

the cylinder-like pore. It is known from Eq. (2) that the pore radius r is strongly

related to the NMR transverse relaxation time T2 and can be obtained by the

appropriate transformation of regular distributed porous rock.

The NMR core analysis was conducted for carbonate of an oilfield from western

China using a MARAN-II instrument. To enhance the SNR (signal-to-noise ratio) of

echo trains, the sampling time is chosen as 30 and the echo number is chosen as

4,096. In order to determine the appropriate waiting time (TW) and echo time (TE),

various parameters were chosen and compared (here 1, 2, 4 and 6 s were selected

for TW and 0.1, 0.2, 0.6 and 1.2 ms were selected for TE). The SIRT algorithm was

adopted as the inversion method to get the NMR T2 spectrum based on measured

data [15]. Figure 1 showed a ‘bimodal type’ NMR T2 spectrum of carbonate rock

under different TW and TE. It can be easily seen that the amplitude of the left-hand

peak increases with the decrease in TE, whereas the amplitude of the right-hand peak

stays stable. Moreover, the amplitude of the left-hand peak decreases with the

increase in TW, whereas the amplitude of the right-hand peak stays stable. When TE

is 0.1 ms and TW is 6 s, the NMR T2 spectrum stays stable. From the experiment, we

know that only the left-hand peak was affected by TW and TE, whereas the right-

hand peak was affected slightly. The similar results were also found for the

unimodal and triple-peak T2 spectrum, etc. Based on these results, 0.1 ms and 6 s
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Fig. 1 NMR T2 spectrum of carbonate rock under different TE and TW (fully saturated). a Experimental
result under different TE, b experimental result under different TW
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were chosen, respectively, for TE and TW with the aim to get standard NMR T2

spectra of carbonate rocks.

NMR T2 spectra can be classified into four classes (unimodal, bimodal, triple-

and four-peak) for all the carbonates of this area as shown in Fig. 2. Combining core

photos, thin section and scanning electron microscopy, it can be easily seen that

carbonate of the unimodal peak spectrum often corresponds to the pore space of the

microfracture, where the main peak is distributed from 0.2 to 3 ms, the reservoir of

this type has the weakest liquid production capacity. Carbonate of the bimodal

spectrum often corresponds to the pore space of matrix pores, where the main peak

is distributed from 2 to 60 ms, the reservoir of this type has weak liquid production

capacity since the porosity and permeability often bear low values. Carbonate of the

triple-peak spectrum often corresponds to pore spaces of matrix pores and

dissolution vugs, where the main peak is distributed from 2 to 300 ms, the reservoir

of this type has medium liquid production capacity. The NMR T2 spectrum of

carbonate of the four-peak type often corresponds to the pore space of a mixture of

matrix pores, dissolution vugs and microfractures. The reservoir of this type has the

higher value of porosity and permeability, thus resulting in the higher fluid

production capacity.
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Fig. 2 Four types of the typical NMR T2 spectrum of carbonate rock (fully saturated). a Unimodal type,
b bimodal type, c triple-peak type, d four-peak type
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It can be seen also that for the arbitrary type of NMR T2 spectra, the shape of

NMR T2 spectrum is likely to be the Gaussian distribution when T2 is in the log

scale, which is the theoretical basis and foundation of the pore structure

classification and discrimination quantitatively using the NMR T2 spectrum.

3 T2 Spectrum Decomposition Based on Multi-Gauss Function and PSO–GRG
Algorithm

Section 2 demonstrated that the reservoir space could be depicted qualitatively

based on the shape of the NMR T2 spectrum, whereas well logging analysts need the

automatic classification and discrimination methods for the fine formation

evaluation using the NMR T2 spectrum of the carbonate reservoir. By the ‘Gaussian

function’ distributing property of every peak of the T2 spectrum we can define the

Gaussian function as:

Gðx; u; rÞ ¼ 1

r
ffiffiffiffiffiffi

2p
p e�

1
2

x�u
rð Þ

2

; ð3Þ

where u is the peak value, r is the standard deviation, and x is the log scale of T2

(x = log(T2)).

For the total NMR T2 spectrum, the objective function can be constructed as:

min
X

xn

x¼x1

ðf ðxÞ � a1Gðx; u1; r1Þ � a2Gðx; u2; r2Þ � a3Gðx; u3; r3Þ � a4Gðx; u4; r4Þ2;

ð4Þ

where u1, r1, u2, r2, u3, r3, u4, r4 are peak values and standard deviations of four

peaks; a1, a2, a3, a4 are weights of four peaks. xi can be stated by log scaling:

xi ¼ logðT2minÞ þ ðlogðT2maxÞ � logðT2minÞð Þ i� 1

n� 1
ði ¼ 1; 2; . . .; nÞ; ð5Þ

where T2min and T2max are minimal and maximal values of transverse relaxation

time, respectively, n is the points number in the T2 spectrum (here n is fixed as 128).

By normalizing the T2 spectrum intensity, constraints of Eq. (4) can be expressed

as:

ui [ 0 ði ¼ 1; 2; 3; 4Þ; ð6Þ
ri [ 0 ði ¼ 1; 2; 3; 4Þ; ð7Þ
ai � 0 ði ¼ 1; 2; 3; 4Þ; ð8Þ

X

4

i¼1

ai ¼ 1: ð9Þ

From Eq. (4) we know that there are 12 unknown variables. Combining Eqs. (4),

(6) and (9), the problem of the T2 spectrum decomposition is transformed to solving

the multi-variable non-linear optimization problems with constraints. Many
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algorithms are proposed to solving the problem including the reduced gradient

method, sequential unconstrained minimization technique, barrier function tech-

nique and Lagrange multiplier technique, etc. Most of those optimal procedures

mentioned above have a drawback that they can easily be stacked into the local

minimum value thus solutions are not globally optimized. Hence, the particle swarm

optimization algorithm (PSO) is introduced. PSO algorithm is a global optimization

technique which originated from the simulations of the prey behavior of a bird flock.

PSO shares many similarities with evolutionary computation techniques such as

genetic algorithms. PSO has been found to be robust and fast in solving non-linear,

non-differentiable, multi-modal problems. The system is initialized with a

population of random solutions and searches for optima by updating generations

and adopts fitness to evaluate the quality of solutions. For the problem of the NMR

T2 spectrum decomposition, the optimization model can be expressed as [6, 9]:

f ðxÞ ¼
X

xn

x¼x1

ðf ðxÞ � a1Gðx; u1; r1Þ � a2Gðx; u2; r2Þ � a3Gðx; u3; r3Þ � a4Gðx; u4; r4Þ2;

ð10Þ

where f(x) is the real function of a region S in the D-dimensional space, x is the

variables and can be expressed as (x1, x2, …, xD)T.

Let the position of the i-th particle of the t-th hereditary algebra be xi
t = (xi1

t , xi2
t ,

…, xiD
t )T and its speed is vi

t = (vi1
t , vi2

t , …, viD
t )T(assuming the population size is

N) in the D-dimensional space. Each particle has a fitness value determined by an

optimized function, and each particle knows its present position xi
t and the best

position (pbest) that it has so far found; this can be regarded as the flying

experiences of the particle. In addition, each particle knows the best position (gbest)

that the whole swarm has so far found; this can be regarded as the flying experiences

of the particle’s companions. Each particle utilizes the following information to

alter its present position: (1) its current position, (2) its current speed, (3) the

distance between its current position and its best position, and (4) the distance

between its best position and the best position of the whole swarm.

PSO is an optimization instrument based on iteration. For the k-th times of

iteration, each particle alters in accordance with Eqs. (11) and (12) as follows [6, 9]:

vtþ1
i ¼ w � vt

i þ c1rt
1ðpt

i � xt
iÞ þ c2rt

2ðpt
g � xt

iÞ; ð11Þ

xtþ1
i ¼ xt

i þ vtþ1
i ; ð12Þ

where i = 1, 2, …, N; w is the inertia weight; t is the iteration time; c1 and c2 are

learning factors (two positive constants); r1 and r2are random numbers in the

interval of [0, 1]; pi
t represents the component of the best position (pbest) of particle

i in the t-th times of iteration; pg
t represents the component of the best position

(pbest) of particle swarm in the t-th times of iteration.

The influence that the last speed has on the current speed can be controlled by

inertia weight. When w is 0 the flying speed of each particle is only influenced by

the current position, the best position of each particle and the best position of total

particle swarm, whereas not affected by flying speed. Particles with global best
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positions will keep stable and other particles will tend to the weighted center of best

positions themselves and global best positions in this situation. Then, particle swarm

will be globally converged in best positions [6, 9]:

xtþ1
i ¼ xt

i þ c1rt
1ðpt

i � xt
iÞ þ c2rt

2ðpt
g � xt

iÞ: ð13Þ

PSO is an intelligent algorithm and can obtain strong convergence in the

beginning of the calculation procedure but it may easily fall into ‘inertia’ which

leads to the premature convergence and the insufficient local searching ability. To

handle this problem, the GRG algorithm is introduced simultaneously and proposed

a new algorithm named ‘PSO–GRG’. GRG is suitable for non-linear optimal

problem since it has advantages of fast convergence speed and high precision but is

affected by initial searching direction greatly. Unsuitable initial value and searching

directions may lead to local convergence and unfavorable solution.

To overcome shortcomings of the two algorithms, we first solved the problem

using PSO to get an favorable solution, then used the solution as the initial value for

the GRG algorithm. In the latter, a simple analysis of the GRG algorithm is

introduced first and the proposed ‘PSO–GRG’ procedures are discussed.

The GRG algorithm is developed from the reduced gradient and becomes an

effective method to solve non-linear optimal problems. By introducing slack

variables, inequality constraints were transformed to equality constraints. The GRG

algorithm can be expressed as [11, 14, 17, 18]:

minFðXÞ X 2 Rn

s:t:HðXÞ ¼ 0

L�X�U ðL;U 2 RnÞ
; ð14Þ

where H(X) = [h1(X), h2(X),…, hm(X)]T; L = [l1, l2,…, ln]T; U = [u1, u2,…, un]T.

X is subdivided into basic and non-basic variables (X = [XB, XN]T, where XB is

the basic variables with m dimension and XN is non-basic variables with n-m

dimension). With the definition of implicit function, XN can be expressed as M(XB)

and the objective function can be expressed as [11, 14, 17, 18]:

FðXÞ ¼ FðXB; MðXBÞÞ: ð15Þ
The reduced gradient of the objective function can be expressed as [11, 14, 17,

18]:

rf ðXk
NÞ ¼

of ðXk
NÞ

oxk
mþ1

;
of ðXk

NÞ
oxk

mþ2

; . . .;
of ðXk

NÞ
oxk

n

� �T

¼ ½r1; r2; . . .; rn�m�T : ð16Þ

XN can be iterated as follows if we define Sk = [s1, s1,…, sn-m]T:

Xkþ1
N ¼ Xk

N þ aSk; ð17Þ

where a is the slack parameter which has value larger than zero and smaller than 1.

Let Y0 ¼ Xk
B and we can get such iteration scheme:

Ycþ1 ¼ Yc � ½rBHðY0; Xkþ1
N Þ��1

HðYc; Xkþ1
N Þ ðc ¼ 1; 2; . . .; PÞ: ð18Þ
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Iteration is stopped if H(Yc, Xkþ1
N ) = 0 and Yc?1 is the optimal solution. In

summary, the calculation steps of PSO–GRG can be stated as follows: (1) Given

population size N, learning factors c1 and c2, inertia weight w and dimension of

searching space D, the maximal iteration times m and the minimum fitness value

fmin; (2) calculating fitness value of every particle; (3) finding particle that satisfied

the condition of the minimum fitness value as the initial solutions of GRG

algorithm; (4) solving the objective function using GRG algorithm and getting

weights, peak values and standard deviations of Gaussian functions; (5) making

solutions to NMR transversal relaxation time (T2 = 10x, where x is the peak value

of every Gaussian function).

4 Pore Structure Classification and Discrimination Based on T2 Spectrum
Decomposition

After the T2 spectrum decomposition by the PSO–GRG algorithm, featured

parameters such as peak values, standard deviations and weights can be obtained,

which are helpful for the quantitative pore structure characterization. Numerical

results showed that for T2 spectra with unimodal, bimodal and triple peaks, Eq. (4)

can also get desired fitting results. By this method not only main peaks can be

picked, but also weak peaks. Figure 3 shows the fitting results of a carbonate with

the triple-peak distribution. It can be easily seen from Fig. 3a that the optimized

spectrum is in accordance with the experiment spectrum, three main peaks were

picked and one weak peak was also picked. Totally, the four peak values are 0.998,

3.965, 87.558 and 432.094 ls, standard deviations are 0.253, 0.285, 0.151 and

0.107, normalized weights are 0.003, 0.615, 0.323 and 0.059. Figure 3b shows the

distribution of residual errors, the average relative error between optimized

spectrum and experiment spectrum is 2.87 %.

One hundred and thirty six carbonate samples were tested for the NMR T2

spectrum decomposition to obtain featured parameters. Since the peak value and the
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Fig. 3 Optimal solution of a triple-peak core. a Comparison between optimized and experiment
spectrum, b the distribution of residual errors

162 X. Ge et al.

123



normalized weight are important for the pore structure characterization, while the

standard deviation bears little relationship with the pore structure, the combinatory

parameter ‘NPi’ is defined (NPi = Tiai, i = 1, 2, 3, 4) for the evaluation of the pore

structure. The pore structure is divided into four classes based on knowledge of thin

section, capillary pressure and production data, thus the fuzzy clustering method ([5,

10]) was adopted here to classify the pore structure into four classes using the

combinatory parameters NP1, NP2, NP3 and NP4. The class of each sample is

defined according to the maximum membership degree. Table 1 shows the

distributions of four combinatory parameters, dominant pore space and liquid

production capacity for every pore structure type. It is easily seen from the table that

the combinatory parameters have favorable characterization ability in the pore

structure evaluation. The pore space of the pore structure type I is mainly occupied

by matrix pores, which has low values of NP1, NP2, NP3 and NP4. The pore space of

the pore structure type II is mainly occupied by matrix pores and microfractures,

which has high values of NP1 and NP2. The pore space of the pore structure type III

is mainly occupied by matrix pores and dissolution vugs, which have high values of

NP2 and NP3. The pore space of the pore structure type IV is more complex than

previous three types, matrix pores, dissolution vugs and fractures were often co-

existed in this type. The pore structure type IV has the highest values of NP3 and

NP4 and high value of NP2. The liquid production capacity is increased from type I

to type IV. Figure 4 shows featured thin section and scanning electron microscope

of the four pore structure types. In summary, the pore structure type has a good

correspondence with the thin section, scanning electron microscope, NMR response

and the liquid production capacity.

In order to construct the automatic classification of the pore structure based on

NMR T2 spectrum decomposition parameters, carbonates with the maximum

membership degree larger than 70 % were selected as the optimal samples. Samples

were divided into two classes, one as the modeling data, and the other as the

validation data. The Fisher discrimination analysis [2, 3] is used to establish

Table 1 Micro pore structure parameters for different pore types

Pore

structure

type

NP1 NP2 NP3 NP4 Main pore space Liquid

production

capacity

I 0.005–1.68

0.407

1.16–12.33

4.54

2.73–6.84

5.07

0.003–13.347

8.315

Matrix pores Weakest

II 0.0001–2.55

1.16

1.07–16.03

8.622

2.54–38.211

17.356

0.042–35.19

14.262

Matrix pores

Microfractures

Weak

III 0.001–0.24

0.08

0.52–3.47

2.69

9.913–42.77

22.54

21.17–55.01

35.27

Matrix pores

Dissolution vug

Medium

IV 0.0004–2.05

0.36

2.17–18.52

8.019

8.14–83.53

36.88

74.42–226.82

121.62

Matrix pores vug and

fracture

Strong

A�B
C

of the table, A is the minimum value, B is the maximum value and C is the cluster center of depicted

parameter
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Fig. 4 Typical photos of casting thin section and scanning electron microscope data of four types of the
carbonate pore structure. a First type of the pore structure, b second type of the pore structure, c third type
of the pore structure, d fourth type of the pore structure
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discrimination functions for four pore structure types, which can be expressed as

follows:

F1 ¼ 1:803NP1 þ 0:329NP2 þ 0:042NP3 þ 0:027NP4 � 2:72; ð19Þ
F2 ¼ 4:897NP1 þ 0:644NP2 þ 0:124NP3 þ 0:588NP4 � 8:526; ð20Þ

F3 ¼ 0:73NP1 þ 0:203NP2 þ 0:169NP3 þ 0:098NP4 � 5:325; ð21Þ
F4 ¼ 2:641NP1 þ 0:635NP2 þ 0:355NP3 þ 0:299NP4 � 29:815: ð22Þ
Equations (19)–(22) are discrimination functions of the pore structure type I, II,

III and IV. Modeling data and validation data were selected to test, each of them get

desirable results (coincidence rate for modeling data and validation data was 93.8

and 85.5 %, respectively), which showed the accuracy of the Fisher discrimination

analysis.

In combination of the fuzzy clustering method and Fisher discrimination analysis

for the combinatory parameters (NP1, NP2, NP3 and NP4), pore structure types of

carbonate rocks were characterized and discriminated automatically, which lay

foundations for the carbonate reservoir characterization based on NMR well logging

data.

Finally, the method proposed can be summarized as a flow chart to facilitate

petrophysics and well logging analysis to handle their own data. It is easily seen

from Fig. 5 that the method can be subdivided into six steps:

1. NMR transverse decay data acquisition using a core NMR instrument and

carefully experiment parameters set such as waiting time, echo time, echo

numbers and gain.

2. NMR T2 inversion by decay data using the SIRT algorithm to get the NMR T2

spectrum.

3. NMR T2 spectrum decomposition by the PSO–GRG algorithm and combinatory

parameters calculation.

Fig. 5 Flow chart for the pore
structure classification and
discrimination by the NMR T2

spectrum decomposition
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4. Pore types definition by capillary pressure, thin section, scanning electron

microscope and oil production data.

5. Pore types classification by the fuzzy clustering method using combinatory data

from the NMR T2 spectrum.

6. Pore structure discrimination function establishment based on the Fisher

discrimination analysis by selected samples (where the membership degree is

larger than 70 %).

5 Conclusions

The main objective of this paper was to present a quantitative evaluation method of the

complex carbonate pore structure using NMR core analysis data. Based on the NMR T2

spectrum decomposition technology with the aid of the PSO–GRG algorithm, featured

parameters of pore structure were obtained, and then the fuzzy clustering method and

Fisher discrimination analysis were applied to construct the pore structure type

discrimination functions. Conclusions of this paper can be summarized as:

1. The pore space of the carbonate reservoir showed a great variety and had

different NMR T2 spectrum (lab core analysis) distributing property. With the

multi-gauss objective function optimization and PSO–GRG algorithm, featured

parameters such as peak values, normalized weights and standard deviations

can be obtained accurately.

2. By carefully examining the featured parameters we found that peak values and

normalized weights showed good correspondence with pore structure types. By

multiplying peak value and normalized weight for every peak, four combina-

tory parameters were obtained which were useful for the pore structure

characterization quantitatively. All the samples were divided into four classes in

the combination core analysis and production data.

3. The fuzzy clustering method and Fisher discrimination analysis were effective

means for the automatic pore structure classification and discrimination.

Different pore structure types can be discriminated by different discrimination

functions. The results showed a good correspondence with modeling and

validation data.

4. The method we proposed is useful for the carbonate reservoir evaluation based

on the NMR core analysis. However, NMR well logging data were not

processed in this paper, which will be the subject of the future work.
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