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Abstract Dynamic nuclear polarization (DNP) is used to enhance signals in NMR

and MRI experiments. During these experiments microwave (MW) irradiation

mediates transfer of spin polarization from unpaired electrons to their neighboring

nuclei. Solid state DNP is typically applied to samples containing high concentra-

tions (i.e. 10–40 mM) of stable radicals that are dissolved in glass forming solvents

together with molecules of interest. Three DNP mechanisms can be responsible for

enhancing the NMR signals: the solid effect (SE), the cross effect (CE), and thermal

mixing (TM). Recently, numerical simulations were performed to describe the SE

and CE mechanisms in model systems composed of several nuclei and one or two

electrons. It was shown that the presence of core nuclei, close to DNP active

electrons, can result in a decrease of the nuclear polarization, due to broadening of

the double quantum (DQ) and zero quantum (ZQ) spectra. In this publication we

consider samples with high radical concentrations, exhibiting broad inhomogeneous

EPR line-shapes and slow electron cross-relaxation rates, where the TM mechanism

is not the main source for the signal enhancements. In this case most of the electrons

in the sample are not affected by the MW field applied at a discrete frequency.

Numerical simulations are performed on spin systems composed of several elec-

trons and nuclei in an effort to examine the role of the DNP inactive electrons. Here

we show that these electrons also broaden the DQ and ZQ spectra, but that they

hardly cause any loss to the DNP enhanced nuclear polarization due to their spin-

lattice relaxation mechanism. Their presence can also prevent some of the polari-

zation losses due to the core nuclei.
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1 Introduction

Dynamic nuclear polarization (DNP) has gained renewed interest in recent years [1]

due to its ability to dramatically increase the NMR signals originating from a large

variety of molecules, and its wide applicability. DNP samples typically contain

molecules of interest, a solvent, and stable radicals which contain unpaired

electrons. These samples are then irradiated continuously by microwave (MW)

fields close to the electron resonance frequency for relatively long times (in the

timescale of the nuclear relaxation time). This leads to a transfer of the large

Boltzmann polarization of the electrons to the nuclei in the sample.

The first DNP mechanism was introduced by Overhauser [2] and was termed the

Overhauser effect. This relies on fast cross-relaxation processes between electrons

and interacting nuclei, present in liquids and conducting solids. In non-conducting

solid samples, such as frozen glass forming solvents, three possible DNP mechanisms

are responsible for the polarization transfer: The solid effect (SE) [3, 4], the cross

effect (CE) [5, 6, 7], and thermal mixing (TM) [8]. A discussion of the difference

between these mechanisms can also be found in some recent publications [9].

Macroscopic rate equations were previously used to phenomenologically describe

these DNP processes (see for example Refs. [10, 11]). These equations typically takes

into account the characteristic features of the samples such as the nuclear and electron

spin relaxation rates and the EPR line-shape of the radicals.

Recently, it was proposed that additional insight into the DNP process can be

gained by studying the behavior of microscopic model systems, using quantum

mechanical formalisms and numerical simulations [12–16]. The size of these

systems are of course limited by computer memory restrictions, although solutions

for overcoming these limitations are currently being proposed [17, 18]. Based on

such calculations we suggested in a recent publication [12, 15] that the presence of

many (core) nuclei, which are directly hyperfine coupled to the electrons taking part

in the SE and CE mechanisms, broaden the double quantum (DQ) and zero quantum

(ZQ) spectra, and dramatically reduce the end polarization. In the present study we

discuss the effects of multi-electron environments on the SE and CE-DNP

processes.

The current typical solid DNP setup is at high magnetic fields, where the width of

the EPR line is much larger than the excitation bandwidth of the effective MW field.

Then, the static SE and CE mechanisms rely on the irradiation of isolated electrons

in the EPR spectrum, while leaving most electrons unaffected. These unaffected

electrons will however have non-negligible dipolar interactions with their DNP

active neighbors when we are dealing with high radical concentrations (i.e.

10–40 mM) typically used during DNP enhancement. Only a small fraction of these

electrons are in a condition to create single electron pairs that support CE-DNP

processes. For TM-DNP large clusters of electrons that are coupled via dipolar flip-

flop terms or electron cross-relaxation and have an intrinsic line-width larger than

the nuclear Larmor frequency, must be present [8, 19]. This case is outside the scope

of this study.

Here we report on the effect of electrons which are not directly affected by the

MW irradiation on the SE- and CE-DNP processes. Using numerical calculations of
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model multi-electron and multi-nuclear systems we show that these electrons

broaden the DQ and ZQ spectra and that relaxation pathways provided by these

electrons can restore some of the polarization lost due to the many core nuclei. This

study provides another example of the complexity of the DNP processes and

emphasizes the necessity to take multi-spin phenomena into account in order to

obtain a better understanding of solid state DNP.

2 Interactions and Relaxations

In this publication we consider a static solid sample, composed of Ne unpaired

electrons (S = 1/2) and Nn equivalent nuclei (I = 1/2). The spin dynamics of this

system is evaluated using the theoretical model introduced earlier for the

description of the SE-DNP and CE-DNP processes in model systems [12, 13, 15].

Its Hamiltonian in the MW rotating frame can be presented as [20]:

H ¼ HZ þ Hhfi þ HD þ Hd þ HMW ¼ H0 þ HMW; ð1Þ

where

HZ ¼
X

a

DxaSz;a � xn

X

i

Iz;i

Hhfi ¼
X

a;i

Az;aiSz;aIz;i þ
1

2
ðAþaiSz;aIþi þ A�aiSz;aI�i Þ

� �

HD ¼
X

a\b

Dabð2Sz;aSz;b �
1

2
ðSþa S�b þ S�a Sþb ÞÞ

Hd ¼
X

i\j

dijð2Iz;iIz;j �
1

2
ðIþi I�j þ I�i Iþj ÞÞ

HMW ¼ x1

X

a

Sx;a

ð2Þ

with a, b = 1, …, Ne and i, j = 1, …, Nn. These terms represent the electron off-

resonance and nuclear Zeeman interactions, the secular and pseudo-secular

electron–nuclear hyperfine interactions, the electron and nuclear dipolar interac-

tions, and the MW irradiation, respectively.

All interaction coefficients in these terms depend on the geometry of the spin

system and its orientation with respect to the direction of the external magnetic field,

pointing in the z direction. For example, the dipolar coefficient of the interaction

between two electrons is given by:

Dab ¼ Der�3
ab ð3 cos2 h� 1Þ; ð3Þ

where De ¼ l0

8p�h gagbb
2
e ; rab is the magnitude of the distance vector between two

electrons a and b, and h the angle between this vector and the external magnetic

field. In the same manner the values of the off-resonance coefficients Dxa of the

electrons depend on the principal axis system (PAS) g-tensor components

(gx, gy, gz) and orientation with respect to the external magnetic field:
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Dxa ¼ gðh0;/0ÞbeB0=�h� xMW

gðh0;/0Þ ¼ ðg2
x sin2 h0 cos2 /0 þ g2

y sin2 h0 sin2 /0 þ g2
z cos2 h0Þ1=2 þ g0;

ð4Þ

where h0, /0 are the polar angles of the external magnetic field in the PAS frame and

g0 is the isotropic part of the interaction. xMW is the frequency of the MW

irradiation field. Large differences between the off-resonance values of two strongly

interacting electrons a and b can quench their mutual dipolar flip-flop term even

when rab is small.

The dynamics of the spin system is determined by the time independent

Hamiltonian of Eq. 1 and by fluctuating interactions which define relaxation rates.

The latter are here defined in the diagonalized representation of H0, K0 ¼ D�1H0D;
with eigenstates |kki and energies kk. The relaxation mechanisms cause the individual

spins to oscillate between states, determining the overall relaxation rates of the

ensemble average populations and coherences [21]. Here we introduce effective

relaxation parameters T1,kk0
-1 and T2,kk0

-1 belonging to the |kki$|kk0i transition. In order

to evaluate the electron and nuclear polarizations the ensemble average spin density

operator q(t) is defined, with its diagonal elements in the diagonalized representation

given by the populations pj(t) = hkj|D-1q(t)D|kji. At thermal equilibrium these

populations are determined by the Boltzmann statistics, resulting in:

peq
k0

p
eq
k

¼ ekk0 ¼ exp ½ðkk � kk0 Þ þ xMWðMe;k �Me;k0 Þ��h=kBT
� �

; ð5Þ

where Me,j is the total electron angular momentum component in the z direction of

|kji. The values of the spin–lattice rates T1,kk0
-1 , driving the populations to satisfy

Eq. 5, are calculated here for simplicity assuming fluctuating interactions propor-

tional to Sx,a and Ix,i, and using empirical rates T1a
-1 and T1i

-1, as described in Ref.

[12]. The spin–spin relaxation rates T2,kk0
-1 are introduced by choosing a priori values,

without performing any specific frame transformations. For simplicity we consider a

single spin–spin relaxation rate T2MW
-1 for all transitions affected by the MW

irradiation, and a second rate T2n
-1 for all other transitions.

The required expectation values, such as the nuclear polarization, are determined

here from the density operator q(t) representing the whole spin system under

investigation. In order to propagate the density operator in time we must solve

�qKðtÞ ¼ UðtÞ�qKð0Þ
UðtÞ ¼ expð�ðiK̂þ R̂ÞtÞ;

ð6Þ

where K̂ is the Liouville space representation of the Hamiltonian in the diagonal

frame, K ¼ K0 þ D�1HMWD; �qKðtÞ is the vector representation of qKðtÞ ¼
D�1qðtÞD; and R̂ is the relaxation superoperator. The magnitudes of the polariza-

tions of each nucleus i can then be calculated using

PiðtÞ ¼ �pðtÞ � ½½D�1Iz;iD��; ð7Þ

where �pðtÞ is a vector composed of all the pk(t) populations, and [[X]] stand for the

vector of diagonal elements of X. The nuclear enhancement can be normalized with

respect to the electron thermal polarization, Pi(t)/Pe(0), with
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Peð0Þ ¼ ��pð0Þ � ½½D�1Sz;eD��: ð8Þ
When we are only interested in the steady state enhancement, the density

operator qK
ssðtÞ can be derived by solving

ðiK̂þ R̂Þ�qK
ssðtÞ ¼ 0: ð9Þ

Thus �qK
ss belongs to the null space of ðiK̂þ R̂Þ; and it is given by c0

�l0; where c0 is a

scalar and �l0 is an eigenvector with an eigenvalue of zero. The value of c0 can be

found from the conservation of populations in the system, �1 � c0
�l0 ¼ 1, where �1 is a

vector representation of the identity matrix. Since ðiK̂þ R̂Þ is a sparse matrix,

solving Eq. 9 can be faster than solving Eq. 6, making it also possible to deal with

larger spin systems.

When dealing with a SE-DNP process, the effective MW irradiation fields of

magnitudes x1,kk0, equal to the matrix elements 2hkk|D
-1HMWD|kk’i and exciting

the DQ or ZQ |kki?|kk’i transitions, are relatively weak. When H0 of the spin

system is diagonalized and the condition jx1;kk0j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�2

2;kk0 þ Dx2
kk0

q
is fulfilled, we

can reduce the dimension of the calculations by transferring Eq. 6 to a rate equation

for pðtÞ: In that case the x1,kk0’s are replaced by MW rates Wkk0 ¼
x2

1;kk0T2;kk0

1þðDxkk0T2;kk0Þ2
; as

was discussed in Ref. [13], and spin systems can be considered that are larger than

those that can be handled by Eqs. 6 and 9.

In the following sections we ignore the dipolar Hamiltonian Hd in order to

simplify the calculations. This is justified when considering core nuclei. These

nuclei i, surrounding an electron a are characterized by |Az,ai - Az,aj| � |dij| for all

other nuclei j in the sample. For these core nuclei the dipolar flip-flop terms

proportional to dij will be quenched by the hyperfine interactions. We should

however not forget that the nuclear dipolar interaction plays an important role in

the transfer of polarization from the electrons to the bulk nuclei. The bulk

polarization is determined by a dipolar assisted DNP transfer process that is

mediated by the core nuclei and its magnitude depends therefore strongly on the

ability of the MW irradiation to polarize these core nuclei [13]. In the last Sect. 6.3

we will reintroduce Hd into the calculations to examine this polarization transfer to

remote bulk nuclei.

Next, model spin systems that can be treated numerically are chosen and the

influence of electron and nuclear additions on the nuclear polarization enhance-

ments are characterized.

3 The Electron Spin System

Before choosing the interaction parameters of our model spin systems, we imagine a

typical static DNP experiment on a glass forming solution, with randomly

distributed single radicals that are surrounded by solvent nuclei of a single type.

Such a sample of volume V can be characterized by an unpaired electron

concentration C (defined here in units of mM). To characterize the interaction
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network of these electrons we must estimate the probabilities of finding relatively

isolated electrons or small networks of strongly dipolar coupled electrons, in

particular electron pairs that can be the source of CE-DNP processes. These

probabilities can be estimated for different values of C while taking into account the

width of the EPR line-shape.

The average distance from one electron to its nearest neighbor (in units of Å) in

the sample is given by �re�e ¼ ðp6 rCÞ�1=3; with r ’ 6:02� 10�7 ½mM�1Å
�3�. This

was calculated assuming that on average each electron is surrounded by a volume

without other electrons of V
Ne
¼ ðrCÞ�1 ¼ 4

3
p 1

2
�re�e

� �3
: In general, the value of the

average dipolar interaction hDabi, obtained by inserting �re�e into Eq. 3 is in the

order of a MHz or less for concentrations of less then 100 mM.

More insight on the spin system can be gained from the microscopic distributions

of electrons around single electron spins a. The probability of finding n electrons b
within a distance rab B rl is:

Fn� 1 ¼ 1� expð�rCvÞ; ð10Þ

and the probability of finding only one such electron b is:

Fn¼1 ¼ rCv expð�rCvÞ: ð11Þ

Here v ¼ 4
3
pðr3

l � r3
0Þ; where r0 is some minimal distance between two electrons.

Similar expressions for the condition of having a dipolar interaction |Dab| C Dl can

be derived assuming that r0 can be neglected, by inserting for v the value

ð16p=9
ffiffiffi
3
p
ÞDe=Dl: When r0 cannot be neglected we can approximate these

probabilities using Der
-3 C Derl

-3. All these equations are derived in the appendix.

Figure 1 shows two examples of the FnC1 (black) and Fn=1 (gray) probabilities as

a function of the radical concentration, using rl equal to 30 Å (solid lines) and 12 Å

(dotted lines), respectively, with r0 = 5Å. The former rl is smaller than the average

electron distance even for an electron concentration of 100 mM (or of 60 mM for a

cubic lattice), and results in electron dipolar interactions of about 1 MHz or more.

This value is in the order of magnitude of the hyperfine coupling between the

electrons and neighboring core protons and therefore can not be neglected. The

latter can be compared with the distance between the electrons in the TOTAPOL

and BT2E bi-radicals, which is about 12.8 Å [22], and corresponds to a dipolar

interaction of more than 15 MHz. The probability of finding at least one electron

(black lines), or only a single electron (gray lines) with a dipolar interaction larger

than Dl is shown in Fig. 1b, c for a radical concentration of 40 and 10 mM,

respectively. This was calculated using Dl^ Derl
-3. For a radical concentration of

40 mM almost all the electrons will have several neighbors with a dipolar

interaction of more then 1 MHz. There is about a 24 % chance to find a single

neighbor with a dipolar interaction of 15 MHz or more, and about 4 % of finding

several such neighbors. For an electron concentration of 10 mM there is a

probability of more than 70 % to find at least one neighbor with a dipolar interaction

of 1 MHz or more, and about 35 % of only one such neighbor. The probability of

finding a single neighbor with a dipolar interaction of more than 15 MHz is about

7 % in this case. Therefore, in most cases a DNP active electron will be dipolar

coupled to at least one other electron with a dipolar interaction of more than 1 MHz.
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In many cases we expect that the differences between nearest and next nearest

neighboring distances are significant. The latter case resembles distance distribu-

tions in system of bi-radicals.

As mentioned above, we will restrict our simulations mainly to core nuclei. The

areas occupied by the core nuclei are not well defined as well as their boarders. The

global sizes and shapes of the core areas around a single radical depend on the type

of nuclei and on their concentration. An example of such a core region with an

average radius of about 12–15 Å is illustrated in Ref. [12] . When two neighboring

radicals are in close proximity their core areas become connected, as illustrated in

Ref. [15]. Because we are interested in the influence of DNP inactive electrons

coupled to active ones, we do not restrict ourselves to additional electrons with

overlapping core areas.

Fig. 1 a The probabilities FnC1

and Fn=1 of finding at least one
(black) or only one (gray)
additional electron in the
neighborhood of an electron,
within a distance of rl = 30Å
(solid lines) or of 12 Å (dotted
lines), as a function of the mono-
radical concentration. b, c The
probabilities of finding at least
one (black) or only one (gray)
additional electron in the
neighborhood of an electron
with a dipolar interaction larger
than Dl, for a mono-radical
concentration of 40 and 10 mM,
respectively. In all cases a
minimal electron-electron
distance of r0 = 5 Å was
assumed
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In order to evaluate the effect of the electron dipolar interactions on the DNP

mechanism we must take into account the dispersion of the electron frequencies, as

determined by the inhomogeneously broadened EPR line-shape. For example, in

order to get substantial dipolar state mixing between neighboring electrons, we

require that the difference between their off-resonance frequencies is smaller or of

the order of the dipolar interaction between them, jDxa � Dxbj 	 jDabj:
For an EPR line with a width of a few hundred MHz, as is typically the case for

nitroxides at high fields, most neighboring electrons do not satisfy this equality,

even for a radical concentration of 40 mM. Therefore it will be rare to find large

flip-flop coupled networks of many electrons with significantly dipolar mixed states.

It is however important to note that these interactions will still lead to spectral

diffusion via electron cross-relaxation [20].

The strength of the dipolar interaction will also determine the probability of

finding electrons at the CE condition, since the width of this condition is

approximately given by ± |DabAa,n/2xn| [15]. As a result electron pairs with strong

dipolar interactions are likely to take a significant part in the CE-DNP mechanism,

although the probability of finding such pairs is relatively small. It is therefore

possible to consider CE-DNP between the low abundant electron pairs even for

randomly distributed electrons. Since the width of the CE condition is expected to

be smaller than 1 MHz and the CE mechanism requires an EPR linewidth that is

larger than the nuclear Larmor frequency, the probability of finding electrons at the

CE is very low at high fields.

We can thus conclude that for broad EPR lines, such as nitroxides in fields of a

few Tesla or more, only a small fraction of the electrons are directly affected by the

MW irradiation and are SE-DNP active, while an even smaller fraction will result in

CE-DNP. Because most of the electrons in the sample satisfy jDxa � Dxbj[ jDabj;
we do not expect any large state mixing between DNP active electrons and their

inactive neighbors. However, these DNP inactive electrons can influence the

enhancement processes, as will be discussed in what follows. For radicals with EPR

spectra that are tens of MHz wide, such as trityl-type radicals in fields of a few

Tesla, the dipolar flip-flop coupled networks can be more extended and the number

of DNP inactive electrons will be reduced. As a consequence for such samples with

high radical concentrations, coupled multi-electron systems must be considered,

possibly exhibiting thermal mixing effects. These effects will not be discussed here

and will be left for future studies. We however believe that the mechanism proposed

for broad EPR lines will play a role even in these cases.

4 The DQ and ZQ Transitions

It was previously shown that the hyperfine interactions of the core nuclei, coupled to

an isolated electron a, determine the width of the DQ and ZQ spectra [12]. MW

excitation of part of the transitions composing these spectra leads to a SE-DNP

enhancement process. When we consider two interacting electrons a and b, the DQ

or ZQ spectrum of electron a can overlap with the SQ spectrum of the second

electron b. This can result in CE conditions, where strong product state mixing can
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result in a CE-DNP enhancement process. These conditions depend on the hyperfine

interactions of the core nuclei and on the a - b dipolar interaction, as was

previously explained. Once again, here we are interested in the influence of

additional electrons c in these systems on these two processes. Referring to the

above discussion, we assume that the SQ transitions of electrons c are removed from

those of a and b, such that |Dac| � |xa/b - xc|, and from the DQ and ZQ

transitions. In this case the effects of the dipolar flip-flop terms between a and c and

between b and c can be neglected.

The frequencies of the DQai transitions of a single core nucleus i close to a single

electron a in a spin system containing additional electrons c is given to zeroth order by:

xDQ;ai ¼ xa � xn þ
X

j 6¼i

ð
Þj
1

2
Az;aj

	 

þ
X

;c 6¼a

ð
Þc Dac þ
1

2
Az;ci

	 

: ð12Þ

The first sum takes into account the effect of the hyperfine interaction of all the

nuclei j = i with electron a, and the second sum the effect of the dipolar interaction

of all electrons with electron a and their hyperfine interaction with nucleus i (which

is expected to be relatively small). The (± )x sign is equal to 1 or -1, depending on

the spin up or spin down state of x. Similar expressions are obtained for the ZQai

transition frequencies, after replacing -xn by ?xn.

When two electrons a and b are coupled to nucleus i and close to their basic CE

condition, xa � xbð Þ ’ 
xn; the additional electrons c and nuclei j cause a shift

and result in the CE conditions:

ðxa � xbÞ ’ 
xn þ
X

j6¼i

ð
Þj
1

2
ðAz;aj � Az;bjÞ

þ
X

c 6¼a;b

ð
ÞcðDac � Dbc þ
1

2
Az;ciÞ:

ð13Þ

Taking these equalities into account, it is now possible to study the effect of

additional electrons and nuclei on the polarization enhancement of nucleus i.

5 Polarization Enhancement

In this section we set the stage for calculating the effect of the additional electrons

on the basic SE-DNP and CE-DNP processes. To do so we consider the SE

polarization enhancement in a simple three-spin system with two electrons a and c
and a single nucleus i, which is hyperfine coupled to electron a. The frequencies of

the two electrons are far from the CE condition and |xa - xc| � |Dac|. This system

has only two DQai transitions:

jaa;bc; aii $ jba; bc; bii
jaa; ac; aii $ jba; ac; bii

ð14Þ

with a frequency difference of about 2Dac. Here we have ignored the small state

mixing due to the diagonalization of H0. When both transitions are simultaneously
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excited by an effective MW irradiation field, such that both transitions are saturated,

the steady state populations p(va, vc;vi) with v = a, b become:

pðaa; bc; aiÞ ¼ pðba; bc; biÞ ð15Þ

and

pðaa; ac; aiÞ ¼ pðba; ac; biÞ: ð16Þ

The effect of the spin-lattice relaxation of electron a will result in:

eepðba; vc; viÞ ¼ pðaa; vc; viÞ ð17Þ

and of electron c results in:

eepðva; bc; viÞ ¼ pðva; ac; viÞ ð18Þ

where ee is the Boltzmann ratio between the electronic states taken from Eq. 5 after

removing all energy terms except for the electron Zeeman interaction. Combining

these equalities results in this ideal case in a steady state nuclear polarization that is

equal to the initial electron polarization [12]

Pnðts:s:Þ ¼
1

2

1� ee

1þ ee
¼ Peð0Þ: ð19Þ

Here we assumed that the nuclear relaxation rate is significantly smaller than the

electron relaxation rates. The high nuclear polarization in this case is a combined

result of the saturation of the DQ transitions by the MW irradiation and the electron

spin-lattice relaxation mechanisms.

When only one of these DQai transitions is saturated, only Eqs. 15 or 16 are

satisfied. Combining this with the effect of T1,a
-1

= 0 on the spin system (Eq. 17)

will result in only half of the previously obtained nuclear polarization Pnðts:s:Þ ¼
1
2

Peð0Þ: If T1,c
-1 would have been zero, the spin system could have been decomposed

into two subsystems, one with electron spin c in state |aci experiencing a MW

irradiation and one of the same spin in |bci without an irradiation. However, because

we are dealing with systems with T1,c
-1

= 0 (Eq. 18), we do not divide the system

during the calculations and continue evaluating the ensemble average polarizations

as derived from qKðtÞ: This results in full nuclear polarization, as in Eq. 19.

This simple example shows that MW irradiation on only a part of the transitions

of DQ or ZQ spectra, dipolar broadened by additional electrons, can still result in

large nuclear enhancements, due to the spin-lattice relaxation processes of these

electrons. In the following sections we will demonstrate this effect by performing

numerical simulations on model spin systems.

6 Numerical Simulations

In this section we show results from numerical simulations of nuclear polarizations

enhanced by SE-DNP and CE-DNP processes. In Sects. 6.1 and 6.2 we start from

simple two-spin {ea - n1} and three-spin {eb - ea - n1} systems, and show the

polarization of nucleus 1 after the addition of other nuclei and electrons. In these
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simulations we did not take nuclear dipolar interactions into account. In Sect. 6.3

we present the polarization of the nuclei in a chain, with only one single nucleus

hyperfine coupled to the electron and with dipolar couplings between the nuclei. We

again consider the effect of the addition of a nucleus and an electron on the DNP

polarization. The parameters of all the spin systems used for the simulations are

summarized in Tables 1 and 2, unless stated otherwise.

6.1 Solid Effect DNP

To calculate the signal enhancements of the {ea - n1} spin system we solve the

population rate equations [13]. The steady state frequency swept DNP enhancement

Table 1 Simulation parameters

used in Sects. 6.1 and 6.2, for

simulations of SE and CE DNP

enhancements

a All other interactions were set

to zero
b c ranges from one to three, in

the order of appearance
c j = 1 to 4, with the detection

performed on nucleus 1

Parametera Value

x1H/2p 144 MHz

(xc - xa)/2pb 50, -90, 100 MHz

Az,aj/2pc 0.5, 3, 2, 0.5 MHz

Aaj
± /2pc 1.4, 4, 1, 1.5 MHz

Dac/2pb -1.5, -1, -0.25 MHz

Dab/2p 2 MHz

x1/2p 400 kHz

T1e 10 ms

T1n 2 s

T2mw 10 ls

T2n 1ms

Temperature 100 K

Table 2 Simulation parameters

used in Sect. 6.3, for simulations

of nuclear enhancements during

dipolar-assisted SE DNP

a All other interactions were set

to zero
b For nuclei j = 1 to 6
c Value used for nuclei 2–6
d Value used for nuclei 1 and 10

Parametera Value

x1H/2p 144 MHz

(xc - xa)/2p -90 MHz

Az,a1/2p 0 MHz

Aa,1
± /2p 1.4 MHz

Az,a1’/2p 3 MHz

Aa,1’
± /2p 4 MHz

Dac/2p 1.5 MHz

dj,(j?1)/2pb 10, 11, 8, 9.5, 10.5 kHz

x1/2p 100 kHz

T1e 10 ms

T1n,bulk
c 10 s

T1n,core
d 2 s

T2mw 10 ls

T2n 1 ms

Temperature 100 K
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of nucleus 1 is shown in Fig. 2a before (dotted line) and after adding one additional

electron (solid black lines) or nucleus (gray line). In both cases the single line

composing the initial DQai spectrum becomes a doublet resulting in the split DNP

spectra. When a nucleus is added the maxima in the polarization drops, while the

addition of an electron does not reduce these two maxima. The addition of the

electron reduces the line-widths by a factor of about
ffiffiffi
2
p

: In Fig. 2b the initial

polarization buildup curves of nucleus 1 are plotted for these {ea - n1}, {ec -

(ea - n1)}, and {(ea - n1) - n2} spin systems, with the MW irradiation applied at

the frequency of the maxima in the steady state polarization around (xMW - xa)/

2p& - 144 MHz, - 145.5 MHz, and -145.5 MHz respectively. The steady state

values of the latter are shown by the black and gray triangles. All three buildup

curves reach their steady state polarizations with two time constants. The first time

constants are about equal in all three cases and correspond to the initial saturation of

the irradiated DQ transition. The polarization after this time step depends on the

fraction of the irradiated DQ transitions. In the two-spin system the second time

constant equals to T1,a and after the addition of the electron this constant becomes

longer. The addition of a nucleus reduces the end polarization, and the time constant

approaches T1n [12].

In Fig. 3a, b the steady state DNP spectra of nucleus 1 (black lines) are shown

after the addition of three electrons or of three nuclei. The DNP spectra after the

addition of seven spins are shown in Fig. 4a. In this case the electron interaction

parameters were chosen from a random electron distribution corresponding to a

40 mM radical concentration. To enable an easy comparison between the additions

of electrons and nuclei, the dipolar and hyperfine interactions were chosen such that

the two additions resulted in similar DQa1 spectra. This was accomplished by

copying the electron configurations and creating corresponding nuclear configura-

tions by scaling all the distances according to ra�i ¼
ffiffiffiffiffiffiffiffiffiffiffi
cn=ce

3
p

ra�c ’ ra�c=8:7: In all

Fig. 2 a The normalized SE-DNP steady state polarization of nucleus 1 as a function of the MW
irradiation frequency, for a {ea - n1} (dotted black line), a {ec - (ea - n1)} (solid black line, with the
steady state marked by a black triangle), and a {(ea - n1) - n2} (solid gray line, with the steady state
marked by a gray triangle) spin system. The MW irradiation was applied around the DQ transitions.
b Polarization buildup curves of nucleus 1 for these three spin systems. The MW irradiation was applied
at the maxima of the DNP lines around (xMW - xa)/2p = -144 MHz, -145.5 MHz, and
-145.5 MHz, respectively. All other parameters used in the simulation are given in Table 1
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cases the addition of the nuclei results in an end polarization of nucleus 1 that is

smaller than after the addition of electrons. The reduction in the widths of the

frequency bands in the DNP spectra after the additions of these electrons is

approximately given by the square root of the number of added electrons or less.

Examples of the polarization buildup curves of nucleus 1 in these systems are

shown in Figs. 3d and 4b. In all cases the MW irradiation was applied at the

frequency band around (xMW - xa)/2p& -141 MHz in the DNP spectra of

Figs. 3 and 4. The steady state polarizations are marked by triangles. In both figures

the polarization of the {ea - n1} system is drown again, for comparison (note the

change of timescale). A comparison between these buildup curves and the buildup

curves shown in Fig. 2d shows that as more electrons are added the buildup time

becomes slower, which eventually leads to lower steady state polarization. The

addition of more nuclei (with a common spin-lattice relaxation time) has little effect

on the polarization buildup times.

Now we consider the effect of a simultaneous addition of electrons and nuclei. To

do this we first consider a {ec - (ea - n1) - n2} system, where nucleus 2 reduces

Fig. 3 The normalized SE-DNP steady state polarizations of nucleus 1 as a function of the MW
irradiation frequency in a a {3e - (ea - n1)}, b a {(ea - n1) - 3n}, and c a {3e - (ea - n1) - 3n}
spin system. The MW irradiation was applied around the DQ transitions, with the simulations performed
using a temperature of 100 K (black lines) or 1.5 K (gray lines). d Polarization buildup curves of the
systems used in a (solid black line), b (solid gray line) and c (dashed gray line), using a temperature of
100 K. The steady state polarization is marked by solid black, solid gray and empty gray triangle,
respectively. The MW irradiation was applied at (xMW - xa)/2p = -141.25 MHz, -141.475 MHz
and -141 MHz, respectively. The buildup of the {ea - n1} system (dashed black line, with the steady
state marked by an empty black triangle) used in Fig. 2b is shown for comparison. All other parameters
used in the simulation are given in Table 1
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the end polarization of nucleus 1. Figure 5 shows the polarization of nucleus 1, after

the addition of one electron c. Here the polarization is shown as a function of the

MW irradiation frequency and the dipolar interaction Dac between electrons c and

a, normalized by the hyperfine interaction Az,a2. For most values of Dac/Az,a2 the

maximal polarization stays constant. However, the polarization increases when |Dac/

Az,a2| & 0.5 and two of the hyperfine split DQa1 transitions are irradiated. Another

condition leading to increased enhancement is obtained when jDacj � 1
4
jAz;a1 


Az;a2j; so that one of the DQ frequencies of nuclei n1 and n2 become equal. This

Fig. 4 a The normalized SE-DNP steady state polarization of nucleus 1, as a function of the MW
irradiation frequency, after the addition of seven electrons (black line) or seven nuclei (gray line) to an
{ea - n1} spin system. The positions of the seven electrons was randomly chosen within a 69.2 Å box
aligned with the direction of the magnetic field (z), which corresponds to an electron concentration of
about 40 mM. The minimal electron–electron distance was set to 10 Å. Electron a was placed at the
center of the box (0,0,0), nucleus 1 was placed at position [3.1, 0, 3.1] Å and the positions of the
remaining electrons are: [8.6 12.4 -7.2], [-9.2 33.8 -32.0], [26.7 28.6 20.5], [-27.8 -16.5 -11.4],
[12.4 -25.2 15.3], [-27.2 10.6 -0.4], and [19.3 14.9 28.0] Å. The difference between the EPR frequency
of these electrons and that of electron a were chosen to be equal to -26, -21, -77, 3, 4, 127, and
118 MHz. The positions of the nuclei were determined by scaling of the electron positions by

ffiffiffiffiffi
c1H

ce

3

q
: All

other parameters were taken from Table 1. b Polarization buildup curves of nucleus 1 in these spin
systems, during a MW irradiation applied at the DNP frequency of (xMW - xa)/2p = -141 MHz. The
buildup of the {ea - n1} system (dashed black line) used in Fig. 2b is shown for comparison. The steady
state polarizations are marked by triangles. All other parameters used in the simulation are given in
Table 1

Fig. 5 The normalized SE-
DNP steady state polarization of
nucleus 1 in a {ec - (ea -
n1) - n2} spin system, as a
function of the MW irradiation
frequency and the ratio between
the electron dipolar and the Aa2

hyperfine interactions. The
irradiation was applied around
the DQ transitions. All other
parameters used in the
simulation are given in Table 1
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effect can also be seen in Fig. 3c (black lines), where three nuclear and three

electron spins are added, with |Dak/Az,ak|& 0.5 for k = 2, 3, 4. In general, for SE-

DNP on a system containing DNP active electrons a, with core nuclei j and

surrounding electrons c, we can expect many such overlaps between DQaj

transitions of the different a - j electron-nuclear spin pairs. MW excitation of

these transitions can therefore result in higher polarization enhancements than for

similar systems without the c electrons.

Figure 3d (dotted gray line) shows the polarization buildup curve for this system,

with the empty gray triangle marking the steady state value. The MW irradiation

was applied at (xMW - xa)/2p & -141 MHz. The polarization buildup has three

time constants: one corresponding to the initial saturation of the DQ transitions, the

next to the electron spin lattice relaxation, and the third to the nuclear spin lattice

relaxation time. Irradiation at other points in the spectra result in variations in the

relative contribution of each time constant (data not shown). For example,

irradiation applied at (xMW - xa)/2p & -144 will result in a higher end

polarization and a timescale close to T1e, while irradiation at (xMW - xa)/

2p & -139 MHz results in lower end polarization and a timescale close to T1n.

So far we considered spin systems at 100 K. Lowering the temperature will lead

to population distributions that mainly populate the lower electronic states. A

consequence of this change in population distribution is shown in Fig. 3a–c, where

the gray lines present the steady state DNP polarizations calculated for a

temperature of 1.5 K. Only MW irradiation on the DQ transitions of the low

energy states results in substantial DNP enhancements. As before, the addition of

several nuclei results in a reduction of the end polarization, and addition of more

electrons to this multi-nuclear system yields only limited improvement.

6.2 Cross-Effect DNP

Here we consider the effect of adding nuclei and electrons to a {eb - ea - n1}

three-spin system, close to the CE condition. In this case calculations were

performed solving Eq. 9. Figure 6a shows the polarization of nucleus 1 as a

function of the MW irradiation frequency and of the difference between the electron

frequencies, xb - xa, for the three-spin system. The vertical contour lines

correspond to irradiation on the DQa1 transitions, and the horizontal ones are

located at the CE conditions. In Fig. 6b and c the same is shown after the addition of

an electron c or a nucleus 2, respectively. In both cases the additional spin results in

a splitting of the DQa1 transition and of the CE condition. Here again the dipolar or

hyperfine interactions of the added spin were chosen such that this splitting is the

same in both cases. The addition of a nucleus results in a decrease in the maximal

polarization, while the additional electron leaves the maximal polarization

unchanged, but narrows the widths of the SE-DNP enhancement profiles and the

widths of the CE conditions. Figure 7d shows the polarization of nucleus 1 after an

electron c and a nucleus 2 are both added to the system, with |Dac/Az,a2| & 0.5. This

results in three DQ transition and three CE condition contour lines, with a maximal

polarization similar to that obtained in Fig. 6a for the three spin system. As in the

SE case, reducing the temperature limits this beneficial electron polarizing effect
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Fig. 6 a Normalized DNP steady state polarization of nucleus 1 in a {eb - ea - n1} spin system around
the CE condition, as a function of the MW irradiation frequency and the electron frequency difference.
The results of b were obtained after the addition of an electron {ec - (eb - ea - n1)}, of c after the
addition of a nucleus {(eb - ea - n1) - n2}, and of d after the addition of both an electron and a nucleus
{ec - (eb - ea - n1) - n2}. The irradiation was applied around the DQ transitions and electron
difference was changed around the xb - xa & -xn CE condition, using the parameters of Table 1. The
white circles indicate the parameters used in Fig. 7

Fig. 7 Polarization buildup curves of nucleus 1 for the systems used in Fig. 6a–d, close to the CE
condition. The parameters used were (xb - xa)/2p & -143.95 MHz and (xMW - xa)/2p & -
142 MHz for the {eb - ea - n1} system (dashed black line), (xb - xa)/2p & -142.45 MHz and
(xMW - xa)/2p & -140.5 MHz for the {ec - (eb - ea - n1)} (solid black line) and {(eb - ea -
n1) - n2} (solid gray line, with the steady state marked by a filled gray triangle) systems, and (xb - xa)/
2p & -143.95 MHz and (xMW - xa)/2p & -142 (dotted black line) or (xb - xa)/2p & -141 MHz
and (xMW - xa)/2p & -139 (dotted gray line, with the steady state marked by an empty gray triangle)
for the {ec - (eb - ea - n1) - n2} system. These parameters result in the steady state enhancements
shown inside the white circles in Fig. 6. All other parameters where taken from Table 1
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(not shown). The polarization buildup time of these systems is shown in Fig. 7. Here

we considered only systems close to the CE condition, with electron frequency and

MW irradiation frequency marked by the white circles in Fig. 6. These calculations

were performed using Eq. 6. For the isolated {eb - ea - n1} system (dashed black

line) the buildup is in the order of T1e. After the addition of an electron (solid

black line) the buildup becomes a bit longer. When another nucleus is added (solid

gray line) the buildup has an initial rate in the order of T1e, followed by a buildup in

the order of T1n. Two polarization buildup curves are shown for this system,

after the addition of both an electron and a nucleus: A system with (xb - xa)/

2p & -144 MHz and an irradiation around (xMW - xa)/2p & -142 MHz (dot-

ted black line), and a system with (xb - xa)/2p & -141 MHz and an irradiation

around (xMW - xa)/2p & -139 MHz (dotted gray line). The buildups of these

systems resemble the buildup of the {eb - ea - n1} system after the addition of an

electron or a nucleus, respectively.

6.3 Dipolar-Assisted DNP

So far we examined the affect of DNP inactive electrons on the polarization of

nuclei hyperfine coupled to a single or a pair of DNP active electrons. By ignoring

the nuclear dipolar interaction in these calculations we also ignore the transfer of

polarization to remote bulk nuclei that are directly or indirectly dipolar coupled to

the core nuclei [13]. We now consider a system in which the nuclear dipolar

interaction plays an important role in the enhancement of nuclear polarizations. We

concentrate on a SE-DNP process polarizing bulk nuclei that are not directly

interacting with the DNP active electron. These nuclei experience the MW

irradiation via the hyperfine and dipolar interactions. This basic spin system is

composed of an electron a, a core nucleus 1, and five bulk nuclei j = 2,…,6. Only

nucleus 1 is hyperfine coupled to the electron a. We then add to this system a core

nucleus and a DNP inactive electron, and consider their effect on the dipolar-

assisted DNP polarization enhancement of the bulk nuclei. To simplify the

simulations we assume that Az,a1 = 0 preventing quenching of the dipolar couplings

between nucleus 1 and it neighbor. The nuclei are arranged in a chain, with each one

dipolar coupled to its nearest neighbors. The temporal evolution of the polarization

of these nuclei, during MW irradiation applied at Dxa ¼ xn; is shown in Fig. 8a.

Because the nuclear T1n
-1 rates are rather slow, all nuclei reach a large polarization

close to Pe(0). Figure 8b shows the effect on the buildup curves after the addition of

a second core nucleus, termed 1’ , with Az,a1’ = 3 MHz, and without dipolar

interactions to the rest of the nuclei. This nucleus splits the DQ transitions, and a

MW irradiation on one of these transitions (Dxa ¼ xn � Az;a10=2) results in a

decrease of the maximal polarization. When however in addition an electron c is

added, with Dac = Az,a1’/2, some of the reduced polarizations is restored. This can

be seen in Fig. 8c, with the MW field applied again on one of the DQ transitions,

namely Dxa ¼ xn: This simple model calculation indicates that the bulk

polarizations react in a similar manner to the additional electrons and nuclei as

the core nuclei.
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7 Conclusions

In this study we examined the influence of electrons that are not directly involved in

the DNP enhancement processes during SE- and CE-DNP experiments, on static

samples with high concentrations of mono-radicals. For this study we chose simple

model spin systems, with parameters that are relevant for real samples, and

simulated their nuclear polarizations. In real samples with inhomogeneously

broadened EPR lines that have a width much larger than the dipolar interaction

between neighboring electrons, there are no networks of strongly dipolar coupled

electron. Therefore we expect the nuclear enhancement to be driven mainly by SE-

or CE-DNP active electrons, which are surrounded by many DNP inactive electrons.

The dipolar interaction between these neighboring electrons can however exceed the

average electron dipolar interaction. Thus even at relatively low electron

concentrations we can expect to get dipolar interactions in the order of the

Fig. 8 a The temporal
evolution of the nuclear
polarizations during DNP, for a
linear chain of spins. The gray
line corresponds to nucleus 1
which is hyperfine coupled to
the electron, and the black lines
to the 5 other nuclei with each
one dipolar coupled to its
neighbors. b The same after the
addition of a nucleus 10, coupled
to electron a. c The same after
the addition of another electron
c which is dipolar coupled to
electron a, in addition to nucleus
10. Only hyperfine interactions
between a and 1 and 10 are
considered. All other parameters
are given in Table 2
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electron-nuclear hyperfine interaction, and at high enough electron concentrations

they can become similar to those found in bi-radicals.

In order to investigate the influence of the inactive electrons, we compared the

addition of these electrons to the spin systems with the addition of core nuclei.

Earlier we showed that extending the number of core nuclei results in additional

splittings of the DQ and ZQ transitions and the CE conditions, which in turn can

cause significant reductions of the DNP polarizations. Here we have shown that

despite the fact that additional dipolar coupled electrons also split the DQ and ZQ

transitions and the CE conditions, their presence results only in a marginal reduction

of the maximal polarization. This is a consequence of the spin-lattice relaxation

mechanism of these additional electrons. We have also shown that the reduction of

the polarization due to the presence of many core nuclei can be partially recovered

by the dipolar coupled DNP inactive electrons.

In this work we performed calculations on small isolated spin systems and

showed their nuclear enhancements resulting from MW irradiation that excite

specific DQ transitions. In real systems the DQ spectra are composed of transitions

with an (almost) continuous frequency distribution and one MW field can only

partially excite the DQ transitions of many electrons. The success of the DNP

experiment relies however on the enhancement of the removed bulk nuclear

polarizations surrounding the DNP active electrons. Increasing the electron

concentration can have several potential benefits: (1) It will directly increase the

number of DNP active electrons, reducing the average number of bulk nuclei

polarized by each individual electron; (2) it will increase the probability of finding

electron pairs at the CE condition, which can result in more efficient DNP

polarization mechanisms; (3) and it will increase the number of electrons

interacting with DNP active electrons. These last electrons do not contribute to the

DNP enhancement directly, but broaden the range of DQ and ZQ transitions, and

as a result the MW irradiation will partially excite more electrons responsible for

the bulk polarization. Additionally, as shown in the present study, these electrons

can prevent part of the reduction in enhancement due to the presence of the core

nuclei, increasing the ability of each of the DNP active electrons to polarize the

bulk.

We must, however, realize that the addition of electrons to the system increases

the portion of core nuclei, whose NMR signals cannot be observed due to their large

hyperfine interactions. Higher electron concentration also results in a decrease of the

electron and nuclear spin-lattice relaxation times. While a reduction of T1e can be

beneficial for the polarization process, reduction of the bulk T1n leads to lowering of

the enhancements while decreasing the overall buildup time of the bulk polarization.

This may improve the accumulated enhancement of NMR signals measured per unit

time [23]. Finally, spectral diffusion between the electrons at significantly high

radical concentrations, which was outside the scope of this study, could have a

disturbing effect on the bulk DNP enhancement.

The present study demonstrates the complexity of the DNP processes in real

samples, and emphasizes the need to further investigate the details of the signal

enhancement of the bulk nuclei.
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Appendix: Probability of Nearest Electron Neighbors

Here we calculate the microscopic probability of finding electrons within a given

distance from one another, or with a minimal given dipolar interaction strength. We

consider N randomly distributed and immobilized electrons in a sample of volume V
[Å3], resulting in an electron concentration (in [mM]) of C ¼ N

rV ; with

r ^ 6.02 9 10-7 [mM-1 Å-3]. Assuming that each electron is a point in space,

the probability of each electron b = a to be within a distance rab B rl � V-1/3

from a single electron a is given by v/V, where v ¼ 4
3
pr3

l is a volume with electron a
in its center. Alternatively, we can evaluate the probability of finding a dipolar

interaction strength of |Dab| C Dl. In this case we get for v:

v ¼ 2p
Zp

0

dh sin h
Z

De
Dl
j3 cos2 h�1j1=3

0

r2 dr ¼ De

9
ffiffiffi
3
p

Dl

ð20Þ

with De ¼ l0

8p�h gagbb
2
e : The probability that there are n C 1 such b electrons in a

volume v � V is given by

Fn� 1 ¼ 1� Fn¼0 ¼ 1� 1� v

V

� �N�1

! 1� expð�rCvÞ ð21Þ

were Fn=0 is the probability that there are no electrons in the volume v. In the last

step we considered the limit of V !1: The probability of having only one b
electron in the volume v is given by

Fn¼1 ¼ ðN � 1Þ v

V
1� v

V

� �N�2

! rCv expð�rCvÞ: ð22Þ

Next, we consider a minimal distance r0 between each electron pair. Assuming

that the electrons take a negligible portion of the total volume, Nð4
3
pr3

0Þ � V; the

radial distribution remains as in Eqs. 21 and 22, but with v ¼ 4
3
pðr3

l � r3
0Þ: To the

best of our knowledge there is no simple solution to the dipolar interaction

distribution in this case. Some insight can never the less be obtained by considering

the value of Der
-3 C Derl

-3, since 0 B Dab B 2Der
-3. Equation 20 can still be used

if 16
9
ffiffi
3
p De

Dl
� 4

3
pr3

0 :
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