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Abstract This paper studies duopoly in which two-sided platforms compete in dif-
ferentiated products in a two-sided market. Direct competition on both sides leads
to results that depart from much of the current literature. Under some conditions the
unique equilibrium in pure strategies can be computed. It features discounts on one
side and muted differentiation as the cross-market externality intensifies competition.
Less standard, that equilibrium fails to exist when the externality is too powerful (that
side becomes too lucrative). A mixed-strategy equilibrium always exists and is char-
acterized. These results are robust to variations in the extensive form. The model may
find applications in the media, internet trading platforms, search engine competition,
social media or even health insurance (HMO/PPO).

Keywords Two-sided market · Vertical differentiation · Industrial organization ·
Platform competition

JEL Classification C72 · D43 · D62 · L13 · L15
“The only thing advertisers care about is circulation, circulation, circulation.”

Edward J. Atorino, analyst Fulcrum Global Partners, New York
June 17, 2004 (The Boston Globe).

1 Introduction

In many markets, firms must satisfy two constituencies: consumers on one side and
advertisers on the other in the case of media, policyholders and service providers for
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194 G. Roger

HMOs and PPOs, search engine users and advertisers, or application developers and
users of software platforms. This paper analyzes platform competition when these
firms engage in vertical differentiation and set prices. The model herein departs from
much of the current literature in that platforms compete directly on both sides. Doing
so qualitatively alters equilibria the understanding of which is important in practice.
The insights of this paper are robust to changes in the extensive form and of some
modeling details, and so may be applied to multiple markets like newsprint, operating
systems or video game consoles, and even healthcare and education (see Bardey and
Rochet 2010a and Bardey et al. 2010b). The results also extend where prices are zero
on one side, such as broadcasting, search engine competition or social media.

The game considered has three stages: quality setting on one side (B) then price
setting on the same side, and price setting on the other side (A). Because of a cross-
market externality, the dominant platform on side B is the more attractive one for
A-side agents, so vertical differentiation arises endogenously on side A. A unique
pure-strategy equilibrium exists only when the A-side is not too lucrative. In this case
the optimal quality level of the top firm is lower than the benchmark of maximal dif-
ferentiation established by Shaked and Sutton (1982, now S&S) and Gabszewicz and
Thisse (1979). Usually differentiation is a means of extracting consumer surplus at the
cost of surrendering market share to the competition (Hotelling 1929; S&S). But here
every B agent allows the platform to extract surplus from side A as well, and so is
more valuable. This enhances competition for them. Thus B agents receive a discount
commensurate with the profits that can be extracted from side A; then a lesser quality
is necessary to attract the marginal B consumer.

The more lucrative is side A, the harder platforms compete for B agents, so the
lower are B prices. Beyond a well-defined threshold, the quality-adjusted price of the
high-quality firm is so low that it preempts market B, and consequently side A as
well. But then the excluded firm possesses a non-local deviation and can monopolize
the market too. One must play in mixed strategies. The market may be preempted
ex post (in the continuation play), which is a distinct feature of two-sided markets in
practice; there is a single eBay, a single Microsoft and a single newspaper in any U.S.
city (except for New York City). This pre-emption result is also the only equilibrium
when B-side prices are fixed, or bounded, at 0. This applies well to search engine
competition or social media: quality is costly and in equilibrium there is a single
dominant player (Google, Facebook). Pre-emption and ex post monopolization owe
not to a contraction of market B but rather to an expansion of the A market, which
induces more aggressive competition for B-side consumers.

In a discussion I argue that the results are quite widely applicable. I explain that
the introduction of a second externality from A to B does not qualitatively alter any
of the results. I also discuss bottlenecks (introduced by Armstrong (2006)) and show
that the results are robust to a change in the extensive form.1

Capturing the phenomena of quality distortion and pre-emption requires there to be
direct (price) competition on both side. That is, no platform should be a bottleneck. If
a platform is a bottleneck, it is insulated from (price) competition in market A and so it

1 A “bottleneck” arises when a platform can exercise its market power and thus restrict access to its
consumers.
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Two-sided competition with vertical differentiation 195

behaves like a monopolist in that market. Then (i) a pure-strategy equilibrium always
exists; and (ii) there can be no pre-emption (see details in the Sect. 4). Typically
a bottleneck is modeled as allowing a buyer to purchase up to two units, with at
most one from each supplier; it can only generate monopoly pricing. The bottleneck
assumption severely understates the full extent of the competition between firms, and
rules out playing in mixed strategies.

In this paper direct competition is re-introduced in the form of a ‘single-homing’
assumption: both sides have unit demand. Single-homing exacerbates competition.2

With this, price competition for A-side consumers generates a premium to being the
dominant platform on side B. This premium effect is subsided when platforms are
bottleneck: they are both local monopolists. When side B is lucrative enough, the
premium effect induces payoffs that are not quasiconcave; it is precisely this lack of
quasiconcavity that leads to a breakdown of the pure-strategy equilibrium. I also note
that single-homing finds empirical support in Kaiser and Wright (2006) in the context
of German magazines, in Argentesi and Filistrucchi (2007) in Italian newspapers and
in Jin and Rysman (2010), who study sportscard conventions.

The works closest to this paper are Gabszewicz et al. (2001, hereafter GLS) and
Dukes and Gal-Or (2003, now DGO), which both study a media duopoly. GLS allow
advertisers to place at most one ad on each platform; this is what creates the bottleneck.
For a small externality the location equilibrium displays maximal differentiation; if
the externality is large enough firms co-locate. In DGO the payoff function is addi-
tive over advertisers; this linear separability induces the bottleneck. The equilibrium
exhibits minimal differentiation. In the present model there cannot be a pure-strategy
equilibrium with minimal differentiation; instead one must play in mixed strategies.
Hence we see that the nature of equilibrium varies greatly depending on whether plat-
forms are bottlenecks. Armstrong and Wright (2007) study a model of bottlenecks
that shares the essential features of GLS and generates results similar in spirit.

In Ferrando et al. (2008) locations as fixed and prices are set simultaneously on both
sides. The equilibria are coordination equilibria inwhich themarketmay be preempted
by one platform. Gabszewicz et al. (2004) derive three mutually exclusive rational-
expectation equilibria: a symmetric, Bertrand equilibrium; a preemption equilibrium
and an interior (asymmetric) equilibrium. Here the extensive form calls for subgame
perfection, which leads to a unique equilibrium. In the context of health care, Bardey
and Rochet (2010a) allow insurance companies to compete for patients (through pre-
mia) and service providers (through rebates). Patients are heterogenous in their health
risk and thus may value health services differently. This affects health plans’ payments
to physicians and hospitals, but there is no direct competition. The authors assert that
little changeswith direct competition on both sides. This suggestion should beweighed
with some caution in light of our results. Reisinger (2012) allows for direct compe-
tition for homogenous advertisers, while differentiated consumers do not pay for the
platforms. Advertisers do not care for the relative quality of a platform, but only for
the number of consumers, hence there is no premium effect. This tames competition.
Armstrong and Weeds (2007) use a model of horizontal differentiation augmented

2 What is important for the characteristics of an equilibrium is whether there exists competition on both
sides, not whether agents single-home or multi-home. Supplement available from the author.
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with a quality investment to study the welfare effects of competition between broad-
casters. Quality, although not the source of differentiation, may be under-provided in
equilibrium. Gonzales-Maestre and Martinez-Sanchez (2015) use a similar model to
evaluate the provision of quality and the quantity of advertising shown when a private
broadcaster competes for viewers with a welfare-maximizing (public) broadcaster.
The presence of the public broadcaster increases the quality of the private provider.

The next Section introduces the model. Section 3 covers the characterization and
some implications. Section 4 presents an extensive discussion in which robustness
checks are performed. All proofs are sent to the Appendix, as well as some additional
technical material.

2 Model

There are two platforms, identified with the subscripts 1 and 2, that market a good
(for example, news) to a continuum of B-side consumers of mass 1. Simultaneously
it also sells another commodity (such as informative advertising) on the A side. All
players have an outside option normalized to 0.

B agents’ net utility function is expressed as u(b, θi , pB
i ) := θi b− pB

i ; i = 1, 2 when
facing a price pB

i . All B agents value quality in the sense of vertical differentiation—
there is no ambiguity as to what quality is. The benefit b is uniformly distributed on
an interval [β, β] and θ ∈ � = [θ, θ ] denotes the quality parameter of each good.

Let pB := (pB
1 , pB

2 ), θ := (θ1, θ2). These consumers buy at most one unit (say,
one newspaper). When θ1 > θ2, define the measure D1(pB, θ) := Pr(θ1β − pB

1 ≥
max{0, θ2β − pB

2 }). Hence they will purchase from provider 1 over provider 2 as long

as β ≥ β̂ := pB
1 −pB

2
θ1−θ2

.

A agents have gross payoff eDi a − pA
i ; i = 1, 2 from consuming one unit of

the good, where e is a scaling parameter and a represents the marginal benefit of
attracting more B-side agent. The more B agents any A agent can reach, the more
they value this service. In themedia example this is themarginal benefit of reaching one
more consumer. A-side agents are heterogenous in this parameter, which is uniformly
distributed on [α, α] with mass 1. The difference in the platforms’ market shares
on the B side defines their relative attractiveness on the other side. Given prices
pA := (pA

1 , pA
2 ) and coverage D := (D1, D2), an A-side agent purchases from 1

over 2, only if eD1a − pA
1 ≥ max{0, eD2a − pA

2 }. This decision rule generates the
measure Pr(eD1a − pA

1 ≥ max{0, eD2a − pA
2 }) := q1(pA,D). Without significant

loss there is no externality from the A to the B side (see the Sect. 4). There is no
capacity constraint and zero marginal cost.3

Assumption 1 β − 2β > 0, α − 2α > 0 and θβ ≥ 1
3 (θ − θ)(β − 2β).

This assumption rules out the trivial case in which the low-quality platform neces-
sarily faces zero demand in the price subgames on both sides; it is also sufficient for
market coverage on both sides.

3 A capacity constraint is either trivially exogenous, or endogenous as in Kreps and Scheinkman (1983),
which may induce a quantity-setting game instead of the price game.
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Two-sided competition with vertical differentiation 197

Quality θi is costly and ismodeled as an investmentwith cost kθ2i , wherewe impose.

Assumption 2 k > (2β − β)2/18θ .

to obtain an interior solution in the benchmark problem (Shaked and Sutton 1982, now
S&S).

Game: Platforms first choose a quality level simultaneously. Given observed qual-
ities, they each set prices to B consumers, who make purchasing decisions. With D
observed, they set prices to A agents in a third stage. This extensive form captures
some real-life situations.4 An alternative timing is discussed in Sect. 4; the results are
robust to it. The equilibrium concept is Nash subgame-perfect. The three-stage game
is denoted �. For any platform i = 1, 2, the objective function reads

�i := Di (pB, θ)pB
i − kθ2i + qi (pA,D)pA

i , (2.1)

where we see there is an indirect effect from B-side prices (and thus quality) onto
side A through demands D1, D2. This model is stark and simple. Yet its analysis is
somewhat involved, which reflects the fact that two-sided markets present us with
intricate problems.

3 Equilibrium analysis

We proceed in three steps, starting with the A side where the platforms’ behavior is
not directly affected by B-side quality choices.

3.1 Price subgames

A -market subgame.This stage replicates the result of the classical analysis of vertical
differentiation. Let e�D = e ·(D1−D2) denote the scaled difference in the platforms’
quality. Then equilibrium payoffs take a simple form, for which the proof is standard
and therefore omitted (see Tirole 1988).

Lemma 1 Suppose D1 ≥ D2 w.l.o.g. There may be three pure strategy equilibria

in the A market. When D1 > D2 > 0, the profit functions write �
A
1 = e�D ·

(
2α−α

3 )2; �A
2 = e�D · (

α−2α
3 )2. When D1 > D2 = 0, platform 1 is a monopolist

and its profits are �AM
1 = eD1 · (α

2 )2. For D1 = D2, the Bertrand outcome prevails
and platforms have zero profits.

It is also helpful to recall the equilibrium demand functions on side B : Di =
β − pB

i −pB
j

�θ
, D j = pB

i −pB
j

�θ
− β for θi > θ j . As usual, denote �θ = θi − θ j and for

convenience A = (
2α−α

3 )2 and A = (
α−2α

3 )2.

4 For example, in the case of media, B-prices (cover prices or subscription rates) are more difficult to
change than A-prices (advertising rates), and the media format even more so. Also, readership is often
reported to advertisers, so known to them when they purchase.
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Fig. 1 Best replies and unique
equilibrium
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B-side price subgame. From Lemma 1 three distinct configurations may arise on the
equilibrium path. In the first case platform 1 dominates the B market, in the second
one both share the B market equally and in the last one it is dominated by firm 2.
Hence the profit function (2.1) rewrites

�i = pB
i Di (pB, θ) − kθ2i +

⎧
⎨

⎩

�
A
i , if Di > D j ;

0, if Di = D j ;
�A

i , if Di < D j .

(3.1)

This function is continuous with a kink at the profile of prices p̃B such that D1 = D2.5

More importantly it is not quasi-concave because of the externality generated by A-
side revenue; therefore the best response is discontinuous. It is nonetheless possible
to construct a unique equilibrium in pure strategies, which always exists. (Note that
observing θ1 > θ2 acts like a coordination device; it rules out multiple equilibria.) The
demonstration is left to the Appendix, Section C; here we discuss it briefly and focus
on its outcome.

First, from (3.1), it is immediate that any price profile p̃B such that D1 = D2
is dominated. Next we can define ‘quasi best responses’ pi (p j ) corresponding to
platforms playing as if either D1 > D2 or D1 < D2 (for example, p2, p

2
in Fig. 1),

fromwhichwe can construct the true best replies—discontinuous at the points p̂1, p̂2.6

Last, a necessary and sufficient condition for existence is verified by construction. In
summary,

5 Continuity implies that the monopoly outcome is also nested.
6 The discontinuity set is not trivial: mixed strategies cannot restore the second candidate equilibrium—see
Fig. 1. Indeed an outcome such that θ1 > θ2 and D1 < D2 entails playing a weakly dominated strategy
for player 2. So the intuitive reasoning whereby the low-quality firm may find it profitable to behave very
aggressively in order to access large advertising revenue does not hold true. That is, playing θi < θ2 but
offering a very low price pB

i so that Di > D j .
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Two-sided competition with vertical differentiation 199

Proposition 1 Let θ1 > θ2 w.l.o.g. There may be two possible configurations arising
in the B-side price subgame. For each, there exists a unique Nash equilibrium in pure
strategies:-

• For �θ >
2e(A+A)

β−2β

pB∗
1 = 1

3
[�θ(2β − β) + 2e(A − 2A)]

pB∗
2 = 1

3
[�θ(β − 2β) + 2e(2A − A)]

• If �θ ≤ 2e(A+A)

β−2β

pB∗
1 = �θβ

2
− eA; pB∗

2 = 0

B-side prices resemble the S&S prices but include a discount (A−2A < 2A− A <

0) that is linear in the A-side profits. Platforms internalize the full value of the B agents,
which intensifies competition for their patronage, and pass it on to them in the form
of this price reduction. The quality spread �θ , which is fixed in the first stage, may be
too narrow to sustain two firms in the price subgame. That is, the high-quality platform
may be able to pre-empt the market with its quality choice, thank to the cross-market
externality.

In the first stage, platforms face the profit function (3.1) given equilibrium prices,
which they each maximize by choice of their quality variable θi . In doing so they are
subject to the constraint

β̂ := pB∗
i − pB∗

j

θi − θ j
∈ [β, β], (3.2)

which is a natural restriction guaranteeing that the endogenous threshold β̂ remain
within the exogenous bounds [β, β].7

These profit functions are not necessarily well-behaved. Section A of the Appendix
studies �1(θ1, θ2) in the details necessary to support the results. Next we delineate
when the equilibrium features pre-emption (and not).

3.2 Pure-strategy equilibrium

When the externality from side B to side A is not too large, the function �1(·, ·)
is well-behaved. It remains increasing (and concave) on the portion beyond a well-
defined threshold labeled θ̃ (e) for the high quality firm, where it admits a maximizer.

7 θi → θ j ⇒ β̂ → ∞. On the equilibrium path Constraint (3.2) can be rearranged as a pair of inequalities:

�θ(2β − β) + 2e(A + A) ≥ 0 and �θ(β − 2β) − 2e(A + A) ≥ 0. Only the second one is constraining.
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Fig. 2 Profit functions for
different values of the A-side
profits

2e(A+A)
β−2β

θ1

Πi

This is illustrated in Fig. 2 (the higher curve corresponds to the complementary case,
when it is not well-behaved).8 To ensure this is the case we impose

Assumption 3 e < ē ≡ min

{

1,

(
(2β−β)2

27k − θ

)
β−2β

2(A+A)

}

, 9

which is tantamount to saying the A market is not too lucrative. Assumption 3 ensures
that when θ̂1 solves the first-order condition, the quality difference�θ is large enough:

�θ ≥ 2e(A+A)

β−2β
so that both platforms operate (Proposition 1). Then,

Proposition 2 Suppose Assumption 3 holds. The game � admits a unique equilibrium
in pure strategies in which both platforms operate and choose different qualities. It
is characterized by the triplet (pB∗,pA∗, θ∗) defined by Proposition 1, Lemma 1, and
the optimal actions θ∗

2 = θ and θ∗
1 , where θ∗

1 uniquely solves

(2β − β)2 = 18kθ1 +
(
2e(A + A)

�θ

)2

(3.3)

8 The termof interest is e(A+A), which needs to be small enough. Then beyond θ1 = θ̃ (e) := θ+ 2e(A+A)

β−2β
,

the function �1 remains concave in θ1.

9 This arises from the condition (θ̂1−θ)(β−2β) > (θ
f
1 −θ)(β−2β) ≥ 2e(A+ A), where θ

f
1 = (2β−β)2

27k
is defined in Appendix Section A.
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Two-sided competition with vertical differentiation 201

The second term in (3.3) is labeled the ‘cross-market effect’; it acts as an incentive
to reduce quality. Condition (3.3) trades off the marginal benefit of quality (the left-
hand side) with its total marginal cost. That total cost includes the marginal loss of
A-side profit induced by differentiation: the cross-market effect. The intuition is quite
simple. More differentiation leads to higher B-side prices; but higher prices means
surrendering B-side market share, thereby foregoing A-side profits. So the cross-
market effect increases the cost of differentiation. Comparative statics show that θ1
is decreasing in e: the more attractive the A-side profit, the more powerful the cross-
market effect and the more muted is the Differentiation Principle. We can expand on
the insights of Proposition 2, where we take S&S to be the benchmark.

Corollary 1 In any pure-strategy equilibrium of the game �, quality is lower than it
would be absent the A-market externality.

Differentiation is known to soften price competition, but here the cross-market
externality puts emphasis back on market share and forces the platforms to engage
in more intense price competition for B consumers. Lower consumer prices relax
the need to provide costly quality: the marginal B consumer demands a lesser prod-
uct. This result owes to the increased value of each B-side consumer, which renders
differentiation costlier.

3.3 Mixed strategies

When the externality from B to A is sufficiently large a pure strategy equilibrium
fails to exist. The mechanics are quite intuitive. The extent of the discount firm must
offer increases in the externality, and the high-quality platform can increase its price
dominance by lowering quality. That is, it has an incentive to select θ1 low enough
so that �θ is too narrow for firm 2 to have positive B-side market share, if firm 2
selects θ2 = θ . But firm 2 does not have to play θ . In fact it can “leap” over firm 1 and
become the monopolist at a negligible incremental cost. Then one must play in mixed
strategies.10

The Appendix (Section B) shows that a mixed-strategy equilibrium always exists.
Let Hi (θi ) be the probability distribution over i’s play and hi (.) the corresponding
density, �N

i the relevant support of Hi and θc
i the upper bound of the support. Let

also H∗
i be a best response and Ri (θi , θ j ) := Di (pB, θ)pB

i +qi (pA,D)pA
i denote the

revenue accruing to i .11

Proposition 3 The symmetric mixed-strategy equilibrium of the game � is character-
ized by the pair of distributions H1, H2 on �N

i ≡ {θ}∪ [θ̃ (e), θc], i = 1, 2 satisfying

10 Technically, when Assumption 3 is not satisfied, the necessary first-order condition (3.3) fails to hold
entirely. As can be seen on Fig. 2, the high-quality firm would like to pick the point θ̃ (e), where �1(·, ·)
reaches is maximum. But this cannot be an equilibrium; the incremental cost is k(θ1 + ε)2 − kθ21 .
11 The proof adapts the work of Sharkey and Sibley (1993), who characterize mixed strategies in a problem
of entry with sunk cost. The major difference is there is no proper entry stage; playing θi = θ cannot be

interpreted as a decision to not enter the market because �i (θ i , θ j ) > 0 whenever �θ >
2e(A+A)

β−2β
.
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Hi (θ)

∫

�N
j

Ri (θ, θ j )d H∗
j (θ j ) +

∫ θc

θi =θ j

Ri (θi , θ j )d(Hi (θi ) × H∗
j (θ j ))

= k
∫ θc

i

θ̃ (e)
θ2i d(Hi (θi ) × H∗

j (θ j )) (3.4)

with

H∗
i (θ) ∈ (0, 1), H(θc) = 1 and hi (θi ) = 0, θi ∈ (θ, θ̃ (e))

and θc defined by θc = max{θ ′
i |�i (θ, θ ′

i ) = 0,�i (θ̃(e), θ ′
i ) = 0}, i = 1, 2.12

Condition (3.4) balances the expected benefit from adopting the distribution Hi

with its expected cost. An interesting feature of the mixed-strategy equilibrium is that
the platforms do notmix over all the pure actions that are available to them. To seewhy,
suppose firm 1 picks any action higher than firm 2’s (so θ1 > θ2); playing θ1 = θ̃ (e)
dominates any other play below θ̃ (e) because profits are increasing on that range (see
Fig. 2). In response, playing anything but θ2 = θ is dominated because θ secures 0
while any other play generates a loss. That is, the range (θ, θ̃ (e)) is dominated and
no mass should be assigned on it. Even if platform 1 selects a quality beyond the
preemption point θ̃ (e), firm 2’s profits are still maximized by playing θ because they
decrease in θ2. Hence θ remains a best response to any quality θ1 ≥ θ̃ (e). Therefore
there must be an atom at that point. Last, platform 1 must assign some probability
mass on the range (θ̃(e), θc] otherwise it is necessarily preempted by 2’s non-local
deviation.

In a mixed-strategy equilibrium the realizations of qualities (θ1, θ2) are random
variables. Hence these equilibrium distributions do not rule out an outcome such that
�θ is actually too small to sustain two firms; they guarantee that it does not happen
with probability one. It is helpful to know under what conditions two platforms may
operate in the continuation game after choosing their quality.

Proposition 4 Suppose e > ē. For two platforms to have positive market share in the
price subgame, one of them must select the lowest quality θ . Otherwise the market is
necessarily monopolized ex post.

Recall Proposition 1; depending on the choice of θ1, θ2, platform 2 may or may
not have any market share on the equilibrium path. However the length of the interval
[θ̃ (e), θc] is not sufficient to accommodate two firms.13 So for both platforms to
survive, at least one of them must choose the lowest quality.

Proposition 4 compares favorably to some industries’ idiosyncrasies. First, either
monopolization or duopoly may be an ex post outcome, which fits some industry
patterns. Markets such as print media, internet trading platforms or search engines are
known to tip. This suggests an alternative rationale for the observed concentration in

12 The notation θi = θ j in the second integral of (3.4) reflects that for θ̃ (e) ≤ θi < θ j , firm i collects zero.
13 θc − θ̃ (e) < 2e(A + A)/(β − 2β)—although clearly θc − θ ≥ 2e(A + A)/(β − 2β), corresponding

to the condition �θ ≥ 2e(A + A)/(β − 2β).
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Two-sided competition with vertical differentiation 203

these markets. According to this model, some players may be driven out not because
of a market contraction on the B side, but because of an expansion on the other one.
Second, ex post profits are notmonotonically ranked: the action profile (θ 1, θ

c
2 ) implies

�1 > �2 = 0 although θ1 < θ2. So too in media for example, where the higher-
quality shows (e.g. HBO) or magazines (e.g. The NewYorker) do not necessarily yield
higher profits. This implication departs from standard vertical differentiation models
(such as S&S), and from the pure strategy equilibrium, where higher quality implies
higher profits.

3.4 Zero prices on one side

Many two-sided markets feature zero prices on at least one side. This may be an
equilibrium outcome or an exogenous imposition (or both in the sense of binding
constraint). Examples include broadcasting, internet search engine or social media
usage.

Proposition 5 Fix pB
1 = pB

2 = 0. A pure-strategy equilibrium does not exist. A
mixed-strategy equilibrium exists and is characterised as in Proposition 3.

Proposition 5 tells us we should expect pre-emption in these markets. The examples
of Google (users do not pay) or eBay (buyers do not pay fees) lend credence to this
claim. These outcomes do not arise in a model without competition on both sides.

4 Discussion

ThisDiscussion is offered largelywithout proof. These proofs do exist and are available
from the author.

4.1 One-sided or two-sided externality

The model ignores any externality the side A exerts on B agents. Media consumers
may dislike advertising; game developers seek more gamers to market to, and these
likely enjoy games’ diversity.

Introducing a second externality from A to B does not modify the results qual-
itatively, which implies the results are quite widely applicable. A negative A-to-B
externality effectively damages the B-side quality of the platforms. In response they
must offer a further discount; the dominant platform can offer a steeper discount than
the dominated platform. This feedback thus hardens competition on side B. This nar-
rows the range of parameters on which the pure-strategy equilibrium can be sustained.
This is in line with DGO’s results, for example, who show that the negative externality
associated with adverts leads to minimal differentiation.

To see why, rewrite the B-side utility function as ui = θi b − pB
i − δqi , where δqi

is a disutility from A-side consumption level. A-side demand is defined as before;

suppose θ1 > θ2, B demands are D1 = β − �pB+δ�q̃
�θ

and D2 = �pB+δ�q̃
�θ

− β. The
new term is δ�q̃: the utility impact of the difference in A-side expected consumption
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levels; these can be computed given (θ,p). It can be shown that �q̃ = (α + α)/3:
a constant. Let (α + α)/3 ≡ Â, eventually the condition for platform 2 to be active
turns into D2 ≥ 0 ⇔ �θ(β − 2β) ≥ 2e(A + A) + Â, which is more restrictive than
the one of Proposition 1.

4.2 Bottlenecks and preemption

Suppose that A-side agents are able to place at most one ad on each platform, as in
GLS. Then they are a monopoly on side A with profits π A

i = α2eDi/4. Equilibrium
prices can be computed as

pB
1 = 1

3

[

�θ(2β − β) − 3eα2

4

]

; pB
2 = 1

3

[

�θ(β − 2β) − 3eα2

4

]

The standard price functions pi (θ) are only shifted by eα2/4 each—independently of
what the other platform does. After simple manipulations, the profits functions write

�1 = �θ

(
2β − β

3

)2

− kθ21 ; �2 = �θ

(
β − 2β

3

)2

− kθ22

exactly as in S&S. So the externality is present and affects prices, but not the quality
choices. When platforms are bottlenecks, the pass-through is perfect: consumers (B)
receive a discount that exactly exhausts what platforms can extract from the other
side (A). Then the incentives at the quality setting stage are standard. There is no
incentive to decrease quality nor for endogenous pre-emption through quality. The
exact same outcome obtains if introducing a A-to-B externality together with the
bottleneck assumption.

4.3 Robustness check: simultaneous moves

The three-stage game suits some industries well (e.g. media), but not necessarily all.
For example, Hagiu (2006) studies the problem of game console manufacturers, who
must simultaneously commit to a price on each side of the platform. The analysis
is robust to this change in timing, except for one small variation.14 Consider the
platforms’ problem at the price-setting stage given some θ1 > θ2 and expected D̃1 >

D̃2:-

max
pA
1 ,pB

1

�1 = pB
1

[

β − pB
1 − pB

2

�θ

]

+ pA
1 e

[

α − pA
1 − pA

2

�D̃

]

max
pA
2 ,pB

2

�2 = pB
2

[
pB
1 − pB

2

�θ
− β

]

+ pA
2 e

[
pA
1 − pA

2

�D̃
− α

]

14 Here we discuss the results; the derivations can be found in a supplement available from the author.
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The first-order condition with respect to pA
i , i = 1, 2 remain standard; from this

pA
1 = e �D̃

3 [2α − α]; pA
2 = �D̃

3 [α − 2α] as before. The first-order conditions w.r.t.
pB

i simplify to

�θβ − (2pB
1 − pB

2 ) − 2

9
e[(2α − α)(α + α)] = �θβ − (2pB

1 − pB
2 ) − 2A1 = 0

−�θβ + (pB
1 − 2pB

2 ) − 2

9
e[(α − 2α)(α + α)] = −�θβ + (pB

1 − 2pB
2 ) − 2A2=0

These are linear equations in B prices, as in the sequential move model. This readily
suggests that little will change from this new timing. This linearity arises because A
profits are still linear in�D̃. The solution concept is Nash equilibrium, the best replies
are discontinuous and there is a unique equilibrium in prices, with a condition on �θ .
That condition is also less restrictive than in the sequential-move game.

Things do change a little in the first stage. When the pure-strategy equilibrium can
be sustained, both first-order conditions may bind, thus yielding interior solutions for
both platforms. This is in contrast to the sequential game. But this behavior is non-
monotonic: for naught A-side profits platform 2 benefits frommaximal differentiation,
for low A profits it seeks less differentiation (smaller �θ ), and for large enough A
profits, maximal differentiation again. The reason is that under simultaneous moves,
the discount offered by the dominant firm in the B market is smaller. So �D—
the difference in their market share—is also smaller. As a consequence it is also less
dominant in the Amarket and the condition on�θ is less tight. This creates an incentive
for the low-quality firm to capture somemarket share in B by increasing quality. In the
sequential game, the discounts are such that platform 2 never has such an incentive.

This difference in discounts owes to the timing. By way of (imperfect) analogy, one
can consider the difference between a Cournot and a Stackelberg game. In the latter,
the dominant firm commits to a strategy and the follower takes it as given. By the time
they move in the A market, platforms are committed to a strategy in the B market.
This generates incentives for platforms to behave more aggressively in the B market
in the fist place.

5 Conclusion

This paper has developed an analysis of differentiation in a duopoly of two-sided plat-
forms, where competition prevails on both sides of the market. This yields markedly
different results, as compared to those typically found in the literature. Direct com-
petition on the A side puts a premium on being the better platform (here meaning
covering a larger share) on side B. This exacerbates competition in market B, with
consequences on the nature of equilibrium.Whether a pure-strategy equilibrium exists
depends on the relative attractiveness of A-side profits; that is, we can identify why
it may break down. This paper thus complements prior works, in particular GLS and
DGO who analyzed cases of bottleneck competition.

When a pure-strategy equilibrium exists, differentiation is hampered because too
costly in terms of market share. The more attractive the A side, the narrower is dif-
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ferentiation. It may be insufficient to sustain two active platforms, at which point the
equilibriumbreaks down. Then platforms play inmixed strategies and one of themmay
be preempted ex post. These results are robust to a change in timing; all carry over to
quantity competition in the B market and themixed strategy equilibrium remains valid
under horizontal differentiation. Hence they are not exclusive to the chosen extensive
form and may find applications in a broad array of industries.

Our ability to compute an equilibrium rests on the simple structure chosen, and in
particular on two important assumptions: single-homing and independence between A
and B-side consumption decisions. Single-homing is not essential but it is convenient.
What is essential is that platforms compete directly for consumers on both sides,
which single-homing captures. Independence in consumption decisions is important;
it implies that the A side only cares for the B-side market share, not its composition.
For example, it asserts that the choice of media consumption is not a signal for good
consumption. But we do know that media companies strive to segment their markets
to suit advertisers. These characteristics are so far left out for future research.
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Luis Corchon and Bill Schworm for their comments, and to Carlos Pimienta, Suraj Prasad, Francesco
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Appendix

TheAppendix contains some additional material as well the proofs of the propositions.

Appendix A: Analysis of the high-quality firm’s profit function

Let C ≡ [2e(A + A)]2. With the reformulation of constraint (3.2), the objective
function of platform 1 writes

�1 =

⎧
⎪⎨

⎪⎩

1
9

(
�θ(2β − β)2 + B1 + C

�θ

)
− kθ21 , if�θ >

2e(A+A)

β−2β
;

1
9 (�θ(2β − β)2 + B1 + √

C(β − 2β)) − kθ21 , if�θ ≤ 2e(A+A)

β−2β

(6.1)

where B1 = (2β − β)2e(2A − A) + 3e(β + β)A is a constant. From the first line
of (6.1) we can see why (3.2) is necessary: depending on C , the platform may seek a
large or small �θ . The second line of (6.1) rules out the artificial case of firm 1 facing
a demand larger than the whole market.15 For platform 2, profits are

�2=

⎧
⎪⎨

⎪⎩

1
9

(
�θ(β − 2β)2 + B2 + C

�θ

)
− kθ22 , if�θ(β − 2β) > 2e(A + A);

0, �θ(β − 2β) ≤ 2e(A + A) and θ2 = 0;
−kθ22 , �θ(β − 2β) ≤ 2e(A + A) and θ2 > 0;

(6.2)

15 It is derived by taking C
�θ

as fixed at its lowest value, that is, where �θ =
√

C
β−2β

= 2e(A+A)

β−2β
.

123



Two-sided competition with vertical differentiation 207

with B2 = (β − 2β)2e(A − 2A) + 3e(β + β)A. In the sequel θ1 > θ2 without loss
of generality. For this Section, take Proposition 1 as established. The profit function

�1 is obviously continuous for θ1 − θ <
√

C
β−2β

or for θ1 − θ >
√

C
β−2β

. Further assume
e < ∞.

Claim 1 The function �1 is continuous for �θ =
√

C
β−2β

.

Proof For ease of notation, let�1(θ1, θ2) = �L
1 for all�θ ≥

√
C

β−2β
and�1(θ1, θ2) =

�R
1 otherwise. To the left platform 1 is a monopolist whose profits �L

1 are necessarily
bounded. The function is defined as �L

1 : �1 × �2 ⊆ R
2 �→ R, therefore Theorem

4.5 in Haaser and Sullivan applies. So �L
1 (θ1, θ2) is continuous at �θ =

√
C

β−2β
, and

is necessary the left-hand limit of the same function �L
1 . Now consider a sequence

θn
1 such that �θ >

√
C

β−2β
converging to

√
C

β−2β
from above for some fixed θ2. This

sequence exists and always converges for �1 ⊆ R is complete. As e < ∞ and A and
A are necessarily bounded, C is finite so there is some n and some arbitrarily small δ

such that �R
1 (θn

1 , θ2) − �L
1 (θ2 +

√
C

β−2β
, θ2) < δ. That is, lim

θn
1 →θ2+

√
C

β−2β

�R
1 (θn

1 ) =

�L
1 (θ2 +

√
C

β−2β
, θ2). Hence �1 is continuous for �θ =

√
C

β−2β
. ��

When C becomes large enough, �1(θ1, θ2) is no longer well behaved.

Claim 2 There exists some C f := [ (2β−β)2

27k − θ ]2( (2β−β)2

3 ) such that �1 admits a
binding first-order condition for C ≤ C f only. When C > C f , its maximum is reached

at the kink: θ1 = θ +
√

C
β−2β

:= θ̃ (e).

Proof Seeking first-order conditions of �1(., .) with respect to θ1 yields

∂�1

∂θ1
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
2β−β

3

)2

− 2kθ1 = 0, for�θ ≤
√

C
β−2β

;
(

2β−β

3

)2

− C
(3�θ)2

− 2kθ1 = 0, for�θ >
√

C
β−2β

and C ≤ C f ;
(

2β−β

3

)2

− C
(3�θ)2

− 2kθ1 < 0, for�θ >
√

C
β−2β

and C > C f ;
(6.3)

The second line of system (6.3) can be rearranged as (2β − β)2 = φ(θ1), with slope

φ′(θ1) = 18k − 2C
(�θ)3

. This FOC has at most two solutions: one where φ′(θ1) < 0

and the other with φ′(θ1) > 0. The SOC requires φ′(θ1) ≥ 0 for the FOC to identify
a maximiser, so there exists a unique local maximiser of �1, denoted θ̂1. Let θ01 be
the (unique) solution of the first line of system (6.3) with θ̂1 < θ01 . Therefore if

θ01 − θ2 ≤
√

C
β−2β

it cannot be that θ1 is a best response to θ2. That is, firm 1 would
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not play the first line of (6.1), but the second one. Hence the FOC cannot bind when

�θ ≤
√

C
β−2β

:

∂�1

∂θ1
=

(
2β − β

3

)2

− 2kθ1 > 0; f or �θ ≤
√

C

β − 2β

When the FOC does bind (second line of 6.3), the function �1 is concave for C ≤ C f

and θ̂1 is a global maximizer. To pin C f , the binding first-order condition defines
a function C(θ1, θ2) := (�θ)2[(2β − β)2 − 18kθ1], whence dC(.)

dθ1
= 0 ⇔ θ

f
1 =

(2β−β)2

27k . Substituting back into C(θ1, θ2) gives the cut-off value C f := [ (2β−β)2

27k −
θ2]2( (2β−β)2

3 ). When C > C f , the first-order condition (6.3) is everywhere negative,
hence

d�1

dθ1
|
θ1<θ+

√
C

β−2β

> 0; d�1

dθ1
|
θ1>θ+

√
C

β−2β

< 0

and is not differentiable at �θ =
√

C
β−2β

. By Claim 1 it is continuous, and monotonic

on either side of �θ =
√

C
β−2β

. Therefore, θ̂1 such that �θ =
√

C
β−2β

is the unique

maximiser of �1(θ1, θ2) given some fixed θ2. ��

Appendix B: Existence of a mixed-strategy equilibrium

Take Proposition 1 as established. Throughout consider suppose θ1 ≥ θ2 w.l.o.g.

Proposition 6 A mixed-strategy equilibrium of the game � always exists.

This assertion holds trivially when Assumption 3 holds. When it fails the payoff
correspondences are not upper-hemicontinuous and their sum is not necessarily so
either.

Denote θ̃ := θ +
√

C
β−2β

for some e. Let θc
1 the threshold such that �1(θ

c
1 , θ) = 0

when θ1 > θ2. This point exists and exceeds θ̃1 because
d�1
dθ1

|θ1>θ̃1
< 0 and the cost

function is convex. Neither platform wants to exceed that threshold, so the set of
pure actions over which firms randomize is [θ, θc

i ] ⊆ �i , i = 1, 2. Any distribution
over this set must assign zero mass to any θi ∈ (θ, θ̃ ): any action in this interval

is dominated by either θ or θ̃ . Take θ1 > θ2 > θ and suppose �θ >
√

C
β−2β

and

�1 > �2 > 0. Let θ2 increase, both �1 and �2 vary smoothly with limθn
2 ↑θ1 �1 =

�1 > 0, limθn
2 ↓θ1 �1 = −kθ21 , and similarly for firm 2. Both payoff functions are

discontinuous at the point θ1 = θ2. In this case neither the payoffs nor their sum are
evenupper-hemicontinous. FollowingDasgupta andMaskin (1986), it is first necessary
to characterize the discontinuity set ϒ0 := {(θ1, θ2)|θ1 = θ2, θi ∈ [θ̃i , θ

c
i ] ∀i}, on

which the payoffs are discontinuous. Further define the probability measure μ(θ1, θ2)

over the set �N = {θ1} ∪ [θ̃1, θc
1 ] × {θ2} ∪ [θ̃2, θc

2 ]. It is immediate that ϒ0 has
Lebesgue measure zero, so that Pr((θ1, θ2) ∈ ϒ0) = 0. Next we claim
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Lemma 2 Suppose θ1 = θ2 = θ , an equilibrium in mixed strategies exists in the
B-side price subgame.

Proof Let θ1 = θ2 = θ . The sum of profits � = �1 + �2 is almost everywhere
continuous. Either � = �1 > 0 ∀pB

1 < pB
2 , or � = �2 > 0 ∀pB

1 > pB
2 , both of

which are continuous except at pB
1 = pB

2 , where � = �1 + �2 = 0. But the set
� := {(pB

1 , pB
2 )|pB

1 = pB
2 , (pB

1 , pB
2 ) ∈ R

2} has Lebesgue measure zero. Theorem
5 of Dasgupta and Maskin (1986) directly applies and guarantees existence of an
equilibrium in mixed strategies. ��

Therefore the pair θ1 = θ2 = θ may be part of an equilibrium of the overall game.

Proof of Proposition 6 We only need showing that the payoff functions �i i = 1, 2
are lower-hemicontinuous in their own argument θi . We know that �1 is continuous
for any θ1 > θ2 (refer Appendix Section A). It is immediate that �2 is continuous for
θ1 > θ2. Last, for i = 1, 2

�i =
{
0, if θ1 = θ2 = θ;
−kθ2i , if θ1 = θ2 > θ.

that is, �i , i = 1, 2 is l.h.c. Since (θ2, θ1)s.t θ2 = θ1 ∈ ϒ0, Theorem 5 in Dasgupta
and Maskin (1986) can be applied, whence an equilibrium in mixed strategies must
exist. ��

Appendix C: Proofs

Proof of Proposition 1 The proof begins by showing existence of an equilibrium, then
characterizes it.16

Definition 1 For i = 1, 2, the platforms’ ‘quasi-best responses’ are defined as the
solution to the problem maxpB

i
�i (pB

i , Di (pB, θ);�A
i (Di , D j )), where the profit

function is defined by (3.1). Therefore, letting θ1 > θ2 w.l.o.g,

pB
1 (pB

2 ) =

⎧
⎪⎨

⎪⎩

pB
1
(pB

2 ) = 1
2 (pB

2 + �θβ − 2eA), if D1 > D2;
1
2 (pB

2 + �θβ), if D1 = D2;
pB
1 (pB

2 ) = 1
2 (pB

2 + �θβ + 2eA), if D1 < D2;
and

pB
2 (pB

1 ) =

⎧
⎪⎨

⎪⎩

pB
2
(pB

1 ) = 1
2 (pB

1 − �θβ − 2eA), if D1 < D2;
1
2 (pB

1 − �θβ), if D1 = D2;
pB
2 (pB

1 ) = 1
2 (pB

1 − �θβ + 2eA), if D1 > D2;

16 The conditions of Theorem 2 of Dasgupta and Maskin (1986) are not met, and neither are those of Reny
(1999). The sufficient conditions (Proposition 1) of Baye et al. (1993) also fail here, so their existence
result cannot be readily applied. A recent contribution by Bich (2008) establishes existence by introducing
a measure of the lack of quasi-concavity that resembles ironing. Our construction does remain essential in
that we face a potential multiplicity of equilibria and seek a characterization.
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While it is always possible to find somepointwhere ‘quasi-best responses’ intersect,
it by no means defines an equilibrium. Doing so assumes that in some sense platforms
coordinate on a particular market configuration—for example, such that D1 < D2.
We first need to pin down the firms’ true best replies.

Lemma 3 Let θ1 > θ2 w.l.o.g. There exists a pair of actions ( p̂1, p̂2) such that the
best response correspondences are defined as

pB
1 (pB

2 ) =
{

pB
1
(pB

2 ), for p2 ≥ p̂2;
pB
1 (pB

2 ), for p2 < p̂2;
(8.1)

and

pB
2 (pB

1 ) =
{

pB
2 (pB

1 ), for p1 < p̂1;
pB
2
(pB

1 ), for p1 ≥ p̂1; (8.2)

Lemma3 says that platform1, for example, prefers respondingwith pB
1
(pB

2 ) for any

prices p2 ≥ p̂2 and switches to pB
1 (pB

2 ) otherwise. The best reply correspondence is
discontinuous at that point where platforms are indifferent between being the dominant
platform and not, that is, between the combination of prices (pB

i
(pB

j ), pA
i (pB

i
)) and

(pB
i (pB

j ), pA
i (pB

i )).

Proof Any profile p̃B such that D1 = D2 can never be an equilibrium.When D1 = D2
A profits �A

i are nil for both platforms. Both players have a deviation strategy pB
i + ε

in either direction since �
A
i > �A

i > 0, i = 1, 2 as soon as Di �= D−i . Maximizing
the profit function (3.1) leaves us with two ‘quasi-reaction correspondences’, for each
competitor, depending on whether D1 > D2 or the converse. Depending on firm 2’s
decision, platform 1’s profit is either

�1 =
{

�1(pB
1
(pB

2 ), pB
2 ;�A

i ) = �1
( 1
2

(
pB
2 + �θβ − 2eA

)
, pB

2 ;�A
i

)
, or;

�1(pB
1 (pB

2 ), pB
2 ;�A

i ) = �1
( 1
2

(
pB
2 + �θβ + 2eA

)
, pB

2 ;�A
i

)
.

Define g1(pB
2 ) ≡ �1(pB

1 (pB
2 ), pB

2 ;�A
i ) − �1(pB

1
(pB

2 ), pB
2 ;�A

i ). This is the dif-
ference in profits generated by firm 1 when it chooses one ‘quasi-best response’
over the other. For pB

2 sufficiently low, g1 > 0. This function is continuous

and a.e differentiable. Using the definitions of equilibrium A-side profits, dg1
dpB

2
=

d�A
1 (pB

1 ,pB
2 )

dpB
2

− d�A
1 (pB

1
,pB

2 )

dpB
2

< 0, and d2g1
d(pB

2 )2
= 0, whence there exists a point p̂B

2

such that g1( p̂B
2 ) = 0. At p̂B

2 , �1(pB
1
( p̂B

2 ), p̂B
2 ) = �1(pB

1 ( p̂B
2 ), p̂B

2 ); platform 1 is

indifferent between either best response pB
1
( p̂B

2 ) or pB
1 ( p̂B

2 ). The same follows for

platform 2, which defines p̂B
1 . It follows that

�1

(
pB
1
(pB

2 ), pB
2 ;�A

i

)
≥ �1

(
pB
1 (pB

2 ), pB
2 ;�A

i

)
⇔ pB

2 ≥ p̂B
2

≡ −
(
�θβ + e(A − A)

)
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and

�2

(
pB
1 , pB

2
(pB

1 );�A
i

)
≥�2

(
pB
1 , pB

2 (pB
1 );�A

i

)
⇔ pB

1 ≥ p̂B
1 ≡ �θβ − e(A − A)

��
For each firm, its price must be an element of the best reply correspondence and

these correspondences must intersect. From the ‘quasi-best responses’, an equilibrium
candidate is a pair of prices such that

(
p∗B
1 , p∗B

2

)
=

{
pB
1
(pB

2 ) ∩ pB
2 (pB

1 ), if D1 > D2 or;

pB
1 (pB

2 ) ∩ pB
2
(pB

1 ), if D1 < D2;

An equilibrium exists only if these intersections are non-empty. Together, the def-
initions of a best-response profile (relations (8.1) and (8.2)) and of an equilibrium
candidate sum to

Condition 1 Either

p̂B
1 ≥ p∗B

1 and p̂B
2 ≤ p∗B

2 or p̂B
1 ≤ p∗B

1 and p̂B
2 ≥ p∗B

2

or both.

Consider an action profile p∗B satisfying this condition; from Lemma 3 each p∗B
i

is an element of i’s best response. For it to be an equilibrium the reaction func-
tions must intersect. This is exactly what Condition 1 requires. For example, the first
pair of inequalities tells us that player 1’s optimal action has to be low enough and
simultaneously that of 2 must be high enough. When they hold, player 2’s reaction
correspondence is continuous until 1 reaches the maximizer p∗B

1 , and similarly for
firm 1.

Lemma 4 Condition 1 is necessary and sufficient for at least one equilibrium
p∗B = (p∗B

1 , p∗B
2 ) to exist. When both inequalities are satisfied, the game admits

two equilibria.

When Condition 1 holds, the Nash correspondence pB
1 (pB

2 )× pB
2 (pB

1 ) has a closed
graph and standard theorems apply; it provides us with a pair of easy-to-verify condi-
tions in terms of prices.

Proof Each platform’s action set pB
i ⊆ R is compact and convex, and so can be

partitioned into two subsets P B
i = [pR,min

i , p̂B
i ] and P

B
i = [ p̂B

i , pR,max
i ], on which

the best-response correspondences defined by (8.1) and (8.2) are continuous for each
platform i . Consider any equilibrium candidate (p∗B

1 , p∗B
2 ). When Condition 1 holds,

following the definitions given by Eqs. (8.1) and (8.2), either p∗B
1 ∈ pB

1
(pB

2 ) and

p∗B
2 ∈ pB

2 (pB
1 ), or p∗B

1 ∈ pB
1 (pB

2 ) and p∗B
2 ∈ pB

2
(pB

1 ) (or both, if two equilibria

exist). Thus at the point (p∗B
1 , p∗B

2 ) the reaction correspondences necessarily intersect
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at least once, whence the Nash correspondence has a closed graph and the Kaku-
tani fixed-point theorem applies. To show necessity, suppose a pair (p∗B

1 , p∗B
2 ) is a

Nash equilibrium. By definition, pB
2 (pB

1 ) ∩ pB
1 (pB

2 ) �= ∅, and by Lemma 3, either
(p∗B

1 , p∗B
2 ) = pB

1
(pB

2 )∩ pB
2 (pB

1 ) or (p∗B
1 , p∗B

2 ) = pB
1 (pB

2 )∩ pB
2
(pB

1 ), or both if two
equilibria exist. For the first equality to hold, the first line of Condition 1 must hold,
and for the second one, the second line of Condition 1 must be satisfied. ��
Lemma 5 An equilibrium in pure strategies of the B-side price subgame always exists.

Proof First construct a candidate equilibrium as follows. Suppose that platformsmax-

imise �H
1 = pB

1 D1(pB, θ) − kθ21 + �
A
1 and �H

2 = pB
2 D2(pB, θ) − kθ22 + �A

2 ,
respectively. Solving for the first-order conditions laid out in Definition 1 yields

p∗B
1 = 1

3 [�θ(2β − β) + 2e(A − 2A)]
p∗B
2 = 1

3 [�θ(β − 2β) + 2e(2A − A)]

Simple algebra yields D1 > 0 and D2 > 0 provided �θ >
√

C
β−2β

; otherwise

p∗B
1 = �θβ

2
− eA; p∗B

2 = 0,

both of which verify the first line of Condition 1. So (p∗B
1 , p∗B

2 ) constitutes an equilib-
rium by Lemma 4. This equilibrium always exists because p̂B

1 ≥ p∗B
1 and p̂B

2 ≤ p∗B
2

are always satisfied. Indeed, either both hold when both platforms are active, or p∗B
2 =

0 > p̂B
2 when only firm 1 is active. Another candidate equilibrium (p∗∗B

1 , p∗∗B
2 ) can

be constructed by letting platform 1 play as if �L
1 = pB

1 D1(pB, θ) − kθ21 + �A
1 and

platform 2 as if �L
2 = pB

2 D2(pB, θ) − kθ22 + �
A
2 , whence

p∗∗B
1 = 1

3
[�θ(2β − β) + 2e(2A − A)]

p∗∗B
2 = 1

3
[�θ(β − 2β) + 2e(A − 2A)]

An equilibrium such that p∗B
1 = 0; p∗B

2 = −�θβ

2 − eA cannot exist, for these
prices are not best response to each other. For θ1 > θ2 there always exists some price
pB
1 ≥ pB

2 such that consumers prefer purchasing from platform 1. When both firms
are active Condition 1 holds as long as �θ(β + β) − e(A + A) ≤ 0. Given that

�θ ≥
√

C
2β−β

, take the lower bound and substitute into the second line of Condition 1:

e(A + A)

(
2(β + β)

β − 2β
− 1

)

> 0, ∀β ≥ 0

which violates the second pair of inequalities of Condition 1. So the second candidate
can never be an equilibrium. For completeness, Condition 1 is also sufficient to rule
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out deviations from the pairs (p∗B
1 , p∗B

2 ) and (p∗∗B
1 , p∗∗B

2 ). The SOC of the profit
function (3.1) is satisfied at prices p∗B

i and p∗∗B
i ∀i,∀pB−i , there cannot be any local

deviation. Consider now deviations involving inconsistent actions, that is, such that

both platforms maximise either pB
i Di (pB, θ) − kθ2i + �

A
i or pB

i Di (pB, θ) − kθ2i +
�A

i . Since (p∗B
1 , p∗B

2 ) always exists, the first line of Condition 1 always holds. It
immediately follows from (8.1) and (8.2) that pB

1 (pB
2 )∩ pB

2 (pB
1 ) = ∅ and pB

1
(pB

2 )∩
pB
2
(pB

1 ) = ∅ as well. ��
Together these Lemmata conclude the proof. ��

Proof of Proposition 2 We begin by characterising the first-stage actions.

Lemma 6 Let θ1 > θ2 w.l.o.g. and Assumption 3 hold. Optimal actions consist of
θ∗
2 = θ and θ∗

1 = θ̂1, where θ̂1 uniquely solves

(2β − β)2 = 18kθ1 + C

(�θ)2
(C.3)

Both platforms operate.

Proof First notice that in any pure-strategy Nash equilibrium (θ∗
1 , θ∗

2 ) such that θ∗
1 >

θ∗
2 , θ∗

2 = θ necessarily. To see that, assume the FOC (6.3) binds so that θ∗
1 = θ̂1.

Computing the slope of the profit function �2 yields

d�2

dθ2
=

{
−(β − 2β)2 + C

(�θ)2
− 2kθ2 < −2kθ2, if �θ(β − 2β) >

√
C;

−2kθ2, if �θ(β − 2β) ≤ √
C .

whence it is immediate that d�2
dθ2

|θ2>θ < d�2
dθ2

|θ < 0. This simplifies the analysis and

lets us focus on platform 1’s problem. Its first-order condition reads (2β − β)2 −
C

(�θ)2
− 18kθ1 = 0 and admits a unique maximizer θ̂1. Suppose firm 1 plays θ̂1,

platform 2 cannot increase its quality to any θ2 ∈ (θ, θ̂1) (it must play θ∗
2 = θ). So the

pair (θ̂1, θ) is an equilibrium as long as firm 2 cannot ‘jump’ over firm 1 and become
the high-quality firm. To guarantee firm 2 operates we need (θ̂1 − θ)(β − 2β) >

√
C

(Assumption 3). The smallest ‘leap’ firm 2 can undertake is such that θ̃2 ≥ θ̂1 + ε.
Hence the no-deviation condition is �2(θ̂1, θ) ≥ �2(θ̂1, θ̂1 + ε), or

(θ̂1 − θ)(β − 2β)2 + B2 + C

(θ̂1 − θ)
≥ B1 + √

C(β − 2β) − 9k(θ̂1 + ε)2

(θ̂1 − θ)
[
(β − 2β)2 + (2β − β)2

]
− 9kθ̂21 + B2 ≥ B1 + √

C(β − 2β)

using the FOC (2β − β)2 − 18kθ̂1 − C
(θ̂1−θ)2

= 0 and the fact that kθ̂1θ = kθ2 = 0

(by assumption). When θ̂1 − θ >
√

C
β−2β

, this condition is always satisfied. ��
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The optimality of θ∗
2 = θ and θ∗

1 = θ̂1 is established by Lemma 6. The rest of the
claim follows immediately under Assumption 3. ��
Proof of Corollary 1 In the first stage of the Shaked and Sutton (1982) model, firms
solve

max
θi ∈�i

p∗
i Di (p∗, θi , θ

∗
j ) − kθ2i

for i = 1, 2 and with demand D1 = 1
3 (2β − β), D2 = 1

3 (β − 2β) and prices

p1 = �θ
3 (2β − β), p2 = �θ

3 (β − 2β), respectively. This problem is concave and

given equilibrium prices p∗
i , has obvious maximizers θ02 = θ and θ01 = 1

2k (
2β−β

3 )2

with θ01 < θ thanks to k >
(2β−β)2

18θ
. These individually optimal maximizers also

form a Nash equilibrium as long as there is no profitable deviation. Consider one
such deviation: θ̃2 = θ01 + ε. Firm 2 profit from this deviation is �2(θ

0
1 , θ̃2) =

ε(
2β−β

3 )2 − kθ̃22 < 0 and the marginal profit (
2β−β

3 )2 − 2k(θ01 + ε) < 0. To complete
the proof observe that firm 1’s first-order condition in the benchmark problem reads

(
2β−β

3 )2 − 2kθ01 = 0 and compare it to Eq. (C.3). ��
Proof of Proposition 3 Let θc

i denote the upper bound of the support of the distribution
of the pure action space, a precise definition of whichwill soon be provided. Let Hi (θi )

be the distribution over i’s pure actions θi ∈ {θ}∪ [θ̃ , θc]. For any equilibrium mixing
probability H∗

2 (θ2),

Eθ2 [�1] =
∫

�1(θ1, θ2)d(H1 × H∗
2 ) +

∫ θ ′
1=θ2

θ̃1

�1(θ1, θ2)d(H1 × H∗
2 )

+
∫ θc

1

θ ′
1=θ2

�1(θ1, θ2)d(H1 × H∗
2 )

= H1(θ1)

∫

�1(θ1, θ2)d(H∗
2 ) +

∫ θ ′
1=θ2

θ̃1

�1(θ1, θ2)d(H1 × H∗
2 )

+
∫ θc

1

θ ′
1=θ2

�1(θ1, θ2)d(H1 × H∗
2 )

with possibly an atom at θ1. With probability
∫ θ ′

1=θ2

θ̃1
d(H1 × H∗

2 ) it plays θ1 > θ

such that 2 is the dominant firm (θ2 ≥ θ1); in this case, �1(θ1, θ2) = −kθ21 < 0.

With probability
∫ θc

1
θ ′
1=θ2

d(H1 × H∗
2 ) it is the dominant firm (the second integral). First

note there is a mass point at θ i , that is, for each agent i, Hi (θ i ) ∈ (0, 1). To see that,
suppose H1(θ1) = 1, then argmaxEθ1 [�2(θ1, θ2)] = θ̃2, so H2(θ2) = 0 and H2(θ2)

assigns full mass at θ̃2 : h2(θ̃2) = 1. But then firm 1 should play some θ1 > θ̃2 and
become the monopolist for sure. If H1(θ1) = 0, then 1 necessarily plays on [θ̃ , θc]
and playing θ̃2 is a dominated strategy for firm 2. It therefore assigns no mass at this
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point. But then ∀ θ2 ∈ (θ̃2, θ
c
2 ], �1(θ1, θ2) > 0 and platform 1 should shift some

mass to θ1. Then the equilibrium conditions write ∀θi ∈ �N
i ,

Eθ j

[
�i (θi , θ j )

] = �i (θ i , θ̃ j )

�i (θ i , θ̃ j ) = 0 (C.4)

The first line asserts that i’s expected payoff cannot be worse than if not investing for
sure, in which case j’s best response is θ̃ j . The second one sates that if not investing
for sure, a platform can only expect zero profits: expected profits in the mixed-strategy
equilibrium must be zero. Next we determine the upper bound θc

i of the support of
Hi (θi ) for each platform i = 1, 2. The upper bound θc

i solves either

�i (θ j , θ
c
i ) = 0 or �i (θ̃ j , θ

c
i ) = 0, hence θc

i = max{θ ′
i |�i (θ j , θ

′
i ) = 0, �i (θ̃ j , θ

′
i ) = 0}

Rewriting the equilibrium condition (C.4), ∀ θi ∈ �N
i ,

Hi (θ i )

∫

�N
j

Ri (θ i , θ j )d H∗
j (θ j ) +

∫ θc
i

θ ′
i =θ j

Ri (θi , θ j )d(Hi (θi ) × H∗
j (θ j ))

= k
∫ θc

i

θ̃i

θ2i d(Hi (θi ) × H∗
j (θ j ))

where Ri (θi , θ j ) stands for platform i’s revenue (gross of costs). For any play θ j , total
revenue Ri (θi , θ j ) is decreasing in θi ∈ �N

i \θ i – refer Conditions (6.1) and (6.2). Thus
for any distribution Hi (θi ) × H∗

j (θ j ) the LHS is bounded as well, and decreasing in
θi . ��
Proof of Proposition 4 When e is large enough platform 1 (the high-quality firm)

prefers playing such that �θ = 2e(A+A)

β−2β
:= z(e) for any θ2 (and θ1 not so large as to

induce negative profits). Its payoffs when �θ ≤ z(e) are given by the second line of
(6.1), where B1(e) = 2e(2β − β)(2A − A). This can be re-arranged as

π1(e, θ) = 1

9

[
�θ(2β − β)2 + 2e[A(5β − 4β) − A(β + β)]

]
− kθ21

for �θ ≤ z(e) and

π1(e, θ) = 1

9

[

�θ(2β − β)2 + B1(e) + [2e(A + A)]2
�θ

]

− kθ21

if �θ > z(e). Let π1(e, θ) = maxπ1(e, θ) for any pair θ1 > θ2 such that �θ = z(e).
This is an upper bound on firm 1’s profits for any play by firm 2. We know π1(e, θ) is
maximized for θ2 = θ . Recall that we denote the corresponding value of θ1 by θ̃1. For
any e and θ2,

∂π1(e,θ)
∂θ1

> 0 when �θ < z(e) and ∂π1(e,θ)
∂θ1

< 0 when �θ = z(e) and
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θ2 > θ . Therefore π1(e, θ) reaches zero for some value θ ′
1 ≤ θc

1 . Thus no firm will
play out of these bounds. More precisely,

∂π1(e, θ)

∂θ1
= 2β − β

9
− 2kθ1 > 0, when�θ < z(e) and

∂π1(e, θ)

∂θ1
= 2β − β

9
− 2kθ1 < 0, for �θ = z(e), θ2 > θ.

with max ∂π1(e,θ)
∂θ1

reached for θ2 = θ . Since argmax �1(θ1, θ2) > θ̃1 when θ2 > θ ,
it follows that

∂π1(e, θ)

∂θ1
<

∣
∣
∣
∣
∂π1(e, θ)

∂θ1

∣
∣
∣
∣

and therefore | θ̃1 − θc
1 |< z(e). ��

Proof of Proposition 5 First note that when consumer prices are identical a pure strat-
egy equilibrium cannot exist. Suppose pB

1 = pB
2 , B demand is given by

Di =
⎧
⎨

⎩

1, if θi > θ j ;
1
2 , if θi = θ j ; and,

0, if θi < θ j .

so platform i faces payoffs

�i =
{

eDi
(

α
2

)2 − kθ2i ≥ 0, if θi > θ j ≥ θ;
−kθ2i ≤ 0, if θ ≤ θi ≤ θ j ;

Now take a profile θ1 = θ2, then D1 = D2 and platforms are Bertrand competitors in
the A market with payoffs −kθ2i ≤ 0. When −kθ2i < 0, firm i possesses a unilateral
deviation: set θi = θ . When −kθ2i = 0, it also possesses a unilateral deviation: set
θi > θ . To complete, set pB

1 = pB
2 = 0 exogenously and apply Proposition 6, and the

characterization in Proposition 3. ��
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