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Abstract The double-quantum-coherence (DQC) echo signal for two coupled

nitroxides separated by distances Z10 Å, is calculated rigorously for the six-pulse

sequence. Successive application of six pulses on the initial density matrix, with

appropriate inter-pulse time evolution and coherence pathway selection leaves only

the coherent pathways of interest. The amplitude of the echo signal following the

last p pulse can be used to obtain a one-dimensional (1D) dipolar spectrum (Pake

doublet), and the echo envelope can be used to construct the 2D DQC spectrum. The

calculations are carried out using the product space spanned by the two electron-

spin magnetic quantum numbers m1, m2 and the two nuclear-spin magnetic quantum

numbers M1, M2, describing, e.g. two coupled nitroxides in bilabeled proteins. The

density matrix is subjected to a cascade of unitary transformations taking into

account dipolar and electron exchange interactions during each pulse and during the

evolution in the absence of a pulse. The unitary transformations use the eigensystem

of the effective spin Hamiltonians obtained by numerical matrix diagonalization.

Simulations are carried out for a range of dipolar interactions, D, and microwave

magnetic field strength B1 for both fixed and random orientations of the two 14N

(and 15N) nitroxides. Relaxation effects were not included. Several examples of 1D

and 2D Fourier transforms of the time-domain signals versus dipolar evolution and

spin-echo envelope time variables are shown for illustration. Comparisons are made

between 1D rigorous simulations and analytical approximations. The rigorous

simulations presented here provide insights into DQC electron spin resonance
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spectroscopy, they serve as a standard to evaluate the results of approximate the-

ories, and they can be employed to plan future DQC experiments.

1 Introduction

The first theoretical analysis of double-quantum-coherence (DQC) spectra was

undertaken by Saxena and Freed [1]. They briefly summarized results for a

constant-time six-pulse DQC sequence, but focused instead on a ‘‘forbidden’’

DQC five-pulse sequence. In fact, it is the six-pulse sequence, and not the five-

pulse sequence of that type, which has proved to be most useful in distance

measurements [2–5]. While the equations in Ref. [1] are generally correct, their

prediction that the ‘‘allowed’’ DQC signals would be very weak, have been

contradicted by the strong DQC signals obtained in many experimental studies

and their analysis [2–5]. It is presumed that there were undetected problems with

the numerical simulations.

When a sample containing bilabeled proteins is subjected to a sufficiently

strong microwave pulse, the nitroxide electron spin resonance (ESR) spectrum is

almost uniformly excited, so that any orientational selection is largely suppressed,

that is, it does not modify the echo amplitude (except for the effect of

pseudosecular dipolar terms, essential for short distances). Also, as we show, in

high B1-fields (B1 Z 2D), the effect of dipolar coupling during the pulses

becomes relatively weak. Therefore, for not very short distances and in

sufficiently strong B1s, the information on orientations of the magnetic tensors

of the spin-label moieties, is virtually excluded from the time-domain dipolar

evolution of the echo amplitude, taken at its maximum. However, as we show, it

is still retained in the spin-echo envelope and can be retrieved by recording the

two-dimensional (2D) time-domain data as a function of the spin-echo time (techo)

and the dipolar evolution time (tdip) and then converting it into a 2D-Fourier

transform (FT) spectrum, which, after making a ‘‘shear’’ transformation [6],

separates the dipolar dimension from the spectral dimension. Rigorous compu-

tations of 1D and 2D signals have been carried out and are presented here.

Efficient but approximate analytical expressions to this end were developed for 1D

signals by Borbat and Freed [2] (cf. Appendix 3), who omitted the dipolar

coupling during the pulses and assumed an ideal DQ filter. Whereas such

expressions are quite useful for practical purposes and computationally very

efficient, these approximations may not be generally valid, especially in the case

of short distances (e.g. \15.0 Å). In order to test the nature and extent of

deviations from the exact results and to establish the scope of applicability,

numerical simulations of 1D spectra were carried out rigorously using the new

codes developed for 2D computations. Unlike [1], the pulse propagators are

calculated, using highly accurate numerical diagonalizations of the Hamiltonians

involved, rather than applying a Trotter expansion [7, 8]. Although the

computational approach is necessarily time-consuming, it does provide deeper

insights into the features of DQC spectroscopy.
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2 Theoretical Background

The pulse pattern and the relevant coherence pathways for the six-pulse DQC

sequence are shown in Fig. 1 [2, 3]. The method used to compute the 2D-DQC

spectra is outlined as follows.

The initial density matrix operator in thermal equilibrium for the two nitroxides

described by the static spin Hamiltonian Ĥ is:

q̂0 ¼
expð�Ĥ0=kTÞ

Tr½expð�Ĥ0=kTÞ�
/ Ŝ1z þ Ŝ2z;

where the z-axis is defined to be aligned along the direction of the external magnetic

field, and the subscripts number the two electron spins. The time evolution of the

spin density matrix, q̂(t), is governed by the Liouville–von Neumann equation [1]:

dq̂
dt
¼ � i

�h
^̂HðtÞq̂ðtÞ � ^̂Cðq̂ðtÞ � q̂ð0ÞÞ;

where
^̂Hq̂ � ½Ĥ; q̂�, �h is Plank’s constant divided by 2p,

^̂C is the relaxation operator,

i2 = -1. Neglecting the relaxation, the density matrix evolves under the action of

Ĥ as:

Fig. 1 In this diagram a shows the six-pulse DQC sequence. The coherence pathways in b correspond
with the pulses shown in a in that a transition from one p state to another p state is generated by a pulse;
the horizontal lines show coherence orders during the evolutions in the absence of a pulse. As for the
timing between the various pulses the following is noted. The time interval t1 = t2 = tp is increased in
equal steps, Dtp, typically ranging from 1 to 10 ns, over a period of tm = tp ? t5 (200–4000 ns in this
paper). The time between the t3 = t4 = tDQ is kept fixed, typically at 20 ns; t5 = t6 is stepped by -Dtp to
maintain a constant tm. It starts from the initial time tm. The echo envelope is recorded in a window
tw * 80–160 ns, centered at a time delay 2tm ? 2tDQ after the first pulse, i.e. at about t6 = tm after the
sixth pulse. Note that the width of the echo sampling window limits the minimal values of t6 and tp by
about tw/2 and their maximum values to tm - tw/2. The dipolar evolution is recorded as a symmetric
signal with respect to tdip : tm - 2tp over the range of ±tm in steps of 2Dtp. tdip = 0 when pulse
separations are t1 = t2 = t5. In practice tp starts with tp0 (*400 ns in this paper), so that the last pulse and
the echo window do not overlap. Therefore, the signal in 2D DQC experiment is recorded (or computed)
over ±(tm - tp0) with tp0 always greater than tw/2
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dq̂
dt
¼ � i

�h
½ĤðtÞ; q̂ðtÞ�:

Thus after a period of time Dt the density matrix, q(t), becomes:

q̂ðt þ DtÞ ¼ e�
iĤDt

�h q̂ðtÞeiĤDt
�h � ÛðĤ;DtÞq̂ðtÞ: ð1Þ

A numerical implementation of Eq. 1 to compute the DQC ESR signal is outlined

below. Note that in the sequel the Hamiltonians will be expressed in angular

frequency units. In the ensuing for convenience we will drop the carets of Ĥ and q̂,

which mark them as operators in Hilbert space.

3 Computation of Echo Signal

One starts with the (unnormalized) initial density matrix in thermal equilibrium:

qð0Þ / S1z þ S2z: ð2Þ

for the two coupled nitroxides, with electron spins Sk = 1/2 (normalization will be

performed at the end of the calculation). The six-pulse sequence, as shown in Fig. 1,

transforms the initial density matrix under the successive action of six-pulse

propagators Rk ðk ¼ 1; 2; . . .; 6Þ; due to the pulses, and six subsequent free-evolu-

tion propagators Qk ðk ¼ 1; 2; . . .; 6Þ. This sequence can be defined as follows:

R1

p
2

� �
! Q1ðtpÞ ! R2ðpÞ ! Q2ðtpÞ ! R3

p
2

� �
! Q3ðtDQÞ ! R4ðpÞ ! Q4ðtDQÞ

! R5

p
2

� �
! Q5ðtm � tpÞ ! R6ðpÞ ! Q6ðtm � tp þ techoÞ; ð3Þ

The 12 time evolution periods described by Eq. 3 lead to the density matrix in the

final form qf. This is calculated as follows. A kth pulse, applied at the time t and

acting during the period of time, sk, in the frame of reference rotating with the

angular frequency of the circular component of microwave magnetic field resonant

with Larmor frequency of the nitroxide electron spin, transforms the density matrix,

q(t), according to:

qðt þ skÞ ¼ e�iHkskiqðtÞeiHkski

or in the notation of Eq. 3,

qðtÞ�!Rk qðt þ skÞ

with Rk being the kth pulse propagator due to the effective Hamiltonian Hk acting

during the period of time sk. The action of a p-pulse can change the sign of a coherence

order, p, and the p/2 pulse can generate other coherence orders [9, 10]. In order to

follow the pathways of interest, the density matrix is then projected onto the coherence

pathways pk, which are chosen after the pulse according to Fig. 1, as follows:

q0ðt þ skÞ ¼ PðpkÞqðt þ skÞ; ð4Þ
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where the idempotent operator PðpkÞ projects the density matrix on the coherence

pathways pk chosen after the kth pulse. As shown in Fig. 1, the coherence pathways

of interest are [(1, -1); (-1, 1); (2, -2); (-2, 2); (1); (-1)] after the actions of

the six pulses, with two branching points leading to a total of four distinct

pathways. The subsequent free evolution during the time tk transforms q0ðt þ skÞ as

q0ðt þ skÞ�!
QðtkÞ

qðt þ sk þ tkÞ according to:

qðt þ sk þ tkÞ ¼ e�iHtkq0ðt þ skÞeiHtk ð5Þ

where H is the spin Hamiltonian in the absence of a pulse. The density matrix qðt þ
sk þ tkÞ is then used in place of q(t) in Eq. 4 for the calculation of the density

matrix under the action of the (k ? 1)-pulse, and the steps defined by Eqs. 4 and 5

are repeated to arrive at the final density matrix qf � q
P

k

ðsk þ tkÞ
� �

. Computed in

this way, the final density matrix thus becomes a function of several arguments, qf ¼
qðs; t; p; techo; g; k1; k2Þ. The arguments are as follows: s ¼ ðs1; . . .; s6Þ are the pulse

durations; t ¼ ðt1; . . .; t6Þ are the subsequent free-evolution periods; p ¼ ðp1; . . .; p6Þ
are the relevant coherence orders during the evolution periods; tk, techo are time

variables used to record the dipolar evolution and to produce the spin-echo envelope.

The remaining arguments are the Euler angles g = (v, h, u), which define in the

laboratory frame the orientation of the vector r connecting the magnetic dipoles

associated with the electron spins; and in this dipolar (molecular) frame, whose z-axis

is coincident with r, the Euler angles kk ¼ ðak; bk; ckÞ define the principal axis of the

nitroxide magnetic tensors (Fig. 2) with a1 chosen to be 0. (The angle v was set to zero

as is appropriate for isotropic media.) Finally, the complex echo signal is given by:

Fþ ¼ �2Tr½Sþ~qf �;

where ~qf is the normalized density matrix.

The evolution thus depends on the exact form of various propagators that is given

by H0 in the absence of a pulse or H0 ? Hp in the presence of a pulse. Appropriate

pulse time intervals sk are chosen to achieve nominal flip angles of p/2 (k = 1, 3, 5)

and p (k = 2, 4, 6), respectively. Here,

H0 ¼ H01 þ H02 þ H12 ð6Þ

with

H0k ¼ Skzgk � B0 � cnIkzB0 þ SkzAk � Ik ð7Þ

for k = 1, 2 denoting nitroxides 1 and 2 and H12 giving their coupling

H12 ¼ HD þ HJ ¼
D

2
ð3 cos2 h� 1Þ S2

z �
1

3
S2

� �
þ J

1

2
� 2S1 � S2

� �
: ð8Þ

Here J is the electron exchange constant and D is the dipolar coupling

constant

D ¼ 3c2
e�h

2r3
; ð9Þ
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where ce is the gyromagnetic ratio for an electron, h is the Plank’s constant, and r is

the distance between the nitroxide’s magnetic dipoles separated by r and considered

in the point dipole approximation. (The dipolar constant d = 2D/3 will most often

be used throughout the text.) In Eq. 7, I1,2 are the nuclear spins of the nitrogen (14N

or 15N) nuclei on the two nitroxides.

The interaction with the radiation field due to the applied microwave pulse k in

the reference frame rotating with the carrier frequency xrf (that is usually set at or

near the Larmor frequency) is given by:

Hpk ¼
ceB1k

2
ðe�ivk Sþ þ eivk S�Þ; ð10Þ

where B1k is the amplitude of the circular magnetic component of the kth pulse. The

phases, vk, can be set to zero for all the pulses for purposes of the present calcu-

lations and consequently Hpk ¼ ceB1kSx. The amplitudes, B1k, do not have to be

equal for different k’s, but we will show results for the simplest case of equal

amplitudes. H0k (cf. Appendix 1) can be written in the laboratory frame as

Fig. 2 Set of Euler angles kk = (ak, bk, ck), (k = 1, 2), which define the orientations of the hyperfine and
g-tensor tensor principal axes for nitroxides 1 and 2 in the dipolar (molecular) frame of reference. In this
frame the z-axis is chosen to coincide with the vector r, connecting the magnetic dipoles of the nitroxides.
The orientation of the dipolar frame in the laboratory frame (with the z-axis parallel to the external
magnetic field B0) is defined by the Euler angles g = (0, h, u)
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H0k ¼ CkSkz þ GkIkz þ AkSkzIkz þ BkSkzIkþ þ B�kSkzIk�

The 2D time-domain DQC signal is calculated for a given set of kk and g,

using appropriate variations of the time intervals following the various pulses, as

given in the legend to Fig. 1 for typical values used for simulation. The

calculations were carried out in the product space S1 � S2 � I1 � I2 with the

dimension N ¼ ð2S1 þ 1Þð2S2 þ 1Þð2I1 þ 1Þð2I2 þ 1Þ (or using those generated

by subspace permutations, as needed). H0 and H are represented by order N 9 N
matrices H0 and H, i.e. with the size of 36 9 36 for the two coupled (14N)

nitroxides (S1,2 = 1/2, I1,2 = 1). H0, not including H12, can be conveniently

diagonalized in the product space S1 � I1 � S2 � I2 by the unitary transformation

T ¼ ðS1a � T1a þ S1b � T1bÞ � ðS2a � T2a þ S2b � T2bÞ;

wherein Ska; Skb are the matrices representing polarization operators for spin 1/2

and Tka; Tkb are dimension (2Ik ? 1) unitary matrices diagonalizing the respective

nuclear manifolds, a and b. The transformation, however, brings Skx ¼ Sx � 1Ik
to

the form, which contains off-diagonal elements in transformed 1Ik
s.

Skx ¼
0 Mk

M
y
k 0

 !
;

where Mk ¼ T
y
kaTkb. If nuclear Zeeman terms can be neglected, as is appropriate for

nitroxides in magnetic fields of up to about 12 kG, which corresponds to Q-band,

Mk ¼ 1Ik
. In this case both H1 and H12 become block-diagonal in I1 � I2 � S1 � S2

with (2I1 ? 1)(2I2 ? 1) blocks, corresponding to order 4 9 4 S1 � S2 electronic

subspace. This block-diagonal form makes computations run significantly faster. At

higher fields nuclear Zeeman terms should be retained, leading to coupling between

nuclear and electron coherences and a large increase in computation time. The

procedure to calculate qf ðtdip; techo; h;uÞ is outlined in Appendix 2. Finally, the

complex echo signal is given by:

Fþðtdip; techo; h;uÞ ¼ �2Tr½Sþqf ðtdip; techo; h;uÞ�=Tr½1N �:

where 1N is the unity matrix in the product space. The echo signal from a powder (or

macroscopically aligned) sample is the average of the signals over the orientations

of the molecule in the laboratory frame:

Sðtdip; techoÞ ¼
Z2p

0

du
Zp

0

Fþðtdip; techo; h;uÞPX sin h dh: ð11Þ

Here PX is the angular distribution of molecular axes in the laboratory frame

(PX = 1/4p for an isotropic distribution). In performing powder averaging in

isotropic medium it suffices to set the integration limits to [0, p] in axial angles and

[0, p/2] in polar angles. (Anisotropic media will require averaging over all three

Euler angles in g.) When needed, averaging over some or all of the remaining Euler

angles, kk, and over distances can be conducted.
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4 Computational Efficiency and Features

The 1D and 2D simulations based on block-diagonal approximations (i.e. after

neglecting the nuclear Zeeman terms in H0) were carried out with a typical personal

computer using a software code written in MATLAB. In a magnetic field of 6200 G

(corresponding to Ku band) the outcome was virtually indistinguishable from that

produced by the most rigorous simulations, and the examples we show were

produced in this way. Powder averaging employed averaging over the grid on a unit

sphere (actually over an octant), but also was carried out on the basis of Monte

Carlo averaging. 2D simulations used typically 400 9 80 points in the time-domain,

a 180 9 90 point (or greater) grid in {cosh, u} or {h, u}, or else 1–4 9 104 Monte

Carlo trials. For 1D simulations, the grids can be significantly larger. The grid in h
(or cosh) was spiral or else randomized within the Dh (or Dcosh) limits on every

step in u. Grids were constructed for the cosines or the angles for the other polar

angles, bk. The MATLAB code is general enough to permit averaging over any

subset of Euler angles or indeed over all of them whether in mesh mode or in Monte

Carlo averaging. Averaging was also carried out with respect to the dipolar constant

using suitable distance distributions, P(r). The Monte Carlo mode also included

angular-dependent inhomogeneous broadening. The last two features are the most

practical for 1D computation. A typical computation time for 2D simulations is

about 1–2 h, but could be as long as 10 h for very precise results that require the

largest meshes noted above or for long Monte Carlo averaging (e.g. when d is large

or the distribution in d is broad). A very precise 1D simulation requires some 10–

50 min, whereas 1D simulations based on using the expressions from Ref. [2] run

about 200 times faster and 105 Monte Carlo trials could typically be used.

The full-scale simulations operating on 36 9 36 matrices were carried out using

necessarily a parallel mode with eight 64-bit nodes. The code was written in

FORTRAN 77 and built for Linux OS using a Portland Group FORTRAN compiler

and Open MP. A 64 9 45-point grid on the unit sphere and 400 9 40 points in

time-domain were typical. The mesh used was uniform in cosh and u. On average,

for a mesh of this size, computation time was about 15 h. However, by using

homotopy [11–16] and adaptive meshes, one can hope for a considerable reduction

in computation time. Attempts are currently underway to accomplish this.

5 Illustrative Examples

The following examples are chosen to illustrate the calculations.

1. Figure 3 displays 1D time-domain results [5] for the dipolar interaction of

d = 15 MHz (corresponding to 5.3 G), representing the distance of 15.1 Å

between the two 14N nitroxides, with B1 = 30 G, and B0 = 6200 G. The

Fourier transforms are also included, which shows the respective Pake doublets.

The uncorrelated case was simulated using a Monte Carlo method with random

angles k1,2, h, u and a Gaussian distribution in distances with full-width at

half-maximum (FWHM) of 0.75 MHz. Figure 3a, b represents the rigorous
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result and Fig. 3c, d was computed using Eqs. 16–18 in Appendix 3. The

doublets show small peaks at 3d/2 and weak shoulders stretching up to 3d
(45 MHz), caused by the pseudosecular terms in H12. The results are very close

and they show that at typical conditions, e.g. with MTSL-labeled proteins

(where distances are typically[15 Å and the spin-label tether is rather flexible),

virtually undistorted (by the pseudosecular term) dipolar spectra can be

obtained by using a readily achievable B1 * 30 G.

2. Figure 4 illustrates the time-domain 2D DQC signal computed rigorously for

B0 = 6200 G, B1 = 60 G, d = 25 MHz. In the dipolar dimension (tdip) the

signal shows pronounced oscillations and in the echo dimension (techo) it

produces the echo shape. Note that the echo symmetry plane is tilted due to the

dipolar evolution that occurs along the echo dimension.

3. Figure 5 serves to illustrate the main concept of 2D FT DQC. The (filled)

contour plots were produced by 2D FT and are shown in the magnitude mode.

Fig. 3 Time-domain 1D DQC signals and their Fourier transforms for 14N nitroxides with their magnetic
tensor axis orientations distributed isotropically in the molecular frame (i.e. referred to as uncorrelated
case). Bottom a computation result based on analytical approximation [cf. (16)–(18) in Appendix 3] and
(top) that computed rigorously. B0 = 6200 G, B1 = 30 G, and dipolar coupling (d) is 15 MHz (15.1 Å).
This figure shows the time-domain data in dipolar times and its FT. A small peak at 3d/2 and a weak
shoulder extending up to 3d are manifestations of the pseudosecular terms in H12 as given by Eq. 8. The
difference between the two cases is quite small, being mostly caused by using simplified amplitude
factors
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Coupling between techo and tdip was removed by the shear transformation

conducted in the frequency domain as fecho ? fecho ? fdip (Dtecho/2Dtdip) and

the constant dipolar background signal (cf. Ref. [3]) has been removed in all 2D

FT plots shown. Results for uncorrelated 14N and 15N nitroxide pairs with

2 MHz dipolar coupling (corresponding to ca. 30 Å) are shown on the left-hand

side of Fig. 5 with fixed rigid arrangement with k1,2 = (0�, 90�, 0�; 0�, 90�, 0�)

shown on the right-hand side of Fig. 5. The B1 was infinite by using Hp � Sx

and the pseudosecular term in H12 was set to zero. The 2D FT spectra were

summed over the range of ESR frequencies to produce a 1D dipolar spectrum

on the right side of the 2D plot and over the range of dipolar frequencies to

produce 1D ESR spectra at the top of each 2D plot. The Pake doublets thus

correspond to a 1D FT experiment (such as shown in Fig. 3). Note that there is

virtually no difference in the 1D dipolar spectra from uncorrelated and

correlated cases, as one would expect for the strong pulses, which excite all

Fig. 4 Time-domain 2D DQC signal is shown as 3D stack plot and contour plot. The simulation was
carried out rigorously for B0 = 6200 G, B1 = 60 G, d = 25 MHz and uncorrelated 14N nitroxides. The
tilt of spin-echo refocusing line is clearly visible. The reason is due to the fact that the spin-echo envelope
is recorded over the time period where only one point corresponds to the dipolar interaction refocusing.
A shift by Dt in the spin-echo time corresponds to a shift by Dt/2 in the position of the dipolar
coupling refocusing point
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orientations. However, this hidden information is developed in the 2D

representation, wherein the uncorrelated case shows no variation of dipolar

spectrum along the ESR dimension, whereas in the correlated case there is

clearly a distinct pattern of such variations.

4. Figure 6 serves to demonstrate the advantage of 2D spectra. The simulations

were carried out rigorously for 15N nitroxides at Q-band with the following

simulation parameters: B0 = 12500 G, B1 = 60 G, d = 25 MHz has a Gauss-

ian distribution with FWHM of 5 MHz. The angles beta were set to 90� for the

correlated case (Fig. 6b). Even though the 1D spectrum is nearly completely

smeared due to the distribution in d, the 2D plot for the correlated case is very

distinct from a pattern for the uncorrelated case (Fig. 6a). The latter is

composed of features aligned predominantly parallel to the ESR frequency axis,

as one can see more clearly in Fig. 5.

Fig. 5 2D DQC (filled) magnitude contour plots obtained by 2D FT with respect to tdip and techo.
a 14N uncorrelated case, b 14N correlated case, c 15N uncorrelated case, d 15N correlated case.
B0 = 6200 G, d = 2 MHz. B1 was set to infinity (i.e. perfect pulses), pseudosecular terms were
neglected. In b, d angles beta were (90�, 90�). The other angles were set to zero. Note the similarity of the
1D dipolar spectra obtained by integration along the ESR frequency. They all are classic Pake doublets.
But in the 2D representation the differences are striking. For the uncorrelated cases the dipolar spectrum
is uniform for different slices along the ESR frequency axis, whereas for the correlated case they show a
distinct ‘‘fingerprint’’ of this type of correlation. Since pseudosecular terms are neglected, the results are
just applicable to long distances, such as the present case
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5. Figures 7 and 8 illustrate other cases but using two different plotting formats: the

former show stack plots and the latter shows contour plots. The 2D simulations

were made rigorously for B0 = 6200 G, B1 = 60 G, d = 25 MHz (12.7 Å). The

top two cases represent the situation of pronounced correlations, i.e. (b1,

b2) = (0�, 0�) and (90�, 90�), with the rest of the angles (a1, a2, c1, c2) being zero.

(Note that strong effects of pseudosecular terms are clearly visible over a broad

range of distances up to at least 30–35 Å.) The sensitivity to the ak and ck angles

mainly depends on their particular combination with the bk, but in most cases the

former angles have much less effect. For example, if for the case of (90�, 90�) one

sets a2 to 90�, this will bring it close to the (0�, 90�) case (Figs. 7c, 8c), where in a

1D representation it is hard to see a difference from the uncorrelated case (Figs.

7d, 8d). In a 1D plot (especially if distances are distributed) the Pake doublets for

the (0�, 90�) case (Figs. 7c, 8c) and uncorrelated case (Figs. 7d, 8d) are hard, if at

all possible, to distinguish; but they are quite different in the 2D plots. Note the

shapes of the 1D summed spectra. The case in Figs. 7a and 8a [and less so, case in

Figs. 7b, 8b] clearly distinguishes itself in the 1D spectrum from the uncorrelated

case (Figs. 7d, 8d) and mainly due to the pseudosecular terms. It means that at

distances of 35 Å or greater all 1D spectra will be almost identical as in the

limiting case of Fig. 5. Even relatively narrow distributions in distance would

likely obscure the information on orientations in a 1D plot. The matter about the

smearing effect of distance distributions also applies to the cases in Figs. 7a, b and

8a, b, however, in the 2D plot the overall pattern is more immune to this, since for

the 2D plot the pattern is distinctly structured and spatially well-resolved.

Figure 6 clearly supports this observation.

6. An extensive example compiled of 18 plots in Fig. 9a–c is intended to test the

accuracy and applicability of efficient ways of signal computation based on

Fig. 6 2D DQC (filled) magnitude contour plots computed for 15N nitroxides using B0 = 12500,
B1 = 60 G, d = 25 MHz with a Gaussian distribution in d (FWHM = 5 MHz). a uncorrelated
case; b (b1, b2) = (90�, 90�), (a1, a2, c1, c2) = 0. 4 9 104 Monte Carlo trials on a random set in
{cosh, u, k1, k2, d} were used to generate the data for a; 180 9 180 mesh in {cosh, u} and 11 values of d
were used to generate b. The 1D dipolar spectra on the right hand sides of a, b are nearly completely
smeared and may be suited only to estimate d and its variance. The 2D spectra, however, are quite
different. The 2D spectrum in b exhibits a distinct fingerprint of orientational correlation, but the 2D
spectrum for the uncorrelated case in a is similar to that in Fig. 5 in that it tends to streak parallel to the
ESR frequency axis, as one would expect for such a case, where any point in the ESR spectrum
corresponds to all possible orientations
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analytical approximations for 1D DQC spectra (cf. Appendix 3). The

simulations were made for three orientations in angles beta, as indicated. All

simulations were made for B0 = 6200 G. In Fig. 9, rows a1–a3 show rigorous

simulations, while rows b1–b3 are computed using expressions from Ref. [2]

[cf. Eqs. 16–18 in Appendix 3]. In Fig. 9a, b rows a1 and b1 correspond to

B1 = 30 G, d = 52 MHz, which corresponds to 10 Å; rows a2 and b2 are for

B1 = 60 G, and the same d = 52 MHz. Figure 9c shows the case of B1 = 60 G

and d = 25 MHz (12.7 Å). In the comparison of a1 with b1 one can clearly see

some deviations, especially for (90�, 90�), but they are smaller in the remaining

cases. In rows a2 and b2 the differences are still visible but are small enough as

to have little practical significance. Finally, for the last case (shown in Fig. 9c)

results are virtually indistinguishable. From these results, we can set a ‘‘border

region’’ criterion as B1 [ 2D (or B1 [ 3d) for which rigorous 1D simulations

should be seriously considered.

7. Figure 10 shows the effect of increasing the amplitude of B1 on the maximum

of the echo signal expressed by Eq. 11. Looking at the values obtained for

B1 = 10–100 (and the value at infinity) at d = 25 MHz and B0 = 6200 G, one

can see from Fig. 10 that it reaches half the value of the basic Hahn echo in an

asymptotic manner as B1 approaches infinity. This is expected from the basic

theory [2]. It should be noted, however, that in the case of large d, when

Fig. 7 Examples of 2D FT magnitude stack plots for three cases of orientational correlation:
a (b1, b2) = (0�, 0�), b (b1, b2) = (0�, 90�), c (b1, b2) = (90�, 90�). The other four angles were set to
zero. Case d is the uncorrelated case. Cases a, b correspond to strong correlations, whereas cases c and d are
very similar in 1D, but still distinct in 2D plots. In all four cases B0 = 6200 G, B1 = 60 G, d = 25 MHz
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pseudosecular terms are significant, there is a loss of 5–10% of the signal even

at infinite B1, due to the increase of low-frequency content in the time-domain

signal.

6 Conclusions and Future Prospects

The main features and conclusions from the simulations presented here are as

follows.

1. The simulations for cases of short distances (10–15 Å) are rigorously

performed using the approaches presented here, where the full spin Hamiltonian

Fig. 8 The same cases as shown as in Fig. 7, but in a contour plot representation. The magnitude 2D
signal was summed along both dimensions and is shown as the 1D ESR absorption spectrum (at the top)
or Pake doublets (on the right-hand side)

Fig. 9 a The comparison of rigorous (a1) and approximate (b1) 1D computations. Three selected cases
of nitroxide orientations of beta angles (0�, 0�), (0�, 90�), (90�, 90�) were used. Simulations were made
for B0 = 6200 G, B1 = 30 G, d = 52 MHz. b The comparison of rigorous (a2) and approximate (b2) 1D
computations. Three selected cases of nitroxide orientations of beta angles (0�, 0�), (0�, 90�), (90�, 90�)
were used. Simulations were made for B0 = 6200 G, B1 = 60 G, d = 52 MHz. c The comparison of
rigorous (a3) and approximate (b3) 1D computations. Three selected cases of nitroxide orientations of
beta angles (0�, 0�), (0�, 90�), (90�, 90�) were used. Simulations were made for B0 = 6200 G,
B1 = 60 G, d = 25 MHz

c
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is utilized during the pulse. Furthermore, the application of a very strong B1

field leads to clean Pake doublets in 1D that enables one to determine the

dipolar (and exchange) couplings with the effects of correlations with the

nitroxide magnetic tensors largely suppressed, in most cases. Then, in the 2D

format one may examine the ‘‘fingerprint’’ and make distinctions amongst

different orientations of the principal-axis systems of the magnetic tensors of

the nitroxides when correlations are present.

2. It was clearly demonstrated that the concept of increased correlation sensitivity

in 2D FT spectra is indeed valid.

3. We also demonstrate the increased DQC signal strengths obtained by

performing experiments with stronger pulses.

4. The criterion for using the approximate analytical approach versus rigorous 1D

simulations at conventional frequencies (up to Q-band) was established.

5. For all practical purposes rigorous DQC simulations should be utilized for the 2D

domain, strong coupling cases, and the millimeter-wave range. 1D simulations

based on approximate analytic approaches are two to three orders of magnitude

computationally more efficient and virtually linearly scalable in multiprocessor-

systems. This makes it possible to apply them to more complex 1D cases that

include averaging over multiple parameters, data fitting, or to multi-spin systems.

6. The pseudosecular terms are useful by providing more telling 1D and 2D

dipolar data. The pseudosecular part of the dipolar coupling is responsible for

Fig. 10 Normalized echo amplitude as a function of B1 and frequency. Plot of the rigorously computed
maximum value of the echo signal, Eq. 11, as a function of B1 for d = 25 MHz, B0 = 6200 G,
uncorrelated case (circles) and d = 15 MHz, B0 = 34000 G, orientations k1,2 = (0�, 0�, 0�) (diamonds).
The asymptotic value approaches 0.5 of the basic Hahn echo signal as B1 ? ? (i.e. ideal hard pulses).
(But it is 5–10% smaller for large d’s due to the effects of pseudosecular terms producing low-frequency
oscillations). Dashed lines Spline interpolations using computed data points. Solid lines Echo maxima as
a function of B1 computed for uncorrelated orientations of 14N nitroxides for B0 = 6200 G (top solid line)
and 34000 G (bottom solid line) from Eq. 18
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the spectral peaks with 3d/2 splitting when two spins resonate at sufficiently

close frequencies. This depends differently on orientational correlations than

that for the secular part, leading to a richer 2D spectrum.

7. In the presence of distance distributions, the 1D spectrum becomes structure-

less, however, the 2D spectrum does exhibit patterns that are distinct from those

in the absence of correlation.

8. With the approach adopted here, the electron spins are treated in the point

dipole approximation ignoring spin-density delocalization. For distances less

than about 10 Å, one should account for spin-density delocalization, which is

significant, e.g. on tyrosyl or flavin radicals, leading to a rhombic dipolar tensor.

9. Relaxation effects have not been considered here. Phase relaxation can be

introduced phenomenologically as in Refs. [1, 2], but sufficiently fast spin–

lattice relaxation does require treatment with full rigor in Liouville space.

However, there exist simplified versions that can be used in Hilbert space, see,

e.g. Lee et al. [17].
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Appendix 1: Nitroxide Spin Hamiltonian

The Zeeman and hyperfine part of the nitroxide spin Hamiltonian, H0, in the

irreducible spherical tensor operator (ISTO) representation takes the form [18–20]:

H0 ¼
X

lk ;L;M

FL;M�
lk ;‘

AL;M
lk ;‘

where L is the tensor rank (0 or 2); M = -L, …, L; k = 1, 2 numbers the nitroxides;

and ‘ denotes the reference frame where the tensors are defined, i.e. magnetic frame

(gk), molecular (dipolar) frame (d), or laboratory frame (l). AL;M
lk ;‘

are the spin

operators with lk referring to the kind of magnetic interaction, electron Zeeman (g),

nuclear Zeeman (N), or hyperfine (A), and they are usually defined in the laboratory

frame; FL;M
lj;‘

is proportional to the ISTO of the magnetic interaction and is most

conveniently defined in the g-frame. The transformation of FL;M
lk ;gk

to the laboratory

frame yields the H0. In the high-field limit, where the non-secular terms

(S�; S�Iz; S�I�; S�I�) can be omitted, the ISTO form of the g-tensor reduces to:

F0;0
gk ;gk
¼ �

ffiffiffi
1

3

r
lB

�h
gðkÞxx þ gðkÞyy þ gðkÞzz

� �
; A0;0

gk ;l
¼ �

ffiffiffi
1

3

r
B0Skz;

F2;0
gk ;gk
¼ �

ffiffiffi
2

3

r
lB

�h
gðkÞzz �

1

2
gðkÞxx þ gðkÞyy

� �� �
; A2;0

gk ;l
¼ �

ffiffiffi
2

3

r
B0Skz;

F2;�2
gk ;gk
¼ 1

2

lB

�h
gðkÞxx � gðkÞyy

� �
; A2;�2

gk ;l
¼ 0:
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Similarly, the relevant components of the hyperfine tensor are:

F0;0
Ak;gk
¼ �

ffiffiffi
1

3

r
lB

�h
AðkÞxx þ AðkÞyy þ AðkÞzz

� �
; A0;0

Ak ;l
¼ �

ffiffiffi
1

3

r
SkzIkz;

F2;0
Ak;gk
¼ �

ffiffiffi
2

3

r
lB

�h
AðkÞzz �

1

2
AðkÞxx þ AðkÞyy

� �� �
; A2;0

Ak ;l
¼ �

ffiffiffi
2

3

r
SkzIkz;

F2;�1
Ak;gk
¼ 0; A2;�1

A
k
;l ¼ �

1

2
SkzIk�;

F2;�2
Ak;gk
¼ 1

2

lB

�h
AðkÞxx � AðkÞyy

� �
; A2;�2

A
k
;l ¼ 0:

Also, the nuclear Zeeman term (when retained) is given by
P

k

F0;0
Nk ;l

A0;0
Nk ;l

with

F0;0
Nk ;l
¼

ffiffiffi
3
p gnbn

�h
; A0;0

Nk ;l
¼ �

ffiffiffi
1

3

r
B0Ikz

It is noted that the nuclear quadrupole term for 14N nitroxide is neglected. The

second-rank tensors F2;M
l;gk

are transformed in two steps: first, from the kth nitroxide

g-tensor axes to the dipolar frame, with its z-axis coincident with the vector r
connecting magnetic dipoles, and then to the laboratory frame. The transformations

from the dipolar frame to g-frame are defined by the Euler angles kk � ðak; bk; ckÞ
as shown in Fig. 2 and the transformation from the laboratory frame to the dipolar

frame is defined by g � ð0; h;uÞ. The transformed tensors thus can be written as:

FL;M�
lk ;l
¼
X
m0;m00

DL
m;m0 ðgÞDL

m0;m00 ðkkÞFL;M
lk ;gk

:

The Hamiltonian in the laboratory frame takes the form:

H0 ¼
X

k

½SkzðCk þ AkIkz þ BkIkþ þ B�kIk�Þ þ GkIkz�:

The coefficients Ck, Ak, Gk, and Bk are expressed as follows:

Ck ¼
X

m0
D2

0;m0 ðgkÞKgk ;m0 ðkkÞ; Ak ¼
X

m0
D2

0;m0 ðgkÞKAk ;m0 ðkkÞ;

2Bk ¼
X

m0
D2

1;m0 ðgkÞKAk ;m0 ðkkÞ; Gk ¼ cnkB0;

where

Klk ;m
0 ðkkÞ ¼ ½D2

m0;2ðkkÞ þ D2
m0;�2ðkkÞ�F2;2

lk ;gk
þ D2

m0;0ðkkÞF2;0
lk ;gk

includes the transformations D2
m0;m00 kkð Þ from the dipolar frame to the kth magnetic

frame. Since all the transformations were carried out numerically, the explicit

expressions for Ck, Ak, and Bk were unnecessary. They are somewhat lengthy and

the reader is referred to Saxena and Freed [1]. We just mention that the terms Ck, Ak,

and Bk contain all anisotropies in the g and hyperfine tensors as well as the Euler

angles needed for their transformation from the respective principal-axes system to

the laboratory frame. It is also noted that Ck, Gk, and Ak are real, whereas Bk is

complex. Finally, it is noted that in carrying out the computations for B0 well up to
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Q-band (35 GHz), the nuclear Zeeman term can be safely omitted and the H0 in real

form can be obtained to a high accuracy based on the useful approximation

described in Ref. [21].

Appendix 2: Algorithm to Calculate Six-Pulse DQC Echo Signal

This appendix contains the details of how to calculate the final density matrix, qf,

from which the DQC echo signal can be calculated as given by Eqs. 14 and 15

below. Basically, this consists of carrying out a series of transformations of the

density matrix by a propagator, pulse or free evolution, and choosing the matrix

elements of the density matrix after the application of a pulse on a coherence

pathway. Here, the direct-product representation for S1 � S2 � I1 � I2 to write the

matrix elements of the various operators involved in the calculation will be used. To

this end, the following details are required.

Matrix Representation and Notation

For each electron with spin S = 1/2, the matrix dimension is 2, whereas for each

nucleus with spin I, it is (2I ? 1). Therefore, for the electron–nuclear-spin coupled

system of the nitroxide pair the size of the product space is N 9 N with

N = 4(2I1 ? 1)(2I2 ? 1), which for 14N nitroxides is 36 9 36. The Zeeman basis

with the basis vectors kj i � m1;m2; M1;M2j i is used, where kj is are the

eigenvectors of the z-components of the electron and nuclear-spin operators:

Sz mj i ¼ m mj i and Iz Mj i ¼ M Mj i. Here m and M are the electronic and nuclear-spin

magnetic quantum numbers, respectively. Lower-case Roman letters will be used to

describe the basis state in the product space, Greek letters will be used to describe

the eigenvectors of H: H aj i ¼ xa aj i. The Hamiltonian H is diagonalized by the

unitary transformation V�HV = E, where E is a diagonal matrix of eigenvalues of H
and V� is Hermitian adjoint of V. The columns of V are the eigenvectors of H:

aj ik¼ k j ah i � Vka. In the computations the matrices E and V are the outputs of the

matrix diagonalization subroutine, such as JACOBI [22], used here. (A better

version of the JACOBI subroutine than that given in [22] can be found on the Netlib

website http://netlib.org or is available from the authors.)

Initial Density Matrix in Product Space

Using the expression for qð0Þ as given by Eq. 2, the initial density matrix is

expressed as

q0 ¼ ðS1z � 12 þ 11 � S2zÞ � 1I1 � 1I2; ð12Þ

where 1I1
and 1I2

are 3 9 3 unit matrices in the respective nuclear-spin spaces for
14N nitroxides. A diagonal matrix of order 4 9 4 on the right-hand side of Eq. 12

represents Sz : S1z ? S2z in the product space S1 � S2 for the two nitroxide

electron spins, that is ðrz � 12 þ 11 � rzÞ=2 ¼ diag(1,0,0,� 1Þ, where 11 and 12 are

2 9 2 unit matrices in the spin spaces for electrons 1 and 2, respectively.
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Transformation of the Density Matrix by a Propagator

The propagators to be considered here are either a pulse propagator due to a p/2 or a

p pulse, or a free-evolution operator in the absence of a pulse. The effects of the

various propagators as shown in Fig. 1 are calculated using Eq. 14 below, with the

appropriate Hamiltonians and their durations. The procedure for a given density

matrix, q, and Hamiltonian, H, acting during the time period, t, is described here,

which can be specialized for the various propagators by appropriate substitutions,

using appropriate times tk (t1,2 = tp; t3,4 = tDQ; t5 = tm - tp; t6 = t5 ? techo) and Eqs.

6–10, which describe the Hamiltonians used in the analysis of the six-pulse DQC

sequence. The transformed density matrix, q0, under the action of a propagator is

expressed as:

q0 ¼ e�iHt=�hqeiHt=�h: ð13Þ
Since e�iHkmt ¼ Vkae�ixatV�am the matrix elements of q0 in Eq. 13 can be expressed

as q0jk ¼ e�iHjmtqmneiHnkt ¼ Vjae�ixatV�maqmnVnbe�ixbtV�kb, where summation is con-

ducted over the repeating indexes, or explicitly

q0jk ¼
X

a;b;m;n

qmnV�maVnbVjaV�kbe�ixabt ð14Þ

with xab � xa � xb. Equation (14) can be written using a short-hand notation as

q0 ¼ Lq: In this notation L is an operator, which is Q for a free-evolution period or

R for the action of a pulse. Coherence pathway selection implies retaining only

those elements of q0, which belong to the pathways of interest, with the subsequent

summation conducted over all pathways that contribute to the echo of interest. In

computations this is accomplished by retaining only those matrix elements that

correspond to the selected pathway, setting the rest to zero. This may be expressed

as the application of a projection operator P (which in reality does not need to be

constructed). The final density matrix after application of N pulses and subsequent

evolution periods is then calculated as

qf ðtÞ ¼
X
fpkg
ðQNPpN

RN ; . . .;Q1Pp1
R1Þqð0Þ ð15Þ

The product is computed for the full set of coherence pathways {pk} that

contribute to the echo and the sum is then taken to be finally used in computing of

Tr½qf Sþ�:

Coherence Pathway Selection

Subsequent to the action of a pulse propagator of the matrix elements, as calculated

in (3) above, all but those in the electronic product subspace of the density matrix q
that correspond to selected coherence order p should be set to zero. The

correspondence of qik to p is compiled in Table 1 pertinent to the coherence

pathways depicted in Fig. 1 illustrating the coherence pathways of the six-pulse

DQC sequence. This selection of coherence pathways is achieved experimentally

through phase cycling [2] or in computations is based on Table 1.
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Appendix 3: Calculating 1D DQC Signal using Approximate Expressions

Here, we include for completeness the equation from Ref. [2] that was used in this

work for making the comparison with 1D DQC signals produced in rigorous

computations. The echo amplitude, V, is a function of tdip = 2tp - tm and is given

by

VðtdipÞ ¼ Kðx1ÞKðx2ÞFðtpÞFðtm � tpÞ: ð16Þ
The time variables are defined in accordance with Fig. 1 and notations in the text.

F(t) has the form:

FðtÞ ¼ ðp2 þ q2 cos RtÞ cos At � q sin Rt sin At: ð17Þ
Here A = d(1 - 3cos2h) and b = -A/2 represent the secular and pseudosecular

parts of the dipolar coupling; R2 = Dx2 ? b2, where Dx = x1 - x2 is the

difference between the Larmor frequencies x1 and x2 of the nitroxide’s electron

spins in the frame of reference rotating with the frequency xrf of the excitation

pulses, which was set to coincide with the center of the nitroxide ESR spectrum.

Also, q = b/R and p2 = 1 – q2. The amplitude factors were taken in the simplest

possible form as

KðxkÞ ¼
x2

1rf

Dx2
k þ x2

1rf

sin2 p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Dx2

k=x
2
1rf

q� �� �3

; ð18Þ

where x1rf = ceB1 for p pulses, which are taken equal here, but do not have to be.

Since xk = xk (kk,g), the powder averaging is conducted essentially in the same

way as in rigorous computations with xk determined for each set of (M1, M2). This

was accomplished using an approximation [21].
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