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Abstract Tyson (J Math Econ 49(4): 266–277, 2013) introduces the notion of sym-
metry vector field for a smooth preference relation, and establishes necessary and
sufficient conditions for a vector field on consumption space to be a symmetry vector
field. The structure of a such a condition is discussed on both geometric and economic
grounds. It is established that symmetry vector fields do commute (i.e. have vanish-
ing Lie bracket) for additive and joint separability. The marginal utility of money is
employed as a normalization of the expansion vector field (Mantovi, J Econ 110(1):
83–105, 2013) which results in the fundamental (expansion-) symmetry vector field.
Finally, a characterization of symmetry vector fields is given in terms of their action
on the distance function, and a pattern of complete response is discussed for addi-
tive preferences. Examples of such constructions are explicitly worked out. Potential
implications of the results are discussed.
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148 A. Mantovi

1 Introduction

The utility representation of the properties of preferences has driven fundamental
advances for both theoretical and empirical analyses of consumption (see Christensen
et al. 1975, and Deaton1 and Muellbauer 1980, for classical contributions). In partic-
ular, the functional representation of the several facets of separability (for instance,
Houthakker 1960; Pollak 1972; Gorman 1976; Blackorby et al. 1978) resulted in a
fundamental line of progress for microeconomic theory in general, and duality theory
in particular.

The significance of separability has been sharply pointed out by Gorman (1976):
separability has to do with the “natural structure” of a choice problem. As long pointed
out, in a number of relevant cases, choice problems can be assumed to consist of a
series—perhaps a hierarchy—of subproblems that can be dealt with “in at least partial
isolation from each other” (ivi, p. 224), possibly, budgeting problems concerning con-
sumption aggregates. Such separations have been thoroughly addressed in terms of the
functional structure of objective functions (direct and indirect utility functions, cost and
distance functions: Blackorby et al. 1978). Noticeably, recent geometrical advances
in the analysis of preferences (Tyson 2013; Mantovi 2013) point at the symmetries of
preferences as a promising direction for deepening the “natural structure” of a choice
problem. It is the aim of the present contribution to set forth a number of advances in
such respects, meant to exploit the powerful analytical language of vector fields.2

On the one hand, Mantovi (2013) introduces, among other things, the expansion
vector field on consumption space, whose integral curves define a scaling parametriza-
tion of income expansion paths, thereby sheding new light on the benchmark relevance
of homothetic models, in connection with the commutativity of finite expansion and
substitution effects. On the other hand, Tyson (2013) introduces symmetries of pref-
erences as transformations of choice space which do preserve the preference relation,
and then symmetry vector fields, whose flows embody 1-parameter semigroups of
continuous symmetries of such a space. The Author characterizes such symmetries in
terms of partial differential equation (PDE) systems for the utility representation of
preferences, which he applies to univariate, multivariate and joint separability.

Building on such premises, it is the aim of the present contribution3 to provide
further insights on the characterization of symmetry vector fields set forth by Tyson
(2013), and establish that symmetry vector fields for multivariate and joint separa-
bility have vanishing Lie bracket (a strong analytical condition which shall be given
due economic interpretation). Then, we shall find that the marginal utility of money
defines a “normalization” of the expansion vector field which results in the fundamen-

1 In his Nobel lecture (2015, December 8th) Prof. Deaton recalls the intellectual challenges faced in the
search of an “almost ideal” demand system.
2 A vector field defines a ‘velocity’ vector at each point of a space, i.e. a first order ordinary differential
equation (ODE) system; tangent curves to such vectors (solutions to the ODE system) do not cross each
other, and, as such, represent a flow on such space. In fact, fluid motion is the typical physical picture meant
to foster intuition about the properties of vector fields and flows. See Appendix 1 for a brief introduction to
vector fields and dynamical systems.
3 Part of the following arguments circulated via the working paper “Differential duality”, Department of
Economics, Parma (Italy).
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Smooth preferences, symmetries and expansion vector fields 149

tal symmetry vector field, whose flow superposes to expansion paths and therefore
preserves marginal rates of substitution. Finally, a characterization of symmetry vec-
tor fields shall be given with respect to the distance function, thereby complementing
Tyson’s results with a perspective on the radial structure of preferences, together with
an insightful approach to multivariate separabilty. In addition, we shall gain further
insights on the benchmark relevance of the scale symmetry which characterizes homo-
thetic models (think for instance of the conditions for the existence of a cost of living
index: Samuelson and Swamy 1974; Gorman 1976), which share the same expansion
vector field, namely, the generator of scale transformations (formula 1 below).

True, the relevance of preference symmetries does extend beyond the problem of
separability. In first instance, on conceptual grounds, recall that the significance of
preferences and utility functions is not confined to the microeconomic representation
of static consumption problems. For instance, one can consider the macroeconomic
models encompassingutility functions over intertemporal consumption aggregates (for
instance Barro 2001), or the utility functions representing the tradeoff between con-
sumption and leisure (for instance, King et al. 1988). Such examples enlighten the rel-
evance of preference symmetries in the representation of significant policy problems.

A (public) policy is typically an investment of (public) resources meant to pursue
definite goals, as gauged by some welfare index. It is often the case that the properties
of the preferences of a representative agent, or of heterogeneous agents, are employed
in the very representation of the policy problem. In such respects, the relevance is well
known of employing analytically tractable functional forms (the Cobb-Douglas case
stands out in such respects); true, the symmetries of the problem at handmay represent
the bottom line of the modelling process: one can consider for instance the symmetry
requirements discussed by Kimball and Shapiro (2008) for the consumption-leisure
tradeoff. In addition, the reversibility aspects of a policy framework may be strongly
connected with the assumptions on the preferences of agents, as discussed byMantovi
(2013) for the commutativity of finite expansion and substitution effects.4 All in all,
the symmetries of utility functions seem to represent a relevant line of inquiry for both
micro- and macro- economic analysis.

The plan of the rest of the paper is as follows. In Sect. 2 we introduce symmetry
vector fields and establish a few original results. In Sect. 3 we introduce our expansion
vector field, and in Sect. 4 we discuss the fundamental expansion-symmetry vector
field. In Sect. 5 we characterize symmetry vector fields via the distance function,
and discuss a pair of insightful examples. A final section sketches potential lines of
progress of our approach. Appendix 1 provides a short introduction to vector fields
and Lie brackets. Appendix 2 addresses a technical result, upon which a fundamental
lemma in the main text builds.

2 Symmetries

Following Tyson (2013), let us define a discrete symmetry of a preference relation
as a bijection of choice (possibly, consumption) space B which does preserve the

4 Noticeably, such a commutativity is ‘isomorphic’ to the equivalence of standard and reversed Farrell
decompositions of productive efficiency recently established by Bogetoft et al. (2006).
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150 A. Mantovi

preference relation between the elements ofB, and thereforemaps indifference subsets
onto indifference subsets.As a familiar example, any scale transformation (homothety)
of the positive orthantRn++ = (0,∞)×· · ·×(0,∞) (n copies) is a discrete symmetry
of any homothetic preference relation on such a space.

Then, define a continuous symmetry for a preference relation on B as a 1-parameter
family σ : [0, 1] × B → B of discrete symmetries which contains the identity trans-
formation σ(0, ·) : B → B and is of differentiable class C2. Evidently, the class
of homotheties on Rn++ is a continuous symmetry of homothetic preferences on
Rn++.

Finally, define a symmetry vector field of a smooth preference relation (i.e. repre-
sented by a C2 utility function which has no stationary point, and induces a monotone
continuous complete preorder; see the classical contribution by Debreu (1972)) on B
as a vector field on B whose integral curves trace out a continuous symmetry. The
vector field

Z =
n∑

k=1

qk
∂

∂qk
(1)

is the generator of scale transformations (Mantovi 2013) on Rn , and therefore its
action on homogeneous functions of degree 1 results in the identity transformation; in
fact, in terms of the vector field (1), Euler’s formula (Mas-Colell et al. 1995) can be
written Z (g) = g. Then, evidently, (1) is a symmetry vector field for any homothetic
preference relation on Rn++ (Mantovi 2013; Tyson 2013).

Thus, a symmetry vector field is a dynamical system on choice space whose tra-
jectories fill such a space and sweep indifference surfaces with the proper ‘speed’, so
as to map indifference surfaces onto indifference surfaces. The following proposition
establishes a basic property of symmetry vector fields.

Proposition 1 If A is a symmetry vector field for the preference relation represented
by the smooth utility function U, then Ā ≡ 1

A(U )
A is a symmetry vector field as well.

Proof The integral curves of Ā are smooth reparametrizations of the integral curves
of A, and in fact the flow of Ā can be considered as the flow of A measured at ‘unit
speed’, being Ā(U ) ≡ 1. Then, the conditions for Ā to be a symmetry vector field are
satisfied. ��

Tyson (2013) establishes a system of PDEs for the components of symmetry vector
fields. Write MRS j

k for the marginal rate of substitution of good j and good k, i.e. the
function

MRS j
k (q) ≡

∂U
∂q j

∂U
∂qk

(2)

on consumption space (as is well known, such functions are independent of the utility
representation). Then the condition that the flowof the vector fieldS onB does preserve
such a function can be written
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Smooth preferences, symmetries and expansion vector fields 151

S(MRS j
k ) ≡

n∑

l=1

Sl(q)
∂MRS j

k (q)

∂ql
= 0 (3)

Such a condition does in fact identify a symmetry vector field in some cases (for
instance, Tyson (2013), formula 3), but the general conditions for the existence of a
such a field are identified by Tyson as consequences of the following: the gradient
(differential) of a utility representation U at the transformed point qt is obtained by
multiplying the gradient of U at q by a function of q and t . The Author establishes
(ivi, Theorem 2.10) necessary and sufficient conditions for S to be a symmetry vector
field. The representation S = ∑n

k=1 S
k(x) ∂

∂xk
of a vector field S enables us to write

such conditions as5

S(MRS j
k ) =

n∑
i=1

Si
∂MRS j

k
∂qi

=
n∑

i=1
MRSik

(
MRS j

k
∂Si

∂qk
+ ∂Si

∂q j

) 1 ≤ j < k ≤ n (4)

(compare Tyson 2013, equation 22), already gaining some insight into their signifi-
cance: the left hand side (LHS) of (4) turns out to be the derivative of MRS j

k along the

flow of S (Lie derivative of MRS j
k with respect to S; Spivak 1999). Being MRSs con-

stant along expansion paths, the right hand side (RHS) can be interpreted as ameasure
of deviation of the flow of S from the expansion flow. Thus, the RHS of condition (4)
may admit an insightful interpretation in terms of substitution effects, once a budget
constrained optimal consumption problem is at stake.

In order to start grasping the significance of (4), one can exploit the well known
analytical tractability of Cobb-Douglas (CD) preferences. Let the strictly positive n-
orthant Rn++ be our consumption space B, endowed with the utility representation
U (x) = ∑n

k=1 ak ln x
k of CD preferences. (Tyson 2013, Corollary 3.4) shows that the

n vector fields Sk ≡ xk ∂
∂xk

are symmetry vector fields for CD preferences. One can

in fact easily check conditions (4) with MRS j
k (q) ≡ a j xk

ak x j . The RHS of (4) does not
vanish, signalling that the flow of Sk does not superpose to expansion paths. In fact,
for each k between 1 and n, the vector field Sk is parallel to the coordinate vector field

∂
∂xk

, and therefore its integral curves are straight lines parallel to the k axis, and can
be written

q j (t) =
{
q j (0)et for j = k
q j (0) else

(5)

Such paths do not superpose to expansion paths for CD preferences, well known to be
rays as for any homothetic model. It is not difficult to convince oneself that, for any
t ∈ (0, ∞), any pair of initial conditions q(0), r(0) on the same indifference surface
are dragged onto the same (different) indifference surface by such vector fields, since

5 Notice that the index in Sk has tensor character, whereas the indices in MRS j
k have not.
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152 A. Mantovi

U (q(0)) = U (r(0)) ⇔ U (q(t)) = U (r(t)), being U any utility representation of the
preferences under consideration.

One then finds that the sum of the vector fields Sk is again a symmetry vector
field, and this is a key element for our discussion, in that the vector field (1) is the
well known generator of scale transformations (homotheties) on Rn , and its integral
curves represent a sound parametrization of expansion effects (Mantovi 2013) for any
homothetic preference relation. Such a property represents one more instance of the
benchmark relevance of homothetic models. Tyson (2013) does not emphasize such a
benchmark role for scale symmetry, which, in the author’s view, represents in fact a
key motivation for deepening the implications of the symmetries of preferences, for
instance in terms of separability properties.

In such respects, a key result established by (Tyson 2013, Proposition 3.3) is that
additive separability of a utility functionU onRn++, sayU (q) = g1(q1)+· · ·+gn(qn),
is equivalent to the fact that the n vector fields

1

g′
k(q

k)

∂

∂qk
(6)

are symmetry vector fields. The strong implications of additive separability have been
long established; definitely, “additivity reduces the scope for substitution and com-
plementarity to the barest minimium” (Houthakker 1960, p. 246). In such respects, in
the author’s vision, the point of Tyson’s result is the economic insight conveyed by
such a result: each subutility function gk , upon differentiation, gives the (reciprocal of
the) component of a directional symmetry vector field, i.e. the ‘speed’ at which utility
increases along such direction. One is then in a position to sweep the indifference map
in any direction with the proper (point dependent) speed so as to map indifference sur-
faces onto indifference surfaces. Then, being “large aggregates, such as clothing, food,
etc.” (ivi) the natural canditates for an additively separable representation, one thereby
envisions an insightful framework for conceiving separation of budgeting problems,
recalling that consumption aggregates can be reasonably partitioned into luxuries and
necessities (mainly, food and housing; see for instance Deaton and Muellbauer 1980).

Definitely, we are in a position to shed new light on additive separability. Our
differential geometric approach to the “natural structure” of the choice problemenables
us to state

Proposition 2 Given the utility representationU (q) = g1(q1)+· · ·+gn(qn) of addi-
tive preferences, the vector fields (6) have vanishing Lie brackets over all consumption
space.

Proof (Spivak 1999, chapter 5) derives the algorithm for computing the Lie bracket
[A,B] = LAB (theLie derivative ofBwith respect toA) for a coordinate representation
of vector fields A, B, namely,

LAB =
n∑

k=1

⎛

⎝
n∑

j=1

A j (q)
∂Bk(q)

∂q j
− B j (q)

∂Ak(q)

∂q j

⎞

⎠ ∂

∂qk
(7)
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being A = ∑n
k=1 A

k(q) ∂
∂qk

and B = ∑n
l=1 B

l(q) ∂
∂ql

. A straightforward application
of formula (7) confirms that the vector fields (6) have vanishing Lie bracket with one
another over all consumption space. ��
As long established, the vanishing of the Lie bracket [A,B] entails the commutativity
of the flows defined by such vector fields (see Appendix 1). Then, Proposition 2 sheds
new light on additive preferences, for which n commuting symmetry vector fields
exist, i.e. n independent ways to sweep indifference surfaces so that one can follow
the flow of one symmetry vector field for a parameter value a, and then the flow of
another vector field for a parameter value b, or the other way round, and obtain the
same transformation of choice space (Spivak (1999)).

Additive separability is a strong (in a sense, the ‘strongest’) form of separability.
We are in a position to enlarge the connection between symmetry vector fields of
separable preferences and the commutativity of such vector fields to the case of joint
separability. Following (Tyson 2013, Proposition 3.5), let us confine to the case n = 3.

Proposition 3 Consider the symmetry vector fields H1 ≡ 1
∂h
∂q1

∂
∂q1

, H2 ≡ 1
∂h
∂q2

∂
∂q2

and

G ≡ 1
∂g
∂q3

∂
∂q3

for the preferences represented by the utility function U (q1, q2, q3) =
λh(q1, q2) + g(q3) on R3++, with ∂2h

∂q1∂q2
not identically vanishing. Then [H1,G] =

[H2,G] = 0.

Proof (Tyson 2013, Proposition 3.5) establishes that the vector fieldsH1,H2 andG are
symmetry vector fields for the utility function U (q1, q2, q3) = λh(q1, q2) + g(q3).
Then, a straightforward application of (7) yields the vanishing of the Lie brackets
[H1,G] and [H2,G]. ��
One can compare such a result with Proposition 2: for additive preferences, each
subutility function defines a symmetry vector field, and such fields do commute with
one another; analogously, for the joint separability addressed in Proposition 3, the
vector fields associated with the subutility function h do commute with the vector field
associated with the subutility function g. Thus, the Lie bracket of symmetry vector
fields for multivariate and joint separability seems to open an intuitive perspective on
the problem of separability (compare the role of the Lie bracket for the integrability
problem as discussed by Debreu (1972)).

3 Expansion

The basic elements of a normative economic problem are an objective function, to
be optimized, and a set of constraints, which restrict the set of feasible solutions, and
typically represent the scarcity of resources in the problem under consideration. The
analysis of preference symmetries set forth by Tyson (2013) deals with the properties
of objective (utility) functions, and not with the consequences of such properties on
the solution of consumption problems. It is the aim of this section to move along such
direction, and in particular to focus expansion effects.
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154 A. Mantovi

Recall, an expansion path is a curve in consumption space obtained by fixing prices
and letting expenditure range over (0,∞). In other words, if one considersMarshallian
demand at fixed prices, one obtains the optimal consumption path as expenditure
varies. In fact, the usefulness has been established of consideringMarshallian demand
as a function of normalized prices (prices to income; Cornes 1992), due to the 0-
homogeneity of the budget constraint Pq = M, which can be written pq = 1 in terms
of normalized prices. From a duality standpoint such a choice is somewhat natural,
since Marshallian demand is then defined between spaces of the same dimension, a
property upon which we will soon capitalize.

Write A for the space Rn++ of positive normalized prices. Rays in A generate
expansion effects, in that along any such ray prices scale equivalently with income. As
one approaches the origin of A, one obtains the infinite income limit; on the opposite,
as one moves away from the origin of A, one approaches the small income limit; such
a recipe reflects the well established duality connection between the origin of primal
space and infinity in dual space, and viceversa. Thus, Marshallian demand maps rays
in A onto expansion paths on B so that expanding (contracting) prices are made to
correspond with contracting (expanding) consumption bundles. We are in a position
to deepen the introduction of the expansion vector field set forth by Mantovi (2013),
which is primarily aimed at deepening the geometric representation of homothetic
models.

To begin with, evidently, let us follow Tyson (2013) in assuming smooth prefer-
ences, and in fact consider

Assumption 1 Let preferences be smooth, strongly monotone and strictly-convex.

Such a standard assumption (compare Cornes 1992, section 2.1, or Blackorby et al.
1978, conditions R-1, R-1’) guarantees the existence and uniqueness of the solution of
consumption problems so that Marshallian demand q(p) results in a diffeomeorphism
A → B (i.e. a bijection of a definite differentiable class), and expansion paths do fill
consumption space, and therefore, once properly parametrized, define a flow on B.
Such a flow can be naturally defined as follows. Consider the scaling vector field

� =
n∑

k=1

� j
∂

∂p j
=

n∑

k=1

p j
∂

∂p j
(8)

on the dual space A, i.e. the generator of homotheties (scale transformations) on the
space of normalized prices; one thereby defines the dynamical system on A with
trajectories p j (t) = p j (0)et . Then, with respect to the Marshallian demand q(p),
define the expansion vector field X on B as the push-forward (Abraham and Marsden
1987) of the vector field � on A. Notice that, by Assumption 1, Marshallian demand
q(p) maps bijectively curves on A onto curves on B: thus, each vector tangent at p
to a curve on A is uniquely mapped onto a vector tangent at q(p) to the image curve
on B. Evidently, the expansion vector field thus defined is independent of the utility
representation of preferences.

Such a differential geometric approach to expansion paths seems to have been con-
ceived byMantovi (2013) for the first time; perhaps the closest correspondent is given
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Smooth preferences, symmetries and expansion vector fields 155

by the use of (Smale 1982) of tangent vectors to expansion paths in a direct sum
decomposition of tangent spaces to choice space. Definitely, our geometric construc-
tion is the natural translation of the standard definition of expansion effects into the
language of vector fields. Evidently, the economic justification for such an approach
is to be found in the insights thereby obtained; true, underlying such a differential
geometric construction is an attempt to sharpen the geometric insights embodied by
duality theory (long praised by Cornes 1992), in first instance, the fact thatMarshallian
demand maps rays in the (dual) space of normalized prices onto expansion paths on
the (primal) space of consumption bundles.

Evidently, the linearization of Marshallian demand in the neighborhood of a point
is the standard recipe for obtaining the components Xk of X, which are given by the
matrix multiplication

∑n
l=1 −J kl�l , being

J =
⎛

⎜⎝

∂q1

∂p1
. . .

∂q1

∂pn
. . .

∂qn

∂p1
. . .

∂qn

∂pn

⎞

⎟⎠ (9)

the familiar jacobian matrix representation of the tangent component of Marshallian
demand q(p). We thereby obtain a manageable approach to the properties of the push-
forward, in terms of standard calculus, which we exploit as follows.

In first instance, it is not difficult to convince oneself that for all homothetic
models one has X = Z (see Mantovi 2013): in fact, by the scale symmetry of
homothetic preferences, Marshallian demand, as a function of normalized prices
p, is homogeneous of degree—1, i.e. q(λp) = q(p)/λ for any positive λ, so that

Xk = − ∂qk (λp)
∂λ

|λ=1 = qk(p). Such a result goes beyond the well known fact that
expansion paths are rays for any homothetic model. The expansion vector field Z
fixes the speed at which consumption increases with expenditure: it turns out that
such a speed is the same for all homothetic models once a scaling parametrization of
expenditure is employed.

Then, we can exploit the analytical tractability of the following classical example,
in order to appreciate the naturality of the introduction of the expansion vector field.
Consider the quasilinear preferences represented by the additive direct utility function

U (x, y) = ln x + y (10)

on consumption space (0,∞)×(0,∞), which do satisfyAssumption 1 (and have been
employed by Silberberg (1972) in his celebrated analysis of consumer’s surpluses).
The functional form (10) displays a continuous symmetry, namely, translation along
y: as represented in Fig. 1, indifference curves can be obtained from one another by
vertical translation; such a simple symmetry fixes a transparent setting for discussing
the link with expansion effects.
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156 A. Mantovi

Fig. 1 Sample indifference curves (blue curves) and expansion paths (red lines) for preferences (10) (color
figure online)

Optimal consumption is uniquely determined by the FOC

1

xZ(U )
= px

1

Z(U )
= py (11)

with Z(U ) = 1 + y playing the role of “marginal utility of money” as a function on
B (see next section). The resulting Cartesian equation x = py

px
for expansion paths

represents straight lines parallel to the y axis, along which the MRS is constant.
Therefore, we expect the expansion vector field to be of the form f (x, y) ∂

∂y , and

thus parallel to the symmetry vector field ∂
∂y for the preferences (10): being x(s) =

x(0); y(s) = y(0) + s the integral curves of ∂
∂y for any initial condition and s ∈

(−y(0),∞), indifference curves are mapped onto indifference curves by the flow of
∂
∂y .

In fact, following the lines previously discussed, one can compute the expansion
vector field by employing the Marshallian demand

x(px , py) = py
px

, y(px , py) = 1

py
− 1 (12)
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Smooth preferences, symmetries and expansion vector fields 157

and its inverse

px = 1

x(1 + y)
, py = 1

1 + y
(13)

(the general structure of Marshallian demand for additive preferences is of course
well known, see for instance Pollak 1972) in order to compute the jacobian matrix (9),
which results in

(− py
p2x

1
px

0 − 1
p2y

)
(14)

One thereby obtains, employing (13), the explicit expression

X(x, y) = (1 + y)
∂

∂y
(15)

of the expansion vector field for preferences (10). The integral curves of (15) can be
written

x(s) = x(0)
y(s) = y(0)es − 1

(16)

for any initial condition x(0), y(0), with s ∈ (–ln y(0),∞). Thus, the flowofXdoes not
map indifference curves onto indifference curves, and therefore X is not a symmetry
vector field. Still, one can normalize X by means of Z(U ) = 1 + y and define the
vector field Y ≡ 1

1+yX = ∂
∂y , which thus results in the generator of y-translations.

Notice that X(U ) = Z(U ), a result whose generality is the subject of the following
section.

As we learned in the previous section, by the additive separability of (10) we should
expect the vector field 1

(ln x)′
∂
∂x = x ∂

∂x to be a symmetry vector field aswell. In fact, it is
not difficult to convince oneself that the integral curves x(t) = x(0)et , y(t) = y(0) of
such a vector field map indifference surfaces onto indifference surfaces. Such a result
is less intuitive than the symmetry related to vertical translation, and thus is worth
consideration; perhaps even less intuitive is the result that any linear combination of
∂
∂y and x ∂

∂x results in a symmetry vector field.
Evidently, an elementary instance of separability is embodied by the previous prob-

lem: being Marshallian demand for good y independent of the price of good x , the
budgeting problem can be considered as concerned first with the choice of howmuch y
to consume, and only in a second round with the allocation of the remaining budget to
good x . The superposition of expansion paths with the integral curves of the symmetry
vector field ∂

∂y provides an insightful analytical representation of such an elementary
instance of separability, which seems to witness the soundness of our approach.
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158 A. Mantovi

4 Expansion and symmetry

The previous example has shown that, in some cases, our expansion vector fieldmay be
normalized so as to obtain a symmetry vector field; onemay argue about the generality
of such an occurrence. It is in fact the aim of this section to show that a definite normal-
ization scheme for the expansion vector field results in the “fundamental” symmetry
vector field. The basic ingredient of the following arguments is given by

Lemma 1 For any utility representation U of preferences which satisfy Assumption
1, X(U ) = Z(U ).

Proof Consider the Hotelling-Wold identities

p j (q)

n∑

k=1

qk
∂U

∂qk
(q) = ∂U

∂q j
(q) (17)

(Cornes 1992) for the inverse Marshallian demand functions p j (q). Such identities
can be considered as the component representation of the identity

dU = Z(U )p (18)

between a pair of 1-forms on consumption space B. The 1-form dU on the LHS is
the differential (gradient) of the utility function U , which Tyson (2013) writes ∇U .
The 1-form on the RHS is the product of the function Z(U ) and the 1-form p whose
components are the inverse Marshallian demand functions p j (q)6. It follows that

dU (X) ≡ X(U ) = Z(U )pX (19)

Thus, the pairing pX equals the ratio betweenX(U ) andZ(U ). Then, since the identity

1 =
n∑

k=1

pk X
k (20)

holds for themarginal propensities to consume (Cornes 1992, p. 47),weobtainX(U ) =
Z(U ). ��

Such a lemma paves the way to the proof of our fundamental result.

Proposition 4 Given the utility representation U of preferences, and the associated
expansion vector field X, the vector field

Y ≡ 1

Z(U )
X (21)

is a symmetry vector field.

6 An element of the dual space A can be considered a 1-form on the primal space B; see Appendix 2.
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Proof Being X(U ) = Z(U ), one has Y(U ) = 1 identically on B. Let q and r lie on
the same indifference surface, and consider the integral curves qt , rs of Y emanating
from such points. SinceY(U ) =1, such curves sweep indifference surfaces at the same
speed; therefore, for any positive t , qt and rt lie on the same indifference surface, that
is, the flow of Y maps indifference surfaces onto indifference surfaces. Y is therefore
a symmetry vector field. ��
The simplicity of the above proof seems to witness the soundness of our approach
to the connection between expansion effects and symmetries. In first instance, let us
consider the case of homothetic models, which fix the benchmark perspective on our
result. Following Mantovi (2013), we can unite all homothetic models into a single
benchmark case for Proposition 4, in that for any homothetic model one has X = Z.
Then, whatever the representation of utility (whether 1-homogeneous or not), one has
Y ≡ 1

Z(U )
Z, such thatY(U ) =1, as a symmetry vector field (recall Proposition 1). The

benchmark relevance of homothetic models emerges once again: for such models,
the expansion vector field is already a symmetry vector field, and, as expected, our
procedure (Proposition 4) yields another symmetry vector field.

Thus, the expansion vector field yields a symmetry vector field via the “normaliza-
tion” Z(U ), that can be interpreted as the “marginal utility of money” (Afriat 1987; or
“marginal utility of wealth”, Mas-Colell et al. 1995) once we work with normalized
prices pk , with respect to which Hotelling-Wald (HW) identities can be written as
(17). The standard definition of marginal utility of money as the multiplier λ is rep-
resented by Z(U ) = λM(being M the expenditure). Z(U ) is evidently representation
dependent: for Ũ = φ(U ) one has Z(Ũ ) = φ′Z(U ), and the HW identity is satisfied
for Ũ as well. The solution to the constrained optimization problem fixes a value of
the multiplier, which is typically considered a function of prices and expenditure; by
Proposition 4, we can consider it as the functionZ(U ) onB. Recall, themarginal utility
ofmoneyhas long been recognized as a ‘pivotal’ element for demand systems; consider
for instance the assumption of a constant or “quasi constant” marginal utility of money
(Georgescu Roegen 1968), or the role of the expression Z(U ) = ∑n

k=1 q
k ∂U

∂qk
in the

characterization of additive preferences as a special case of generalized separability
(Pollak 1972, in particular formula 3C.8 and subsequent considerations). Perhaps our
perspective on the marginal utility of money may provide some ‘unifying’ insights on
its multifaceted relevance.

As a methodological consideration, notice that, much like Marshallian demand, the
expansion vector field is independent of the utility representation, whereas Z(U ) does
depend on the representation, and therefore our expansion-symmetry vector field (21)
as well. In fact, we can easily establish

Proposition 5 Whatever the utility representation, (21) is a (representation depen-
dent) symmetry vector field.

Proof Straightforward consequence of Proposition 1. ��
Thus,we have succeeded in fixing the basic properties of the fundamental symmetry

vector fields, namely, the ones whose flow superpose to expansion paths, and whose
‘velocity’, so to say, represents the utility parametrization of the preference relation.
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Our results imply that a symmetry vector field exists under standard assumptions (Sect.
3); then, being the set of symmetry vector fieds a convex cone (Tyson 2013, Propostion
2.12), if another symmetry vector exists, our expansion-symmetry vector field can be
employed in order to generate one more symmetry vector field.

5 Symmetry and distance

In the previous sectionswe have succeeded in deepening the notion of symmetry vector
field, and providing an explicit construction of the fundamental symmetry vector field.
It is the aim of this section to set forth a further characterization of symmetry vector
fields in terms of a radial perspective on preferences.

It has been long established that the distance function D(q, u) provides a complete
primal representation of preferences (Deaton 1979, and references therein). Thus, in
principle, it should be possible to characterize the symmetries of preferences in terms
of D. It is in fact the aim of this section to devise such a characterization, and argue that
it can be considered an insightful complement to the one set forth by (Tyson 2013,
theorem 2.10). We shall thereby shed further light on the nature of our expansion-
symmetry vector field, and more generally on the ‘response’ of D to symmetry vector
fields.

The distance function D(q, u) measures the radial contraction which drags the
bundle q onto the u-indifference surface, i.e.

U

(
q

D(q, u)

)
= u (22)

If q is strictly (not) preferred to the bundles on the u-indifference surface, then D is
larger (smaller) than 1. Thus, the distance function gauges the radial structure of a
preference relation; it is homogeneous of degree 1 in q, and therefore satisfies Euler’s
formula Z(D) = D. Still, “the distance function is completely ordinal; it is defined
with reference to an indifference surface, and not with respect to any cardinalization
of preferences” (Deaton 1979). Shephard’s theorem

D(q, u) = Z(D(q, u)) =
n∑

j=1

q j ∂D

∂q j
(q, u) =

n∑

j=1

q jξ j (q, u) (23)

(Blackorby et al. 1978, and references therein) enlightens the significance of theEuler’s
formula: the components ∂D

∂q j (q, u) of the q-differential of D represent the inverse
conditional demand functions ξ j (q, u), i.e. the marginal willingness to pay for each
good j as a function of utility and quantity supplied (Deaton 1979); as such, the
ξ j (q, u) are homogeneous of degree 0 in q, consistently with the structure of formula
(23).

A characterization of symmetry vector fields in terms of the distance function
D amounts to the representation of the response of D to symmetry vector fields
(analogously, Tyson represents the response of MRSs to symmetry vector fields). In
order to compute such responses, notice that, by (22), the condition U (q) = u can
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be written D(q, u) = 1; let us employ such a finite condition in order to obtain a
differential correspondent, meant to characterize the action of a symmetry vector field
S on D (the response of D to S).

Start with any u0-indifference surface as “initial condition”. For any q0 belonging
to such a surface, such that D(q0, u0) = 1, one can consider the integral curve qt of
a symmetry vector field S starting at q0, such that D(qt , ut ) = 1 for any positive t . 7

A standard Taylor expansion about the initial condition q0 enables us to write

D(qε, uε) = 1 = D(q0, u0) +
n∑

j=1

(
∂D

∂q j
+ ∂D

∂u

∂U

∂q j

)
|q0εS j + o(ε) (24)

which implies

0 =
n∑

j=1

S j
(

∂D

∂q j
+ ∂D

∂u

∂U

∂q j

)
|D=1 =

n∑

j=1

S j
(

ξ j + ∂D

∂u

∂U

∂q j

)
|D=1 (25)

for any utility level. Condition (25) establishes the response of D to the action of the
symmetry vector field S: in order to preserve the condition D(qt , ut ) = 1, S must
belong to the kernel of the 1-forms

(
dD + ∂D

∂u dU
) |D=1 on consumption space. Such

a characterization does not seem to represent a ‘substitute’ for the one set forth by
Tyson (2013), which focuses the action of a symmetry vector field on MRSs; rather,
it may be considered a ‘complement’, in that it focuses the action of the symme-
try vector field on the radial structure of the preference relation, as represented by
D. Evidently, the analytical structure of condition (25) is independent of the utility
representation.

Condition (25) can be specialized to our expansion symmetry vector field Y, such
that Y(U ) = 1, as

n∑

j=1

Y jξ j |D=1 = −∂D

∂u
|D=1 (26)

which can be written dD(Y)|D=1 = Y(D)|D=1 = − ∂D
∂u |D=1. In fact, (26) holds for

any vector field W such that W(U ) = 1.
Let us check the soundness of our characterization of symmetry vector fields in

terms of the examples discussed in the previous sections. First, consider the bench-
mark case of homothetic models, in which D is well known to admit a factorized
representation (Cornes 1992): given any utility representation U which is homoge-
neous of degree 1, one has D(q, u) = U (q)

u , and then ∂D
∂u = − D

u . Thus, with X = Z,
Z(D) = D and Z(U ) = U , one has Y(D)|D=1 = Z(D)

Z(U )
|D=1 = D

u |D=1 = − ∂D
∂u |D=1

7 Evidently, the condition D(qt ,U (qt )) = 1 holds identically along any integral curve of any vector field
on consumption space, but it is only for symmetry vector fields, which map indifference surfaces onto
indifference surfaces, that the pathU (qt ) ≡ ut is the same for all integral curves originating from the initial
indifference surface.

123



162 A. Mantovi

Fig. 2 Plot of the function ϕ(z) = zez (convex curve), and its inverse (concave curve)

for any homothetic model. Furthermore, concerning the specific homothetic models
discussed in Sect. 2, recall that the n vector fields S j = q j ∂

∂q j are symmetry vector
fieds for CD preferences; one can easily check (25) in such respects.

As a second example, consider the distance function associated with preferences
(10), which display a symmetry with respect to y-translations. One can thus expect
the variable y to set a preferred analytical standpoint for representing D. In fact, one
can devise an explicit representation of D for the preference relation (10) by writing
condition (22) as

x

y

y

D(x, y; u)
exp

y

D(x, y; u)
= exp u (27)

so that, in terms of the function ϕ(z) = zez(as a holomorphic bijection of the positive
real axis; Fig. 2), one can write

x

y
ϕ

(
y

D(x, y; u)

)
= eu (28)

We thereby factorize the 0-homogeneous term x
y , and let the variable y, a 1-

homogeneous term, gauge the structure of the distance function in terms of the function
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ϕ. Write ψ for its inverse, and obtain8

D(x, y; u) = y

ψ
(
eu y

x

) (29)

As expected, (29) is homogeneous of degree 1 in (x, y), it is decreasing in u, and attains
unit value for xey = eu , which is equivalent to (10), sinceψ(yey) ≡ y (notice though,
that the function ψ

(
eu y

x

)
is homogeneous of degree 0 in (x, y)). We are thereby in a

position to check our characterizations (25) and (26) in terms of the distance function
(29) for the symmetry vector fields of the preferences under consideration.

Consider first the symmetry vector field ∂
∂y . Differentiation of (29) with respect to

y, in conjuction with xey = eu and ψ ′(yey) = 1
ϕ′(y) , results in

∂D

∂y
|D=1 = D

y
|D=1 − D

ψ
|D=1ψ

′(yey)e
u

x
= 1

y
− 1

y
ψ ′(yey)e

u

x
= 1

1 + y
(30)

which does indeed coincide with

− ∂D

∂u
|D=1 = D

ψ
|D=1ψ

′(yey) ye
u

x
= 1

y
ψ ′(yey) ye

u

x
= 1

1 + y
(31)

Notice that the expression 1
1+y is not homogeneous of degree 0 in (x, y), whereas the

inverse conditional demand function ξy = ∂D
∂y = 1

ψ
− y

ψ2
∂ψ
∂y is indeed homogeneous

of degree 0, on account of the homogeneity of degree 0 of ψ
(
eu y

x

)
. Then, for the

continuous symmetry generated by ∂
∂y , our recipe enables us to recover the intuitive

relation ∂D
∂y |D=1 = − ∂D

∂u |D=1, that one may have conjectured simply by looking at
Fig. 1 (another clue of the soundness of our framework).

Along similar lines, one can check (25) with respect to the symmetry vector field
x ∂

∂x , such that x ∂U
∂x = 1, thereby reducing again to condition (26); one then obtains

the (perhaps not that intuitive) relation x ∂D
∂x |D=1 = − ∂D

∂u |D=1. In addition, recall from
Proposition 2 that the symmetry vector fields ∂

∂y and x
∂
∂x do commute (have vanishing

Lie bracket), with the implications discussed in Sect. 2.
To sum up, for the simple additive model (10), we have established the response of

the distance function to a “complete set” of commuting symmetry vector fields (one
for each dimension, as established in Sect. 2). On account of Tyson (2013) Proposition
3.3, such a “complete response” pattern can be obtained for any additive preference
relation, i.e. one can find n independent symmetry vector fields S1, …, Sn such that

S1(D)

S1(U )
|D=1 = · · · = Sn(D)

Sn(U )
|D=1 = −∂D

∂u
|D=1 (32)

and it is natural to conjecture that such “complete set” of conditions uniquely deter-
mines the distance function D. One thereby envisions a general scheme for the

8 To the author’s knowledge, this is an original result.
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representation of multivariate separability, and fixes a sharp connection between addi-
tivity and the differential properties of the distance function, which the extant literature
does not seem to encompass.

The mainstream approach to the analysis of separability properties is the func-
tional representation problem (Blackorby et al. 1978), whose aim is to fix separability
concepts in terms of precise functional forms of the objective—utility, cost, distance
(transformation)—function. Such functional representations for the distance function
do not seem to play a key role; a major result is the functional representation of
homothetic separability via the distance function as given by (Blackorby et al. 1978,
Theorems 4.4, 4.12). In such respects, the “differential representation” approach devel-
oped in this section seems to open a promising route to the analysis of separability: to
the extent that a separability notion can be connected with the action of symmetry vec-
tor fields, a distance function representation may provide a pregnant line of analysis.
Noticeably, the benchmark relevance of homothetic models provides us with a pow-
erful weapon, namely, the symmetry vector field (1), which enables us to strengthen
the analytical grip on the radial structure of preferences.

6 Conclusions

As Gorman (1976) put it, “separability has to do with the ‘natural structure’ of the
problem”definedby anordinal utility function.Noticeably, as discussed in the previous
sections, it turns out that the symmetry properties of preferences as well have to do
with the structure of the problem, in first instance, Marshallian demand: we have in
fact succeeded in fixing a normalization of the expansion vector field which results in
the fundamental expansion-symmetry vector field, along whose flow marginal rates
of substitution are preserved. Such a result adds a pregnant element to the relevance
of introducing an expansion vector field, and sheds new light on the nature of the
marginal utility of money as a function on consumption space, as discussed in Sect. 4.

Furthermore,we have succeeded in complementingTyson’s (2013) characterization
of symmetry vector fields in terms of their action on the radial structure of preferences,
as embodied by the distance function. The examples discussed in Sect. 5 enlighten the
soundness of such a characterization, in terms of the sharp insights represented by the
responses of the distance function to infinitesimal symmetry transformations; we have
envisioned a complete pattern of responses of a distance function representing additive
preferences, whichmay add an insightful approach to the long established relevance of
such preferences (Houthakker 1960); one can further recall the application of additive
preferences to the normative analysis of welfare policies in a context of longevity
variations (Pestieau and Ponthière 2015).

In the author’s view, a relevant line of progress for the previous arguments is rep-
resented by the interpretation of condition (4) in terms of expansion and substitution
effects. Our expansion-symmetry vector field satisfies such a condition with vanishing
RHS, thereby signaling that the RHS is connected with the generation of substitution
effects by the flow of a symmetry vector field. One may conceive of (4) as a superpo-
sition of expansion and substitution effects, and thereby possibly deepen the relevance
of the connection we have been establishing between the symmetries of preferences
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and the constrained optimization problem of the consumer (for which expansion paths
embody the solution).

Furthermore, by the well known isomorphism between the microeconomic theories
of consumers and producers, our analysis can be applied as well to production prob-
lems. Tyson’s definition of symmetry vector fields in terms of MRSs can be translated
directly, as well as our characterization in terms of the distance function. In a pro-
duction context, the flow of a symmetry vector field maps isoquants onto isoquants,
and results analogous to the previous ones follow for the connection between sym-
metry and separability. Recall that separability has been long established as a major
instance of production analysis, and in fact the functional representation of the prop-
erties of production technologies is a key element of the theory of production (see
for instance Blackorby et al. 1978; Fuss et al. 1978; Chambers 1988). Furthermore,
for production functions such that expansion paths do fill smoothly input space, the
expansion vector field can be defined along the same lines followed in Sect. 3; true,
the cardinal nature of a production function, as distinct from the ordinal nature of a
utility function, entails a somewhat different perspective on the expansion-symmetry
vector field.

To conclude, let us point out that a challenging line of application of preference
symmetries is discussed by Kimball and Shapiro (2008). The Authors address the
properties of utility functions meant to represent the choice between consumption and
leisure, and argue about the relevance of postulating scale symmetry in consumption,
in order to discuss the well established empirical regularity that “large, permanent
differences in the real wage induce at most modest differences in the labor supplied
by a household.” The present approach to symmetries may provide useful handles in
such respects.
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Appendix 1

The present appendix is meant to sketch an essential introduction to vector fields and
dynamical systems. We refer to Abraham and Marsden (1987), Spivak (1999) and
Taylor (1996) for authoritative references; see also Mantovi (2013).

One can define tangent vectors as a generalization of directional derivatives. Let
γ : (–1, 1) → Rn be a C1 curve in Rn , and let f : Rn → R be a C1 function.

Define the (Lie) derivative of f at p = γ (0) as
∑n

k=1
∂γ k

∂t |t=0
∂ f
∂xk

|p. Such a derivative,
evidently, is linear and satisfies Leibniz rule; call it a tangent vector at p; call ∂γ k

∂t |t=0
the components of the vector with respect to the natural coordinates ofRn . A tangent
vector at p is identified by an equivalence class of curves tangent at p (Abraham and
Marsden 1987, p. 43). Evidently, any linear combination of tangent vectors is again a
tangent vector, and one is in a position to define a tangent space at each point of Rn .
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A vector field on (an open subset of) Rn is a function which assigns a tangent vector
to each point of the space.

On account of the previous considerations, the (local) coordinate representation of

a vector field A reads A =
n∑

k=1
Ak(x) ∂

∂xk
, being x1, …, xn (local) coordinates, Ak

the components of A with respect to such coordinates, and ∂
∂xk

the coordinate vector
fields in that chart, which define a basis of the tangent spaces at each point. Then, the
action of the vector fieldA on the function f , which measures the variation of f along
the flow of A, can be written A( f ) = ∑n

k=1 A
k ∂ f

∂xk
. Correspondingly, the coordinate

representation of a 1-formw readsw = ∑n
k=1 wk(x)dxk , so that the pairing between a

1-form and a vector field can bewrittenw(A) ≡ wA = ∑n
k=1 wk(x)Ak(x). Evidently,

the differential of the function f is the 1-form d f = ∑n
k=1

∂ f
∂xk

(x)dxk , so that one
can write A( f ) = d f (A).

The Lie derivative of the vector fieldBwith respect to the vector fieldA is the vector
field LAB which represents, so to say, the derivative of B along the flow of A. Spivak
(1999) provides a rigorous account of such a mechanism, as well as the proof that
the action of LAB on functions f results in the commutator A(B( f )) − B(A( f )) =
LAB( f ). In words, the first term on the LHS is obtained by applying B to a function f
and then applying A to the function B( f ); the second term is obtained by commuting
such operations. Call Lie bracket the mapping (A,B) → LAB, which is, evidently,
bilinear and skew-symmetric. (Spivak 1999, chapter 5) derives the algorithm (formula
7) yielding the components of LAB given the components of A and B.

The conceptual relevance of the Lie bracket has been long established: the Lie
bracket represents the geometric (synthetic) definitionof the analytical ‘nucleus’which
rules the integrability problem, as tailored by Frobenius theorem (Taylor 1996; Spivak
1999). For our purposes, it is enough to appreciate the condition LAB as guaranteeing
that the flows of the vector fieldsA and B do commute: given any initial point, one can
follow the flow of A for a parameter value a and then the flow of B for a parameter
value b and then reverse the order of such operations and find himself at the same
final point (see Spivak 1999, p. 159). Mantovi (2013), Appendix 2 provides a pair of
simple examples for such a pattern; one can easily check that coordinate vector fields
have vanishing Lie brackets, consistently with the commutation of partial derivatives

∂2 f
∂x j ∂xk

= ∂2 f
∂xk∂x j established by awell known theorem (typically named after Schwarz)

of elementary calculus.
The vector field A = ∑n

k=1 A
k(x) ∂

∂xk
is equivalent to definition of the first order

ordinary differential equation (ODE) system ẋ k = Ak(x), k = 1, . . . n; the integral
curves of the vector field are the solutions to the system. Thus, a vector field on some
space defines a dynamical system in continuous time.

The theory of dynamical systems has long been recognized as a preferred terrain for
the cross fertilization of different scientific disciplines. One can think for instance to
the physical insights which led Henry Poincaré to envision the geometric approach to
dynamical systems, in which it is the properties of flows which drive the development
of the theory, and not the analytical form of the differential equations (see the Intro-
duction in Abraham and Marsden 1987). Along such a line of progress, coordinate
transformations have become a pivotal element in the study of dynamical systems, for
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instance in connection with symmetry properties and canonical dynamics. The cele-
brated address to the 1954 International Congress of Mathematicians set forth by A.N.
Kolmogorov (“The General Theory of Dynamical Systems and Classical Mechanics”)
is a classical reference for the cross fertilizing effects concerning “the complex ques-
tion of integrating the systems of differential equations of classical mechanics […]
interwoven with problems of the calculus of variations, many dimensional differential
geometry, the theory of analytic functions, and the theory of continuous groups.”

Noticeably, the development of evolutionary game theory in the last fewdecades can
be considered as one more instance of such historical cross fertilization process: the
replicator dynamics (Weibull 1995), meant to embody the selection of fitter strategies,
is represented naturally in terms of first order ODEs (vector fields) on the space of
strategy profiles. Perhaps the most significant economic application of vector fields
pertains to the analysis of phase diagrams of growth models (see for instance Barro
and Sala-i-Martin 2004).

Our introduction of the expansion vector fields on primal space, meant to represent
the class of expansion paths as a flow, aims at capitalizing on the aforementioned
cross fertilization potentialities associated with the adoption of vector fields. In fact,
the introduction of symmetry vector fields by Tyson (2013) represents a clear example
of such general pattern: symmetry vector fields on choice space turn out to provide
quite effective a setting for deepening the analysis of separability. Vector fields on
consumption space can in principle be employed in order to model any family of
smooth curves which fill the space, and which embody significant economic effects
(expansion effects, scale effects, etc). Evidently, limits to such approaches can be
placed in terms of ‘cost-benefit’ analysis of the analytical description, as gauged by
the balance between, on the one hand, the effectiveness of the formalism in establishing
sharp conclusions, and on the other hand, the cost of enlarging the analytical toolkit
of theoretical microeconomics. True, in the author’s view, employing vector fields in
the microeconomics of consumption does not mean enlarging the toolkit, but simply
acknowledging that the tangent vectors to such paths may be employed effectively to
gauge economic effects.

Appendix 2

The n-dimensional consumption space B =Rn++ = (0,∞) × · · · × (0,∞)(n copies)
admits the dual space A of normalized price vectors p, with respect to which the
budget constraint can be written pq =1. Despite the fact that B is not a linear space,
elements of A are dual to elements of B in the standard algebraic sense, they are linear
functionals on B, namely, such that

p(aq1 + bq2) = apq1 + bpq2

(provided, evidently, aq1 + bq2 belongs to B).
Then, let us recall the following well known result (see for instance Spivak 1999,

chapter 3). A basis of a finite dimensional real linear space uniquely determines global
coordinates on such space, i.e. the components of vectors with respect to such a basis.
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Then the linear space can be endowed with the structure of real smooth differentiable
manifold, and the global chart sets natural isomorphisms between the manifold and
each of its tangent spaces. A sketch of the proof goes as follows.

Given any q∈B, the bundles q+t v belong to B for any v∈ B, for small enough
| t |. Then, the vector V∈ Tq B tangent to such line at q is uniquely determined
by v∈ B, and such a mapping is evidently linear and injective. Therefore, the class of
isomorphisms B → Tq B is uniquely determined for any q ∈ B.

Such a technical result does play a role in our geometric analysis. Tangent vectors
toB represent the rate at which economic effects takes place, for instance an expansion
effect. A 1-form on B is a linear functional on such vectors: by the previous result,
we can consider an element of A (a vector of normalized prices) as a 1-form on B.
Given such an interpretation of normalized price vectors as 1-forms, one can consider
the Hotelling-Wold identity as defining a “normalization” of the differential dU (a
1-form) of the utility function U , which results in the inverse Marshallian demand (a
1-form), the normalization being performed by the function Z(U ). Such geometric
insights enable us to deepen the significance of our expansion-symmetry vector field.
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