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Abstract In this paperwe analyze the effects of restricted participation in a two-period
general equilibrium model with incomplete financial markets and two key elements:
the competitive trading of real assets, i.e., assets having payouts in terms of vectors
of commodities, and household-specific inequality constraints that restrict participa-
tion in the financial markets. Similar to certain arrangements in the market for bank
loans, household borrowing is restricted by a household-specific wealth dependent
upper bound on credit lines in all states of uncertainty in the second period. We first
establish that, generically in the set of the economies, equilibria exist and are finite
and regular. We then show that equilibria are generically suboptimal. Finally, we pro-
vide a robust example demonstrating that the equilibrium allocations can be Pareto
improved through a tightening of the participation constraints. This suggests, contrary
to what is often cited as economic wisdom in the popular press, that in a setting with
frictions resulting in an inefficient allocation the regulation of markets may have a
Pareto-improving effect on the economy.
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1 Introduction

In this paper we analyze a two-period general equilibrium model with incom-
plete financial markets and two key elements: (1) the competitive trading of real
assets, where real assets have payouts in terms of vectors of commodities, and (2)
household-specific inequality constraints that restrict participation in the financial
markets.

A formal introduction of time and uncertainty in a general equilibrium model dates
back to Chapter 7 of “Theory of Value” by Debreu (1959). There, it is observed that
enlarging the concept of commodity in order to include not only its physical and
chemical characteristics, but also its location in space, time and state of the world, it
is possible to show that existence and Pareto optimality of equilibria still hold true. In
other words, those standard general equilibrium results can be obtained assuming the
presence of markets in which all commodities, in the loose sense defined by Debreu,
can be exchanged.

Arrow (1964)’s contribution is to observe that, while it is hard to believe that
assumption is satisfied, it can probably be assumed that there exist sufficiently diversi-
fied and numerous available assets which are able to behave as well as those plethora
of markets: indeed, equilibrium allocations in a market a la Debreu are the same as
equilibria with commodity markets opening only inside each state of the world and
enough available assets. On the other hand, it can also be claimed that in a quite uncer-
tain world, available assets are not enough to insure against each possible future event:
financial markets and, therefore, commodity a la Debreu markets, may be incomplete.
That observation led to an important literature which focuses on the validity, in that
more general and realistic environment, of the three main results in general equilib-
rium theory: existence, Pareto optimality and generic regularity of equilibria. While
the first result is a sort of consistency check of the model and the second one is one
of the main goal of economic analysis, the importance of the third, apparently only
technical, result lies in the fact that it is the preliminary, indispensable tool for the
analysis of existence of second best equilibria and of the chance of success of eco-
nomic policies—see for example Chapter 15 in Villanacci et al. (2002). Indeed, the
validity of the three above results was analyzed in the incomplete market framework
with respect to some abstract types of assets, usually denoted in the literature as nom-
inal, numeraire and real assets. Nominal assets promise to deliver units of account;
real assets a bundle of goods; and numeraire assets just some amount of a given good,
the so called numeraire good.

Each of the three main results of the general equilibrium model fails to hold true in
one or more of the above defined types of incomplete market frameworks, as roughly
summarized in the following table
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Incomplete financial markets 3

Existence Generic local uniqueness Pareto optimality
Numeraire assets Yes Yes* No*
Nominal assets Yes No* No*
Real assets Yes* Yes* No*

(1)

where “Yes” means “it is always insured”, “Yes*” means “it is generically,1 but not
always insured” , and “No*” means “it is generically not insured”.2

Two important constructive criticisms to the model of incomplete markets, con-
cerning the absence of restricted participation and of default possibilities, led to more
general and realistic models [see for instance Seghir and Torres-Martinez (2011) and
Geanakoplos and Zame (2014)].

“While there might be some disagreement over whether, in a modern developed
economy, financial markets are actually incomplete, there can hardly be any disagree-
ment over whether at least some economic agents are variously constrained in transact-
ing on those financial markets” (Cass 1992). In other words, financial markets may be
complete, but households surely face a personalized and restricted access to financial
markets.

The literature on possibility of default removes the assumption that agents always
honor their financial obligations. This literature has a basic link with the literature
on restricted participation. It is indeed usually assumed that some commodity and/or
financial collateral is required to partially counteract the damages of default. The corre-
sponding conditions to be added to the standard model with incomplete markets make
the model of default (and collateral) as a particular model of restricted participation
with real assets. While existence and (lack of) Pareto optimality have been proved in
such contexts, the existing literature has little to say about generic regularity in those
models. The general goal of our paper is to study that problem.

Indeed, apart from the seminal paper by Radner (1972), “ universal” 3 existence
proofs can be found in Geanakoplos and Zame (2014) in the case of collateral con-
straints, as well as in Seghir and Torres-Martinez (2011) and in Gori et al. (2013) in the
case of financial constraints depending on some endogenous variables. The main lim-
itation of those results is that the analytical methods used there seem unable to verify
other equilibrium properties. By contrast, the technique we use to guarantee generic
regularity also verifies the generic existence4 of an equilibrium, the generic (Pareto)
suboptimality of the equilibrium allocations, and ensures that numerical methods [see
Kubler (2007), for example] can be used to compute equilibria.

To the best of our knowledge, the only model of restricted participation with real
assets in which generic regularity is proven is the one by Polemarchakis and Siconolfi

1 “Generically” means in an open and full measure subset of the finite dimensional economy space.
2 Table 1 and the comments above are taken from Villanacci et al. (2002), the reader is referred to for
further discussion.
3 By universal existence of equilibria, we mean existence for any element in the economy space. As already
recalled, existence or regularity is generic if it holds in a large (to be appropriately defined) subset of that
space.
4 Consistently with the above quoted papers, we do conjecture that equilibria exist for every economy.
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4 M. Hoelle et al.

(1997). Yet, in that paper, the restriction sets for the asset choices are difficult to
interpret. Specifically, eachhousehold is exogenously associatedwith a linear subspace
of the possible wealth transfers. Its restriction set is then described by the orthogonal
projection of that subspace on the (price dependent) image of the return matrix.We are
unable to provide an economic interpretation of that modeling choice and the authors
themselves provide no explanation at all.

What we offer is an analysis of economically meaningful constraints on house-
holds’ participation in financial markets and a general approach to determine which
constraints can be analyzed in a real asset setting.

The participation constraints described in our model, consistent with what occurs in
themarket for bank loans, impose an upper bound, called credit limit, on a household’s
future debt in all states of uncertainty in the final period. A credit limit is the maximum
amount that a household is allowed to borrow.5 It is an assessment of a prospective
borrower to determine the likelihood that she will default on debts. For example, it is
the most that a credit card company will allow a card holder to take out on a credit
card in a given period of time. This limit is based on the household’s credit risk, which
depends on a range of factors, such as her employment stability, level of income, level
of debt, credit history. Households with a higher expected wealth will generally be
loaned more money, that is, have a higher credit limit. In other words, there are two
components to credit worthiness. One is a borrower’s current and projected ability to
repay a loan or offer of credit. This can be determined by looking at things like income,
other debts the borrower is carrying, expenses, and future employment opportunities.
Another issue is the borrower’s inclination to repay debts, a surely more complicated
matter. Some negative signals on that inclination are repeated delinquencies on other
debts, sluggish repayment of loans, and other entries in a borrower’s credit history.
One tool lenders can use to quickly assess credit worthiness is to consult a credit rating
agency. These agencies monitor consumers and keep track of their financial activities
to generate a credit score. Such rating is often used as a device to set credit limits.
Credit limits provide some important advantages. For example, they serve to protect the
borrower from borrowing toomuchmoney, and they also protect the lender from being
over exposed to borrower’s getting too far into debt. Credit limits may however cause
some disadvantages. For example, they may severely restrict the borrowing capacity
of the borrower, reducing the value of items that they can purchase. As a result, credit
limits can also reduce the potential income received by the lender because borrowers
are limited in what they can borrow.

Our goal is to model the above economic observations in a general equilibrium
model with two periods of time and absence of default. To formalize both components
describing how credit limits are determined (credit risk and inclination to repay) we
proceed as follows. The amount each household can borrow must be such that the
household can repay what is due in all states in the final period. Additionally, each

5 Explanations on how credit limits work may be found even on web-pages for non-specialists on finan-
cial markets, such as http://www.wisegeek.com/what-is-a-credit-limit.htm, http://www.wisegeek.com/
what-is-credit-worthiness.htm, http://en.wikipedia.org/wiki/Credit_limit or http://www.creditorweb.com/
definition/credit-limit.html. We believe this can be taken as a signal of their wide diffusion in real world
markets for loans, and thus we think that their effects on the households’ wealth are worth studying.
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Incomplete financial markets 5

household is assumed not being able or willing to consume less than a given proportion
of herwealth in each state in the second period. Those requirements lead to a household
specific wealth-dependent credit limit, formalized in the borrowing constraint in (7).6

For our model, we show generic existence of equilibria and generic regularity,
the latter being an indispensable tool to both describe equilibria and to prove several
important normative properties of equilibria.

The first property we prove is that the equilibra are generically suboptimal. Addi-
tionally, we conjecture that a form of generic constrained suboptimality holds. We
are verifying this conjecture in a companion paper, in which we restrict attention
to the significant set of economies in which a sufficiently high number of participa-
tion constraints are binding. Generically in that set of economies, these equilibria are
Pareto improvable through a local change of the participation constraints. The general
strategy that is used in that framework is described in Carosi et al. (2009).

In the current paper, we describe a more direct approach to constrained suboptimal-
ity for a specific economy. Our contribution is in line with a general viewpoint dating
back to what is usually mentioned as Lipsey–Lancaster theory of second best—see
Lipsey and Lancaster (1956), according to which an increase in the level of a mar-
ket imperfection may lead to a Pareto improvement. In the framework of incomplete
markets, Hart (1975) showed that decreasing the number of available assets, and thus
increasing the incompleteness of themarkets,may increase efficiency.We rephrase and
show the Lipsey-Lancaster claim in our model of restricted participation on financial
markets. Indeed, we present a robust example in the economy space whose associ-
ated equilibria are such that using a more restrictive credit policy results in a Pareto
improvement.

Without exaggerating the importance of a robust example, we do believe that the
presented one supports two simple ideas. First of all, it shows the importance of
general equilibrium analysis, i.e., the fact that price effects are able to more than
welfare compensate a reduction of available choices. Moreover, it suggests, contrary
to what is often cited as economic wisdom in the popular press, that in a setting with
frictions resulting in an inefficient allocation, the regulation of markets may have a
Pareto-improving effect on the economy.

We think our analysis contains both technically and economically significant fea-
tures. We first discuss our technical contributions to the analysis of the problem of
generic existence and generic regularity of equilibria.

The seminal contribution for generic existence in a model with real assets is the
paper by Duffie and Shafer (1985). To prove generic existence, they first set the dimen-
sion of the return space equal to the number of available assets, define the resulting
equilibrium a “pseudo equilibrium”, and show the existence of such an equilibrium.
Finally, they prove that these pseudo equilibria are true equilibria for a generic subset

6 We stress that there is no history explicitlymodeled in our two-period framework. Indeed, in ourmodel the
parameters describing the the borrower’s inclination to repay debts are exogenously determined, implicitly
assuming that an unmodeled device like a rating agency has been able to determine the household specific
credit limits, taking into account their credit history. Moreover our model analyzes neither default nor
physical, financial collateral requirements even though we consider our paper as a first step in that direction.
Finally, we observe that our framework does not apply to other institutional environments, like secondary
security markets.
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6 M. Hoelle et al.

of household endowments and asset payouts. With the inequality constraints that we
use to model households’ restricted participation, the household demand functions are
in general not C1, and therefore the equilibrium manifold is not C1 either. This fact
prevents us from using the smooth analysis arguments in Duffie and Shafer (1985).
Rather, we employ a fixed point argument based on the approach by Dierker (1974)
for theWalrasian model and later generalized and formalized by Husseini et al. (1990)
for the incomplete markets model with real assets. To the best of our knowledge, we
provide the first application of the methodology in Husseini et al. (1990).

Duffie and Shafer (1985) use a “fixed dimension return space” approach7 with
results in terms of the kernel of a well chosen linear function. In our model, character-
izing equilibria using that approach would allow us to verify the existence of appro-
priately defined pseudo equilibria, but we are then unable to show that the pseudo
equilibria are generically true equilibria.8 To circumvent this problem, we take a dif-
ferent approach by presenting a natural characterization of equilibria in terms of the
image of an appropriately chosen linear function.

For those interested in the technical aspects of our proof,9 we preview the strategy
used to obtain the generic existence result. As previously discussed, once the definition
of equilibrium is introduced, we define a type of equilibrium in which we fix the
dimension of the return space. Then, as done in the approach followed by Duffie and
Shafer (1985), we use a Mr. 1 trick,10 i.e., we get rid of the explicit presence of the
financial side of the economy using the introduction of a specific household, Mr. 1,
who behaves as a Walrasian consumer. After showing that the latter two concepts
are equivalent, we prove that they are a “true” equilibrium if a (standard) full rank
condition of the return matrix holds true—see Proposition 9.

The technical reason to introduce two different types of auxiliary equilibria is
described by the following logic. Using the approach by Dierker (1974) in the form
of the theorem proved by Husseini et al. (1990), we are able to show the existence of
a Mr. 1 equilibrium. Yet, as mentioned above, we are then unable to complete the next
step as we are unable to verify that the projection function from the equilibrium set to
the economy space is proper. This is a required step for the genericity argument. We
can verify properness by using the equivalent concept of (normalized price) symmetric
equilibrium in Definition 6.

We now discuss the economically significant features of both our model and our
proof methodology. In terms of the type of participation constraints we employ, we
believe they are realistic and economically meaningful. They are meant to represent
the market for bank loans. Consider that legal requirements (or uncontractable social
norms) are present that guarantee households a base level of consumption expenditure.

7 This terminology is borrowed from Bich and Cornet (1997).
8 Specifically, it is not clear how to show properness of the projection from the equilibrium set to the
economy space, since it is not possible to uncouple two multipliers and prove that they converge separately.
9 In order not to overburden the present paper, we chose to report only the proofs of Theorems 13 and 14,
the two majors results of our paper. The interested reader may find the proofs of all results in the working
paper version (Hoelle et al. 2012).
10 The terminology “Mr. 1 equilibrium” was introduced in the seminal existence paper by David Cass—see
Cass (1984)—and commonly used since then.
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Incomplete financial markets 7

Thus, for all states of uncertainty, a household is only able to repay previous debts
if this leaves the household with at least this base level of consumption expenditure.
Knowing this, the financial markets only permit borrowing up the point where the
household is able to repay the loan and not be reduced to consumption expenditure
below the base level.

To show the economic relevance of the constraints, we consider a simple example of
ourmodel. For the particular economy chosen, the equilibrium allocation can be Pareto
improved by tightening the participation constraints in some states, without loosening
theparticipation constraints in anyother states, for all households.This resultmay seem
counter-intuitive, but demonstrates the importance of general equilibrium price effects
in financial markets. Thus, restricting credit access may in fact make all households
better off.

More generally, the analysis presented in the paper provides what we believe
are crucial conditions on the type of constraints for which generic regularity
can be verified, at least following what currently seems to be the only suc-
cessful approach: the fixed dimension return space approach. As will be dis-
cussed further in Sect. 2,11 both the kernel approach [that is used in Duffie and
Shafer (1985)] and the image approach (that we use here) require that the con-
straints on the financial side of the economy are rewritten in terms of constraints
on the real side, specifically in terms of the values of the excess demands in
each state. In the former approach, the financial side simply disappears from
the household maximization problems. In the latter one, we must introduce ficti-
tious asset demands and we recognize that constraints imposed on the fictitious
asset demands may not be equivalent to constraints imposed on the true asset
demands.

Future research is required to confirm this conjecture about the type of con-
straints that can be employed in models with real assets. Given this negative result,
any attempts to obtain regularity for interesting models of collateral and default
may be in vain. The reason is that any known approaches to modeling collateral
and default involve restrictions that differ from the types of restrictions that we
described above as being successful. Again, future research is required in this direc-
tion.

The rest of the paper is organized as follows. In Sect. 2, we present the set up
of the model. In Sect. 3, we introduce some equivalent definitions of equilibria with
fixed dimension of the return space. In Sect. 4, we state the results of existence of
these equilibria, together with the generic existence, generic regularity and generic
suboptimality of true equilibria. Section 5 contains the numerical example and the
Appendix collects the proofs of Theorems 13 and 14.

2 Set up of the model

Our model builds on the standard two-period, general equilibrium model of pure
exchange with uncertainty. In the commodity markets, C ≥ 2 different physical

11 See especially the part immediately after condition (13).
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8 M. Hoelle et al.

commodities are traded, denoted by c ∈ C = {1, 2, . . . ,C}. In the final period,
only one among S ≥ 1 possible states of the world, denoted by s ∈ {1, 2, . . . , S},
will occur. The initial period is denoted s = 0 and we define the set of all states
S = {0, 1, . . . , S} and the set of uncertain states S ′ = {1, . . . , S}. In the initial
period, asset markets open and A ≥ 1 assets are traded, denoted by a ∈ A =
{1, 2, . . . , A}.

We assume A ≤ S. Finally, there are H ≥ 2 households, denoted by h ∈ H =
{1, 2, . . . , H}. The time structure of the model is as follows: in the initial period,
households exchange commodities and assets, and consumption takes place. In the
final period, uncertainty is resolved, households honor their financial obligations,
exchange commodities, and then consume commodities.

We denote xch(s) ∈ R++ and ech(s) ∈ R++ as the consumption and the endow-
ment of commodity c in state s by household h, respectively.12 We define xh(s) =
(xch(s))c∈C ∈ R

C++, xh = (xh(s))s∈S ∈ R
G++, x = (xh)h∈H ∈ R

GH++ and similarly
eh(s) ∈ R

C++, eh ∈ R
G++, e ∈ R

GH++ , where G = C(S + 1).
Household h’s preferences are represented by a utility function uh : R

G++ → R.
As in most of the literature on smooth economies we assume that, for every h ∈ H ,

uh ∈ C2(RG++); (2)

for every xh ∈ R
G++, Duh(xh) � 0; (3)

for every v ∈ R
G \ {0} and xh ∈ R

G++, vD2uh(xh) v < 0 ; (4)

for every xh ∈ R
G++,

{
xh ∈ R

G++ : uh(xh) ≥ uh(xh)
}
is closed in the Euclidean

topology of R
G . (5)

Let us denote by U the set of vectors u = (uh)h∈H of utility functions satisfying
assumptions (2), (3), (4), and (5). We denote by pc(s) ∈ R++ the price of commodity
c in state s, by qa ∈ R the price of asset a and by bah ∈ R the quantity of asset a held
by household h. Moreover we define p(s) = (pc(s))c∈C ∈ R

C++, p = (p(s))s∈S ∈
R
G++,q = (qa)a∈A ∈ R

A, bh = (bah)a∈A ∈ R
A, b = (bh)h∈H ∈ R

AH .

We denote by ya,c(s) ∈ R the units of commodity c delivered by one unit of asset a
in state s andwe define ya(s) = (ya,c(s))c∈C ∈ R

C , y(s) = (ya(s))a∈A ∈ R
CA, y =

(y(s))s∈S ′ ∈ R
CAS .13 Note in particular that, in state s, asset a promises to deliver a

vector ya(s) of commodities.
For anym, n ∈ N\{0}, letM (m, n) be the set of realm×nmatrices andM

f (m, n)

be the set of real m × n matrices with full rank. Define the return matrix function as
follows

R : R
G++ × R

CAS → M(S, A),

12 Given v,w ∈ R
N , we denote by v � w, v ≥ w and v > w the standard binary relations between

vectors. Also the definitions of the sets RN+ and RN++ are the common ones.
13 We consider possibly negative yields. Notice however that all the results we obtain are still valid in the
case of positive yields.
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Incomplete financial markets 9

(p, y) �→

⎡
⎢⎢⎢⎢⎢⎢⎣

p(1)y1(1) . . . p(1)ya(1) . . . p(1)yA(1)
...

. . .
...

. . .
...

p(s)y1(s) . . . p(s)ya(s) . . . p(s)yA(s)
...

. . .
...

. . .
...

p(S)y1(S) . . . p(S)ya(S) . . . p(S)yA(S)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

r1(p, y)
...

rs(p, y)
...

rS(p, y)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

For future use we also define, for every p ∈ R
G++,

Φ (p) =

⎡
⎢⎢⎢⎣

p (0)
p (1)

. . .

p (S)

⎤
⎥⎥⎥⎦ ∈ M(S + 1,G).

Mimicking what happens in the market for bank loans, the constraints that we
impose are credit limits which bound the amount of future debt of the borrower,
proportionally to his/her credit worthiness. In fact, we say that the amount household
h can borrow, i.e., q (−bh), must be such that the household can repay what is due in
all states in the final period. That amount due is

rs (p, y) (−bh) , ∀s ∈ S ′. (6)

Additionally, we assume that each household will not be able (due to legal restric-
tions) or will not be willing to consume less than a given proportion γh (s) of its
wealth in state s ∈ S ′. In other words, there is a base level of consumption expendi-
ture required for all households:

γh (s)p (s) eh (s) .

Then we require that the amount due in (6) has to be smaller than the difference
between a household’s endowment level and the base level of consumption expendi-
ture:

(1 − γh (s)) p (s) eh (s) .

Therefore, definingαh (s) = 1−γh (s), the borrowing constraints we impose are14:

∀h ∈ H , ∀s ∈ S ′, −rs (p, y)bh ≤ αh (s) p (s) eh (s) , (7)

where αh (s) ∈ (0, 1) ,∀h ∈ H and ∀s ∈ S ′.

14 Notice that our model can easily incorporate the case in which in some states some households may
not be compelled to satisfy any borrowing constraint. This can be obtained just enlarging the set of the
admissible parameters αh (s) from (0, 1) to any open set containing [0, 1] . Indeed, the case αh (s) ≥ 1
corresponds to the situation in which for household h is state s no financial constraint is imposed. That
extension is possible because we do not use the restriction 0 < αh (s) < 1 in any step of our proofs. Observe
also that the case αh (s) ≤ 0 corresponds instead to the situation in which household h is not trusted to
repay any debt in state s: we can deal with that framework, as well.
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10 M. Hoelle et al.

Including the participation constraint parameters along with the parameters gov-
erning the asset structure and the household endowments and preferences, we define
the set of economies as

E = R
GH++ × U × R

CAS × (0, 1)SH ,

with generic element (e,u, y,α) , where α = (αh)h∈H = (αh(s))h∈H ,s∈S ′ .

Definition 1 A vector (x∗,p∗,b∗,q∗) ∈ R
GH++ ×R

G++×R
AH ×R

A is an equilibrium
for the economy (e,u, y,α) ∈ E if

1. ∀h ∈ H ,
(
x∗
h,b

∗
h

)
solves the following problem: given (p∗,q∗, e,u, y,α)

max
(xh ,bh)∈RG++×RA

uh (xh)

s.t.p∗ (0) (xh (0) − eh (0)) + q∗bh ≤ 0 (8a)

p∗ (s) (xh (s) − eh (s)) − (p∗ (s) ya (s)
)A
a=1 bh ≤ 0, ∀s ∈ S ′ (8b)

− (p∗ (s) ya (s)
)A
a=1 bh ≤ αh (s) p∗ (s) eh (s) , ∀s ∈ S ′ (8c)

2. (x∗,b∗) satisfies the market clearing conditions

H∑
h=1

(
x∗
h − eh

) = 0 (9)

and

H∑
h=1

b∗
h = 0. (10)

Define

p\ (s) = (pc (s)
)
c �=1 ∈ R

C−1++ , for any s ∈ S , and p\ =
(
p\ (s)

)
s∈S ∈ R

G−(S+1)
++ ,

and similarly, for any h ∈ H , x\
h(s), x

\
h, e

\
h(s) and e\

h .

Remark 2 Observe that the number of admissible price normalizations for the equi-
librium concept presented above is S + 1 (one for each spot) and there are S + 1
Walras’ laws. Therefore, the number of significant equations [i.e., conditions (9) and
(10) “without S+1Walras’ laws”] is equal to the number of significant variables (i.e.,
spot by spot normalized good prices p\ and asset prices q).

The above observations are formalized in the following definition.

Definition 3 A vector
(
x∗,p\∗,b∗,q∗) ∈ R

GH++ × R
G−(S+1)
++ × R

AH × R
A is a nor-

malized equilibrium for the economy (e,u, y,α) ∈ E if
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Incomplete financial markets 11

1. ∀h ∈ H ,
(
x∗
h,b

∗
h

)
solves Problem (8) given (p∗,q∗, (e,u, y,α)) , where p∗ =(

1,p\∗ (s)
)S
s=0 ;

2. b∗ satisfies market clearing conditions (10) and

H∑
h=1

(
x∗\
h − e\

h

)
= 0.

Remark 4 We do distinguish between different normalizations because showing our
results requires to carefully keep track of different normalizations for some of the
introduced definitions of equilibria. Observe however that, similarly to what done
below in the case of equilibria with fixed dimension of the return space in Proposition
8, it is easy to prove that an equilibrium according to Definition 1 and its normalized
version in Definition 3 are allocation equivalent.

Let’s further consider the restrictions we chose to analyze and the technical reasons
why these constraints can be analyzed using our proof methodology. From Duffie and
Shafer (1985), the standardway to tackle the problem of generic existence of equilibria
in the real asset model is to fix the dimension of the return space so that the return
matrix does not suffer a drop in rank. We briefly describe this process. Define

Φ1 (p) =
⎡
⎢⎣
p (1)

. . .

p (S)

⎤
⎥⎦ and z1h = x1h − e1h,

with x1h = (xh(s))s∈S ′ ∈ R
CS++ and e1h = (eh(s))s∈S ′ ∈ R

CS++ .

In this fixed dimension return space approach, the budget constraints in the final
period (8b) can be equivalently expressed as:

Φ1 (p) z1h ∈ L , (11)

where L is an A dimensional subspace of R
S . Condition (11) is equivalent to any of

the following conditions:

1.

∃M (L) ∈ M
f (S − A, S) such that M (L) · Φ1 (p) z1h = 0, (12)

where M(L) is such that kerM (L) = L;
2.

∃N (L) ∈ M
f (S, A) and ∃bh ∈ R

Asuch that Φ1 (p) z1h = N (L) · bh, (13)

where N(L) is such that ImN (L) = L .
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12 M. Hoelle et al.

Duffie and Shafer (1985) use condition (12). Here, we use condition (13) as well.
With either condition, it is not clear how to impose constraints directly on bh . In
the first condition, bh does not appear. In regard to the second condition, we show
that for a “fictitious” (regular) equilibrium, up to permutations of states, there exists
E ∈ M (S − A, A) such that

[
I
E

]
bh = R(p, y)b′

h =
[
R∗ (p, y)
R̂ (p, y)

]
b′
h,

where R∗ (p, y) has full rank, bh is the asset demand in a fictitious equilibrium, and
b′
h is the asset demand in the true equilibrium. Therefore, again up to permutations,

we get that15

b′
h = [R∗ (p, y)

]−1 bh .

The above condition indicates that imposing restrictions on the fictitious equilib-
rium asset demand bh does not imply that the same restrictions will hold for the
true asset demand b′

h . For example, the restriction bh ≥ 0 does not imply that

b′
h = [

R∗ (p, y)
]−1 bh ≥ 0. That explains why the fixed dimension return space

approach is likely not applicable for restrictions written directly in terms of bh .
On the other hand, constraints on the physical quantity bah have little meaning as the

future yields depend upon future commodity prices. So constraints could be written
for each asset on the value qabah , but this presupposes that either lenders are not able
to gain information about the other assets in a household’s portfolio or do not care
about this information.

The latter assumption is absurd as future repayment likelihoods depend upon all
asset positions of a household, while the former assumption imposes an unrealistic
information gap in this market for bank loans. Thus, it appears more economically
meaningful to consider constraints imposed upon the payouts of all assets of a house-
hold in the final period.16

Finally, our methods allow us to conjecture that [similarly to Polemarchakis and
Siconolfi (1997)] restricting excess demand in all states to a linear subspace of the
column span of the returns matrix also suffices to guarantee generic existence and
regularity. The restriction that we have in mind is:

Φ1 (p) z1h ∈ Lh (p) , (14)

where Lh (p) is a household-specific price-dependent return space, which is a linear
subspace of L . The constraints of this form (14) fit with the fixed dimension return

15 The asset demand in the fictitious equilibrium is equal to the asset demand in the true equilibrium, up
to a change of basis. The elements of the basis are the columns of R∗ (p, y) , which is an invertible matrix
with A states following the permutation of states.
16 Observe that the methods of this paper would be equally effective in obtaining generic existence and
regularity, if we were to consider participation constraints as inequalities on initial period portfolio value
qbh = −p (0) (xh (0) − eh (0)) .
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Incomplete financial markets 13

space approach, as we can simply replace L in the previous analysis with Lh (p) . In
fact, similar restrictions have been considered by Balasko et al. (1990), in the case of
nominal assets. We do not consider constraints (14) any further in the present paper,
but we are working with them in a companion paper.

3 Equilibria with fixed dimension of the return space

As explained in the previous sections, we present some definitions of equilibria in
which the dimension of the feasible wealth transfer space L is fixed and equal to the
number of available assets, A.

Themain difference between the concept of pseudo equilibrium inDuffie andShafer
(1985) and the one proposed below in Definitions 5 and 6 is that in the former the
space L appearing in the household maximization problem is written as the kernel of
a linear function, while in our household maximization problem [see (16)] the space
L is the image of a linear function.

Below, after introducing some preliminary definitions and facts, we present three
equivalent definitions of equilibria that are useful for our analysis. Indeed, as explained
in Sect. 1, the different steps in the proofs of Theorems 13 and 14 require a different
definition of equilibrium.

We denote byGA,S the set of A dimensional vector subspaces ofR
S . It can be shown

that GA,S is a Hausdorff, compact, and second countable (and therefore sequentially
compact) metric space and also a C∞ abstract manifold of dimension A (S − A).17

Denoting by� the set of permutations of {1, . . . , S} ,with generic element σ ∈ �,

by Pσ the corresponding permutation matrix and by IM the M-dimensional identity
matrix, then for every L ∈ GA,S, there exists σ−1 ∈ �, a neighborhood Vσ−1 of L ,

and a diffeomorphism18

ψσ−1 : Vσ−1 → M (S − A, A) (15)

such that L = Im Pσ

[−ψσ−1 (L)

IA

]
= ker

[
IS−A | ψσ−1 (L)

] · Pσ−1 .

Define

Ah =
⎡
⎢⎣

αh (1)
. . .

αh (S)

⎤
⎥⎦ .

Definition 5 A vector (x∗,p∗,b∗,q∗, L∗) ∈ R
GH++ × R

G++ × R
AH × R

A × GA,S is a
symmetric equilibrium for the economy (e,u, y,α) ∈ E if

1. ∀h ∈ H ,
(
x∗
h,b

∗
h

)
solves the following problem:

given (p∗,q∗, L∗, e,u, y,α)

17 See Kato (1995), page 198.
18 From now on, for ease of notation, we will simply write ψ in place of ψσ−1 . Notice that we chose to

start with σ−1 instead of σ because in this way the definitions of equilibria below get simplified.
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14 M. Hoelle et al.

max
(xh ,bh)∈RG++×RA

uh (xh)

s.t. − p∗ (0) (xh (0) − eh (0)) − q∗bh = 0 (16a)

−Φ1 (p∗) (x1h − e1h
)

+ Pσ

[−ψ (L∗)
IA

]
bh = 0 (16b)

Pσ

[−ψ (L∗)
IA

]
bh + Ah · Φ1 (p∗) e1h ≥ 0 (16c)

2. (x∗,b∗) satisfies market clearing conditions (9) and (10);
3. ImR (p∗, y) ⊆ L∗, i.e.,

vec
[
IS−A | ψ

(
L∗)] · Pσ−1 · R (p∗, y

) = 0. (17)

Define ΔG−1++ = {
p ∈ R

G++ : ∑S
s=0
∑C

c=1 p
c (s) = 1

}
and, for any h ∈

H , e�
h = (

e1h (s)
)
s∈S ∈ R

S+1++ , e\(01)
h = (

ech (s)
)
(s,c) �=(0,1) ∈ R

G−1++ , x\(01)
h =(

xch (s)
)
(s,c) �=(0,1) ∈ R

G−1++ . Moreover, 1N denotes an N dimensional vector whose
components are all equal to 1; if no confusion arises, we will write 1 in the place of
1N .

As in the case of equilibria presented in Definition 1, we formalize the possibility
of normalizing prices and the validity of Walras’ laws in Definition 6 below.

Definition 6 A vector
(
x∗,p\∗,b∗,q∗, L∗) ∈ R

GH++ ×R
G−(S+1)
++ ×R

AH ×R
A ×GA,S

is a normalized symmetric equilibrium for the economy (e,u, y,α) ∈ E if

1. ∀h ∈ H ,
(
x∗
h,b

∗
h

)
solves Problem (16) given (p∗,q∗, L∗, (e,u, y,α)) , where

p∗ = (1,p\∗ (s)
)S
s=0 ;

2. b∗ satisfies market clearing conditions (10) and

H∑
h=1

(
x∗\
h − e\

h

)
= 0;

3. Condition (17) holds true.

We now introduce the needed definition of Mr. 1 equilibrium.

Definition 7 A vector (x∗,p∗, L∗) ∈ R
GH++ ×ΔG−1++ ×GA,S is aMr. 1 equilibrium19

for the economy (e,u, y,α) ∈ E if

1a. ∀h ∈ H \ {1} , x∗
h solves the following problem:

given (p∗, L∗, e,u, y,α) ,

max
xh∈B\b

h (p∗,L∗)
uh (xh) (18)

19 Among the various kinds of equilibria with fixed dimension of the return spacewe introduce, the one that
bears the most resemblance to the original concept in Duffie and Shafer (1985) is Definition 7. However, we
have elected to call it “Mr. 1 equilibrium” instead of “pseudo equilibrium” to highlight the main difference
between this notion and the notion of symmetric equilibrium in Definition 5.
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Incomplete financial markets 15

where B\b
h (p∗, L∗) =
{
xh ∈ R

G++ : ∃bh ∈ R
A such that

−p∗ (0) (xh (0) − eh (0)) − 1 · Pσ

[−ψ (L∗)
IA

]
bh = 0 (19a)

−Φ1 (p∗) (x1h − e1h
)

+ Pσ

[−ψ (L∗)
IA

]
bh = 0 (19b)

Pσ

[−ψ (L∗)
IA

]
bh + AhΦ

1 (p∗) e1h ≥ 0
}

(19c)

1b. x∗
1 solves the following problem:

given (p∗, L∗, e,u, y,α) ,

max
x1∈RG++

u1 (x1)

s.t. − p∗ (0) (x1 (0) − e1 (0)) − 1 · Φ1 (p∗) (x11 − e11
)

= 0 (20a)

Φ1 (p∗) (x11 − e11
)

+ A1Φ
1 (p∗) e11 ≥ 0 (20b)

2. x∗ satisfies market clearing conditions

H∑
h=1

(
x∗\(01)
h − e\(01)

h

)
= 0; (21)

3. Condition (17) holds true.

Definitions 5, 6, and 7 are in fact “allocation equivalent”, as stated below.20

Proposition 8 For a given economy (e,u, y,α) ∈ E , the following statements are
equivalent:

1. x is a symmetric equilibrium allocation;
2. x is a normalized symmetric equilibrium allocation;
3. x is a Mr. 1 equilibrium allocation.

Proposition 9 describes the relationship between equilibria with fixed dimension
of the return space and “true” equilibria.

Proposition 9 If
(
x∗,p\∗,b∗,q∗, L∗) ∈ R

GH++ × R
G−(S+1)
++ × R

AH × R
A × GA,S is

a normalized symmetric equilibrium for the economy (e,u, y,α) ∈ E and

rankR
(
p∗, y

) = A, (22)

20 This result is formally proven in Hoelle et al. (2012).
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16 M. Hoelle et al.

where p∗ = (1,p\∗ (s)
)S
s=0 , then there exist b∗∗ and q∗∗ such that

(
x∗,p\∗,b∗∗,q∗∗)

is a normalized equilibrium for E .

Proof See Hoelle et al. (2012).

4 Generic existence, regularity, and suboptimality

In this section, we first show existence of an Mr. 1 equilibrium—see Theorem 13.
Then, we can obtain the generic existence of a true equilibrium, after showing the
generic regularity and generic full rank condition of the return matrix for normalized
symmetric equilibria—see Theorem 14.

As a preliminary step towards the application of a Brouwer like fixed point theorem
to prove Theorem 13—see Appendix A.1—we show some basic properties of the
demand function associated with Definition 7.

Omitting for simplicity the dependence on utility functions, define

β1 : ΔG−1++ × R
G++ × (0, 1)S ⇒ R

G++,

β1 (p, e1,α1) =
{
x1 ∈ R

G++ : −p (x1 − e1) ≥ 0

Φ1 (p)
(
x11 − e11

)
+ A1Φ

1 (p) e11 ≥ 0

u1 (x1) − u1

(
1

2
e1

)
≥ 0

}
,

and for every h ∈ H \ {1}

βh : ΔG−1++ × R
G++ × (0, 1)S × GA,S ⇒ R

G++ × R
A,

βh (p, eh,αh, L) =
{

(xh,bh) ∈ R
G++ × R

A :

−p (0) (xh (0) − eh (0)) − 1 · Pσ

[−ψ (L)

IA

]
bh ≥ 0

−Φ1 (p)
(
x1h − e1h

)
+ Pσ

[−ψ (L)

IA

]
bh ≥ 0

Pσ

[−ψ (L)

IA

]
bh + AhΦ

1 (p) e1h ≥ 0

uh (xh) − uh

(
1

2
eh

)
≥ 0

}
.

Remark 10 It is obvious that if (xh,bh) is a solution to

max
(xh ,bh)∈RG++×RA

uh (xh) s.t. (xh,bh) ∈ βh (p, eh,αh, L) , (23)
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Incomplete financial markets 17

for some h ∈ H \ {1}, then xh is a solution to (18); and conversely if xh is a solution
to (18), then there exists bh such that (xh,bh) is a solution to (23).

Lemma 11 For any h ∈ H , βh is nonempty valued, convex valued, compact valued,
closed and lower hemi continuous.

Proof See Hoelle et al. (2012).

Proposition 12 The demand correspondences associatedwithProblems (18) and (20)
are continuous functions.

Proof It follows fromRemark 10, Lemma11, theMaximumTheorem, and assumption
(4).

Theorem 13 For every economy, a Mr. 1 equilibrium exists.

Proof The proof is presented in Appendix A.1.

Consider the Hausdorff topological vector space

V = R
GH++ ×

[
C2(RG++)

]H × R
CAS × (0, 1)SH , (24)

endowed with the product topology of the natural topologies on each of the spaces
in the Cartesian product. In particular, on the C2 function space, we consider the C2

compact-open topology. Assume that E ⊆ V is endowed with the topology induced
by V .

Theorem 14 There exists an open dense set D ⊆ E such that, for any (e,u, y,α) ∈
D , there is a (positive) finite number of associated normalized equilibria which locally
smoothly depend on the elements of D .

Proof First of all, observe that from Proposition 8 and Theorem 13, a normalized
symmetric equilibrium exists. Moreover, from Proposition 9, it is enough to show that
generically rank condition (22) does hold true. The strategy of the proof is then to
consider normalized symmetric equilibria and proceed through the following steps:

1. The associated extended equilibrium system21 is such that border line cases are
rare;

2. The return matrix has generic full rank;
3. The associated projection from the equilibrium set to the economy space is proper;
4. Apply a simplified version of the implicit function theorem given in Theorem 2.3

of Glöckner (2006).

Each of the above steps is formalized and proven in Appendix A.2.

The theorem below states the typical inefficiency of equilibria.

21 By extended system associated with a given definition of equilibrium, we mean the related system of
Lagrange conditions of households’ maximization problems and market clearing conditions.
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18 M. Hoelle et al.

Theorem 15 If A < S, then there exists an open and dense set D̃ ⊆ E such that,
for every (e,u, y,α) ∈ D̃ , every corresponding equilibrium allocation is not Pareto
optimal.

The proof of the above theorem follows a standard argument and therefore it is
omitted.

Observe that in the statement of the above theorem, the qualification A < S is indeed
a necessary condition. If it were the case A = S, starting from a regular economy in
the complete market model with an associated Pareto optimal equilibrium, and then
adding “insignificant” constraints, it would be immediate to construct an open set of
economies in the restricted participation model with the property that at least one
associated equilibrium is still Pareto optimal.

5 A numerical example

Given the proof of generic regularity of equilibria in Theorem 14, we can now compute
an equilibrium of our model using algorithms that utilize the theory of differential
topology. Specifically, the two equilibria computed in this section are numerically
determined using homotopy methods, i.e., the HOMPACK suite of subroutines for
Fortran 90, and Kubler (2007). These methods require generic regularity to work
successfully.

With these two equilibria, a comparative statics analysis yields interesting con-
clusions. In particular, the example shows that by tightening credit constraints,
an anonymous planner intervention can actually effect a Pareto improvement. The
planner intervention works through adjustments in the parameters governing the
participation restriction (7): (αh (s))h∈H ,s∈S ′ ∈ (0, 1)SH . For this example, these
parameters are household independent, so they are simply (α (s))s∈S ′ ∈ (0, 1)S .

The planner intervention is also household independent and its tools are given by

τ(s) ∈
(
−1,−1 + 1

α(s)

)
, s ∈ S ′, so that the new parameters in (7) are defined as

α̂ (s) = (1 + τ (s)) · α (s) ∈ (0, 1), ∀s ∈ S ′.

Obviously, an interventionwith τ = (τ (s))s∈S ′ = 0,where 0 = (0, . . . , 0) ∈ R
S,

implies no change in either the parameters or the resulting equilibrium. Define the

equilibrium obtained following planner intervention as
(
x̂, p̂, b̂, q̂

)
, in contrast to the

original equilibrium (x,p,b,q) prior to planner intervention.
The example in this section demonstrates the following fact. For some values

τ(s) ≤ 0, s ∈ S ′, the resulting equilibrium allocation x̂ Pareto dominates the original
equilibrium allocation x.

That is, for this particular economy, more regulation on the credit markets is
employed in order to make all households better off. Notice that, due to the generic
regularity result and theway the algorithmworks, the example is robust to perturbation.

The economy is defined by:

– H = 3 households;
– C = 2 commodities traded in each state;
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– S = 4 possible states of uncertainty tomorrow;
– A = 2 real assets.

The household endowments are given by:

e1h(0) e2h(0) e1h(1) e2h(1) e1h(2) e2h(2) e1h(3) e2h(3) e1h(4) e2h(4)
h = 1 1 7 1 0.5 7 1 7.5 6 1 7
h = 2 2 4 7 6.5 1 7 2 0.5 8 2
h = 3 9 1 4 5 4 4 2.5 5.5 3 3
Sum 12 12 12 12 12 12 12 12 12 12

The household utility functions are given by:

uh (xh) = γh(0) · log
(
x1h(0)

)
+ (1 − γh(0)) · log

(
x2h(0)

)

+1

4

∑
s∈S ′

[
γh(s) · log

(
x1h(s)

)
+ (1 − γh(s)) · log

(
x2h(s)

)]
,

where

γh(0) γh(1) γh(2) γh(3) γh(4)
h = 1 2/3 1/2 1/4 3/4 1/2
h = 2 1/3 1/4 3/4 1/2 1/4
h = 3 2/3 3/4 1/2 1/4 3/4

The assets are real assets, so each asset has payouts in terms of a vector of commodities
in each state s ∈ S ′. These vector of payouts are given by:

States\Assets a = 1 a = 2
s = 1 (4, 0.5) (0.5, 3.6)
s = 2 (3.9, 0.5) (3.7, 0.5)
s = 3 (0.5, 3.8) (0.5, 3.8)
s = 4 (0.5, 3.7) (3.9, 0.5)

Finally, the parameters (identical for all households) governing the participation
restriction (7) are given by:

α(1) = 0.033

α(2) = 0.020

α(3) = 0.029

α(4) = 0.033.

For this economy, the equilibrium22 is given by:

22 A unique equilibrium is guaranteed by our use of the Cobb–Douglas utility functions.
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– Consumption
x1h (0) x2h (0) x1h (1) x2h (1) x1h (2) x2h (2) x1h (3) x2h (3) x1h (4) x2h (4)

h = 1 2.966 3.680 0.881 0.871 4.951 3.240 8.275 5.441 2.017 5.422
h = 2 1.615 4.778 6.266 7.305 3.133 4.811 1.338 0.988 6.107 4.084
h = 3 7.426 3.546 4.851 3.822 3.913 3.946 2.383 5.569 3.873 2.487

– Assets

b1h b2h
h = 1 0.334 −0.314
h = 2 0.225 −0.240
h = 3 −0.556 0.550

– Prices

p1(0) = 1 p2(0) = 0.622
p1(1) = 1 p2(1) = 0.973
p1(2) = 1 p2(2) = 0.982
p1(3) = 1 p2(3) = 1.205
p1(4) = 1 p2(4) = 0.781
q1 = 5.886 q2 = 5.941

– Utility values

u1 (x1) = 2.2473

u2 (x2) = 2.4142

u3 (x3) = 3.1676. (25)

Above is the original equilibrium. Following planner intervention, we will obtain
a new equilibrium. The planner intervenes according to:

τ(1) = 0

τ(2) = −0.22

τ(3) = 0

τ(4) = −0.17.

This means that the parameters α̂(1) and α̂(3) remain unchanged compared to α(1)
and α(3), but α̂(2) is 22 % lower compared to α(2) and α̂(4) is 17 % lower compared
to α(4):

α̂(1) = 0.033

α̂(2) = 0.016

α̂(3) = 0.029

α̂(4) = 0.028 .

The credit constraints have just been tightened.
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The equilibrium following planner intervention (again, unique23) is:

• Consumption

x̂1h (0) x̂2h (0) x̂1h (1) x̂2h (1) x̂1h (2) x̂2h (2) x̂1h (3) x̂2h (3) x̂1h (4) x̂2h (4)
h = 1 3.029 3.624 0.866 0.859 4.841 3.328 8.302 5.395 2.096 5.392
h = 2 1.619 4.784 6.215 7.363 3.233 4.717 1.327 1.007 6.005 4.174
h = 3 7.358 3.595 4.917 3.776 3.923 3.952 2.366 5.596 3.897 2.428

• Assets

b̂1h b̂2h
h = 1 0.301 −0.284
h = 2 0.237 −0.251
h = 3 −0.537 0.533

• Prices

p̂1(0) = 1 p̂2(0) = 0.627
p̂1(1) = 1 p̂2(1) = 0.973
p̂1(2) = 1 p̂2(2) = 0.985
p̂1(3) = 1 p̂2(3) = 1.180
p̂1(4) = 1 p̂2(4) = 0.795
q̂1 = 6.233 q̂2 = 6.305

• Utility values

u1
(
x̂1
) = 2.2603

u2
(
x̂2
) = 2.4259

u3
(
x̂3
) = 3.1686. (26)

Comparing the utility values in (25) and (26), a Pareto improvement has been
achieved. The utility increases are 0.58 % for household h = 1, 0.48 % for household
h = 2, and 0.03 % for household h = 3.

We now explain the intuition behind this Pareto improvement. Taken in isolation,
a binding constraint of the form (7) for a single household h and for a particular state
s ∈ S ′ has well-established properties. A reduction in the parameter αh(s) restricts
the budget set for household h, because the constraint has become tighter. This results
in lower utility for household h.

However, consider what happens, as in the above example, when a reduction in the
parameter αh(s) results in constraints binding in some states in which they previously
did not bind. Specifically, the following table illustrates this endogenous effect for the
above example:

23 Again, a unique equilibrium is guaranteed by our use of the Cobb–Douglas utility functions.
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Constraint (7) is binding in states
Before intervention After intervention

h = 1 s = 4 s = 4
h = 2 s = 3 s = 3 and s = 4
h = 3 s = 1 s = 2

As can be seen from the table, for households h = 2 and h = 3, different con-
straints are binding after the intervention compared to before the intervention. When
the states of binding constraints “switch” following an intervention, the property
described above for isolated constraints is no longer valid. In particular, two effects
now play a leading role in determining the equilibrium. First, portfolio effects are
present as households adjust their portfolios across the states of uncertainty where
now the constraints may bind for different states. Second, general equilibrium effects
are present, whereby one household’s adjustments to the newly binding constraints
must affect the other households, through the relative commodity prices and asset
prices, in order for the market clearing conditions to be satisfied.

Appendix A

A.1: Proof of Theorem 13

The proof of Theorem 13 requires some preliminary results before proceeding.
Define ΔG−1+ = {

p ∈ R
G+:∑S

s=0
∑C

c=1 p
c(s) = 1

}
and �G−1 = {

p ∈
R
G :∑S

s=0
∑C

c=1 p
c(s) = 1

}
.

In what follows, we take for given an economy (e,u, y, α).
From Proposition 12, we can define the following continuous functions.

xh : ΔG−1++ × GA,S → R
G , for h ∈ H ,

x1 (p, L) = argmax(20),

xh (p, L) = argmax(18), for h ∈ H \ {1},

and

z : ΔG−1++ × GA,S → R
G , (p, L) �→

∑
h∈H

(xh(p, L) − eh) . (27)

Define also

ψ : ΔG−1+ × GA,S → R
SA, (p, L) �→ R(p, y). (28)

We say that a vector (p∗, L∗) is a reduced Mr. 1 equilibrium for the economy(
e,u, y, α

) ∈ E , if there exists x∗ such that (x∗,p∗, L∗) is a Mr. 1 equilibrium for that
economy.
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Proposition 16 A vector (p∗, L∗) is a reduced Mr. 1 equilibrium for the economy(
e,u, y, α

) ∈ E if

1. z (p∗, L∗) = 0 and
2. 〈ψ (p∗, L∗)〉 ⊆ L∗.

In the next result we list some properties of the function z in (27) we will need in
the proof of Lemma 19.

Lemma 17 1. z is continuous;
2. z satisfies Walras’ law;
3. z is bounded from below;
4. z satisfies the boundary condition, i.e., if (p[n], L [n]) → (p̄, L̄) with p̄ ∈ ∂ΔG−1+ ,

then ‖z(p[n], L [n])‖ → ∞.

Proof 1. It follows from Proposition 12.
2. It follows from household budget constraints.
3. From market clearing, for every s, c, z c (s) is bounded below by −∑h∈H ech(s).
4. It follows from the budget constraint and the strict monotonicity of uh.

In the proof of Theorem 13 we are going to use the following result in Husseini
et al. (1990).

Theorem 18 (A Grassmannian Brouwer-like fixed point theorem) Let H N be an N-
dimensional affine subspace,C ⊂ HN acompact convex subsetwith nonempty relative
interior and let

Φ : C × GA,S → HN , Ψ : C × GA,S → R
AS

be continuous functions such thatΦ(∂C, L) ⊆ C,∀L ∈ GA,S . Then there exists (p̄, L̄)

such that

Φ(p̄, L̄) = p̄, 〈Ψ (p̄, L̄)〉 ⊆ L̄.

A crucial role in the application of the above theorem is played by the following
lemma. We present the proof of the lemma in the case, analyzed in the present paper,
in which the return space is described as a Grassmannian manifold. In fact, Husseini
et al. (1990) presented instead the proof in the case of Stiefel manifolds.

Lemma 19 There exists a continuous function ϕ : ΔG−1+ × GA,S → [0, 1] such that
the function

φ : ΔG−1+ × GA,S → �G−1 defined by

φ(p, L) = ϕ(p, L)(pc (s) + pc (s) zc (s) (p, L))s,c + (1 − ϕ(p, L))u, (29)

where u = ( 1
G , . . . , 1

G ) ∈ R
G , satisfies
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1. φ(∂ΔG−1+ , L) ⊆ ΔG−1+ , ∀L ∈ GA,S;
2. φ(p, L) = p ⇔ z(p, L) = 0.24

Proof Define

Vj =
{
(p, L) ∈ ΔG−1++ × GA,S : z j (p, L) > 0, p j <

1

G

}
, j ∈ {1, . . . ,G}

and K =
(
ΔG−1++ × GA,S

)
\
(⋃G

j=1 Vj

)
. We are going to prove that K is closed in

ΔG−1+ × GA,S . Since GA,S is a metric space, also ΔG−1+ × GA,S is a metric space.
Thus it is enough to prove that K is sequentially closed, i.e., that the limit point of any
convergent sequence of elements of K belongs to K .

Rewriting K as follows

K =
{
(p, L) ∈ ΔG−1++ × GA,S : ∀ j ∈ {1, . . . ,G}, z j (p, L) ≤ 0 or p j ≥ 1

G

}

and recalling that GA,S is compact, and thus closed, it is clear that the only way
in which the limit point (p̄, L̄) of a sequence (p[n], L [n]) of elements of K does
not belong to K is that p̄ ∈ ∂ΔG−1+ . However this is prevented by the boundary
condition and the continuity of z on K . Indeed, if p̄ ∈ ∂ΔG−1+ , then there exists
j ∈ {1, . . . ,G} such that p̄ j = 0. Hence there exists n̄ ∈ N such that, for every

n ≥ n̄, p[n]
j < 1

G . By definition of K and recalling that z is bounded from below,

we then have −∑h∈H eh( j) ≤ z j (p[n], L [n]) ≤ 0 and thus, by the continuity of z,
it holds that −∑h∈H eh( j) ≤ z j (p̄, L̄) ≤ 0. On the other hand, by the boundary
condition, z j (p[n], L [n]) → +∞. The contradiction is found.

Notice that K ∩
(
∂ΔG−1+ × GA,S

)
= ∅ and that ∂ΔG−1+ × GA,S is closed in

ΔG−1+ × GA,S . Recalling that any metric space is normal25 and that on normal spaces
the Urysohn Lemma26 applies, there exists a continuous function ϕ : ΔG−1+ ×GA,S →
[0, 1] such that ϕ(K ) = 1 and ϕ(∂ΔG−1+ × GA,S) = 0. Let us then check that the
function φ in (29) has �G−1 as codomain and satisfies 1. and 2.

As regards the codomain of φ, fix (p, L) ∈ ΔG−1+ ×GA,S . Then
∑G

j=1 p j = 1 and
recalling that z obeys Walras’ law, it holds that

24 Notice that, although z in (27) is defined only onΔG−1++ ×GA,S , the functionφ is defined onΔG−1+ ×GA,S

because, by construction, ϕ
(
∂ΔG−1+ × GA,S

)
= 0 and thus φ

(
∂ΔG−1+ × GA,S

)
= u.

25 A topological space X is called normal if for any pair of closed disjoint subsets C1 and C2 of X there
exists a pair of open disjoint subsets O1 and O2 of X, with O1 ⊃ C1 and O2 ⊃ C2.
26 We recall that the Urysohn lemma says that given two disjoint closed subsets C1 and C2 of a normal
space X, there exists a continuous function f : X → [0, 1] such that f (C1) = 0 and f (C2) = 1.
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G∑
j=1

φ j (p, L) =
G∑
j=1

(
ϕ(p, L)(p j + p j z j (p, L)) + (1 − ϕ(p, L))

1

G

)

= ϕ(p, L)

G∑
j=1

(
p j + p j z j (p, L)

)+ (1 − ϕ(p, L))

G∑
j=1

1

G

= ϕ(p, L)

G∑
j=1

p j z j (p, L) + 1 = 1,

i.e., φ(ΔG−1+ × GA,S) ⊆ �G−1, as desired.
In regard to 1., as we already know that φ(∂ΔG−1+ × GA,S) ⊆ �G−1, in order to

show that φ(∂ΔG−1+ × GA,S) ⊆ ΔG−1+ , it is enough to check that φ j (p, L) ≥ 0, for
every (p, L) ∈ ∂ΔG−1+ × GA,S and j ∈ {1, . . . ,G}. Since ϕ(∂ΔG−1+ × GA,S) = 0, it
holds that, for (p, L) ∈ ∂ΔG−1+ × GA,S, φ j (p, L) = 1

G ≥ 0.
Let us finally prove 2. Assume that z(p, L) = 0 and show that φ(p, L) = p. If

z(p, L) = 0 then z j (p, L) ≤ 0 for every j and so (p, L) ∈ K . Hence, ϕ(p, L) = 1
and thus φ j (p, L) = p j + p j z j (p, L) = p j , for every j, as desired.

Assume now that φ(p, L) = p and show that z(p, L) = 0. Notice that

ΔG−1+ × GA,S =
(
∂ΔG−1+ × GA,S

)
∪ K ∪

⎛
⎝

G⋃
j=1

Vj

⎞
⎠

and that ∂ΔG−1+ × GA,S, K and
⋃G

j=1 Vj are pairwise disjoint. If (p, L) ∈ ΔG−1+ ×
GA,S, then there are three cases to consider, i.e., (p, L) ∈ ∂ΔG−1+ ×GA,S, (p, L) ∈ K
and (p, L) ∈ Vj∗ , for some j∗ ∈ {1, . . . ,G}. We claim that only in the second case
it may happen that φ(p, L) = p. Indeed, in the first case φ(p, L) = ( 1

G , . . . , 1
G

)
/∈

∂ΔG−1+ . In the third case, by definition of Vj∗ , we would have

p j∗ = φ j∗(p, L) = ϕ(p, L)(p j∗ + p j∗ z( j
∗)(p, L)) + (1 − ϕ(p, L))

1

G
> ϕ(p, L)(p j∗ + p j∗ z( j

∗)(p, L)) + (1 − ϕ(p, L))p j∗

= p j∗ + ϕ(p, L)p j∗ z( j
∗)(p, L) ≥ p j∗ ,

a contradiction. Thus φ(p, L) = p only if (p, L) ∈ K and in this case, as ϕ(p, L) = 1,
it follows that, for every j ∈ {1, . . . ,G}, p j = φ j (p, L) = p j + p j z j (p, L), from
which, since p j > 0, we have z j (p, L) = 0, as desired.
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Proof of Theorem 13 We want to apply Theorem 18, identifying Φ and Ψ with φ in
(29) andψ in (28), respectively.�G−1 is an affine subspace ofR

G andΔG−1+ ⊂ �G−1

is clearly a compact, convex subset with nonempty relative interior. φ is a continuous
function fromLemma 17 and from the fact thatϕ is a continuous function fromLemma
19. Again from the latter lemma, we have that φ(∂ΔG−1+ , L) ⊆ ΔG−1+ , ∀L ∈ GA,S .
Finally, from Theorem 18 and Proposition 16, the desired result follows. ��

A.2: Proof of Theorem 14

LetV be a topologicalHausdorff vector space,V ⊆ V be an open set and f : V → R
n

be a function. We say that f ∈ C0(V, R
n) if f is continuous, while f ∈ C1(V, R

n)

if it is continuous, there exists the limit

d f (v,w) = lim
ε→0

f (v + εw) − f (v)
ε

, ∀v ∈ V,w ∈ V ,

and the function d f : V × V → R
n is continuous.

Given any (not necessarily open) set X ⊆ V and f : X → R
n , we say f ∈

C0(X, R
n) if f is continuous with respect to the topology induced by V on X , while,

as in the finite dimensional setting, f ∈ C1(X, R
n) if for every v0 ∈ X there exists an

open neighborhood of v0 in V , say V (v0), and a function f : V (v0) → R
n such that

f ∈ C1(V (v0), R
n) and, for every x ∈ V (v0) ∩ X, f (x) = f (x).

Those definitions allow to state the following implicit function theorem which is a
simplified version of Theorem 2.3 in Glöckner (2006).27

Theorem 20 Let us consider f :O × V → R
n, where O is an open subset of R

n

and V is an open subset of a topological Hausdorff vector space V . Assume f ∈
C1(O × V, R

n) and let (x0, v0) ∈ O × V such that f (x0, v0) = 0 and Dxf(x0, v0) is
invertible.28 Then there exist O(x0) ⊆ O open neighborhood of x0, V (v0) ⊆ V open
neighborhood of v0 and g:V (v0) → O(x0) such that

1. g ∈ C1(V (v0), O(x0)),
2. g(v0) = x0,
3. {(x, v) ∈ O(x0)× V (v0) : f (x, v) = 0} = {(x, v) ∈ O(x0)× V (v0) : x = g(v)}.

27 We stress that we need such more sophisticated result, rather than the classical implicit function
theorem—see for instance Lang (1983), page 131—because one of the factors of the Cartesian product
in the domain of the “equilibrium function” we deal with in Theorem 14 is given by the set of twice
continuously differentiable utility functions. The topology that set is commonly endowed with is the C2

compact-open topology—see for example Hirsch (1976), pages 34–35. Unfortunately, that topology is not
generated by a norm [see again Hirsch (1976), page 35] and thus the standard implicit function theorem
cannot be applied in our framework. On the other hand, the space of our utility functions with the C2

compact-open topology is a topological Hausdorff vector space and therefore the theorem by Glöckner can
be used instead.
28 Note that if f ∈ C1(O × V,Rn) then, for every v ∈ V , f (·, v) : O → R

n , x �→ f (x, v), belongs to
C1(O,Rn) and thus, for every (x, v) ∈ O × V, Dxf(x, v) is well defined.
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Proof of Theorem 14 Step 1.
Define, for each σ ∈ �,

Ξσ = R
GH++ × R

(S+1)H × R
AH × R

SH × R
G++ × R

A × Vσ−1 , (30)

with generic element

ξ = ((xh, λh,bh, μh)h∈H ,p,q, L
) = (x, λ,b, μ,p,q, L) ,

and the function

Fσ : Ξσ × E → R
dim(Ξσ ),

Fσ (ξ, e,u, y, α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dxh(s)uh(xh) − λh(s)p(s)

−Φ (p) (xh − eh) +
⎡
⎣

−q

Pσ

[−ψ(L)

IA

]
⎤
⎦ bh

λh

⎡
⎣

−q

Pσ

[−ψ(L)

IA

]
⎤
⎦+ μhPσ

[−ψ(L)

IA

]

min

{
μh,Pσ

[−ψ(L)

IA

]
bh + AhΦ

1 (p) e1h

}

H∑
h=1

(
x\
h − e\

h

)

H∑
h=1

bh

p1(s) − 1

vec
[
IS−A | ψ (L)

] · Pσ−1 · R (p, y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

where ψ : Vσ−1 → M(S − A, A) is the diffeomorphism in (15), with Vσ−1 ⊆ GA,S

open.
For simplicity and without loss of generality, from now on we consider the case

Pσ = I, so that Fσ becomes F : Ξ × E → R
dim(Ξ).

We now show that border line cases are rare. For every h ∈ H ,we defineS 1
h ,S 2

h
and Ŝ 1

h so that {1, . . . , S} = S 1
h ∪S 2

h , with
(
S 1

h \ Ŝ 1
h

)∩S 2
h = ∅ and Ŝ 1

h ⊆ S 1
h ,

in order to have
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28 M. Hoelle et al.

s ∈ S 1
h \Ŝ 1

h ⇒ m (s) · bh + αh (s) · p (s) eh (s) = 0
s ∈ Ŝ 1

h ⇒ m (s) · bh + αh (s) · p (s) eh (s) = 0 and μh (s) = 0
s ∈ S 2

h ⇒ μh (s) = 0,

where we have denoted by m(s) the s-th row of

[−ψ(L)

IA

]
.

Define ŷ = (ya,1(s))a∈A , s∈{1,...,S−A} and the full rank matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(1)
. . .

p1(1)
. . .

p1(S − A)

. . .

p1(S − A)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The computation of the desired (partial) Jacobian matrix is presented in the table
below, where the following conventions are adopted.

(a) The symbol � denotes a matrix which is insignificant for our argument, while no
symbol means 0. For size convenience, just in the table below, we set

R (q) =
⎡
⎣

−q
−ψ(L)

I

⎤
⎦ and R =

[−ψ(L)

I

]
.

(b) The ∗ next to a matrix indicates that it is a full row rank matrix.
(c) The desired full rank result is obtained as follows. In each super-row, use the starred

matrix to clean up that super-row, being sure that in that super-column there are
only zero matrices. An order in which the appropriate elementary (super) column
operations have to be performed is the one indicated in the last column of the table.
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where, for h ∈ H , we have set Z1
h equal to the square diagonal matrix with elements

p(s)eh(s), for s ∈ S 1
h , on the diagonal. Moreover

Φ
(
p1
) =

⎡
⎢⎢⎢⎣

p1 (0)
p1 (1)

. . .

p1 (S)

⎤
⎥⎥⎥⎦ .

Step 2.
After having shown that border line cases are rare, we are going to prove that in a

full measure subset ofR
GH++ ×R

CAS, the return matrixR(p, y) has full rank. Actually,
we are going to show that its square A-dimensional submatrix R̂(p, y) has full rank,
where

R̂(p, y)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p(S − A + 1)y1(S − A + 1) · · · p(S − A + 1)ya(S − A + 1) · · · p(S − A + 1)yA(S − A + 1)
.
.
.

.

.

.
.
.
.

p(S − A + a)y1(S − A + a) . . . p(S − A + a)ya(S − A + a) . . . p(S − A + a)yA(S − A + a)

.

.

.
.
.
.

.

.

.

p(S)y1(S) . . . p(S)ya(S) . . . p(S)yA(S)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

by showing that 0 is a regular value for (F,G) : Ξ × E × R
A → R

dim(Ξ)+(A+1),

where

G : Ξ × E × R
A → R

A+1, (ξ, e,u, y, α,d) �→ (d · R̂(p, y),dd − 1).

Calling T the Jacobian matrix in the previous page, we then have to show that the
following matrix

⎡
⎣
T � 0
0 N R̂(p, y)
0 0 2dT

⎤
⎦

has full rank, where the last two columns are the derivatives with respect to ̂̂y and d,

respectively, with ̂̂y defined hereinafter.
As d = (d(S− A+ a))a∈A is such that dd = 1, then there exists ā ∈ A such that

d(S − A + ā) �= 0. Then we set ̂̂y = (ya,1(S − A + ā)
)
a∈A ∈ R

A. Notice that

d · R̂(p, y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑A
j=1 d(S − A + j)p(S − A + j)y1(S − A + j)

...∑A
j=1 d(S − A + j)p(S − A + j)ya(S − A + j)

...∑A
j=1 d(S − A + j)p(S − A + j)yA(S − A + j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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and thus

N

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d(S − A + ā)p1(S − A + ā)

. . .

d(S − A + ā)p1(S − A + ā)

. . .

d(S − A + ā)p1(S − A + ā)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

which has clearly full rank. This concludes the proof of the step.
Step 3.
The proof is given in Proposition 21 below.
Step 4.
Apply Theorem 20. ��

Recalling the definition of Ξσ in (30), we rewrite the function Fσ : Ξσ × E →
R
dim(Ξσ ) in (31) as

Fσ (ξ, e,u, y, α)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dxh(s)uh(xh) − λh(s)p(s)
−p(0)(xh(0) − eh(0)) − qbh

−p(s)(xh(s) − eh(s)) −
A∑

a=1
mσ−1(s)ab

a
h , σ−1(s) ∈ {1, . . . , S − A}

−p(s)(xh(s) − eh(s)) + bσ−1(s)−(S−A)
h , σ−1(s) ∈ {S − A + 1, . . . , S}

−λh(0)qσ−1(s)−(S−A) −
S−A∑

σ−1(s)=1
(λh(s) + μh(s))mσ−1(s)(σ−1(s)−(S−A))+

+λh(s) + μh(s), σ−1(s) ∈ {S − A + 1, . . . , S}
min

{
μh,Pσ

[−ψ(L)

IA

]
bh + AhΦ

1 (p) e1h

}

H∑
h=1

(
x\
h − e\

h

)

H∑
h=1

bh

p1(s) − 1
vec
[
IS−A | ψ (L)

] · Pσ−1 · R (p, y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where L ∈ Vσ−1 and ψ(L) = (msa)s∈{1,...,S−A}, a∈A ∈ M(S − A, A).

We also recall that a function f : A → B, with A and B topological spaces, is
proper if, for every K ⊆ B compact set, f −1(K ) ⊆ A is compact as well. We also
recall that any proper and continuous function is closed, i.e., it maps closed sets onto
closed sets.

Proposition 21 Fσ is continuous on Ξσ × E and

π :
⋃
σ∈�

F−1
σ (0) → E , (ξ, e,u, y, α) �→ π (ξ, e,u, y, α) = (e,u, y, α)
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is proper.

Proof The continuity of Fσ is immediate. In order to show that π is proper, we
have to prove that each sequence (ξ [n], e[n],u[n], y[n], α[n])n∈N in

⋃
σ∈� F−1

σ (0),
such that (e[n],u[n],y[n],α[n]) converges in E , admits a converging subsequence in⋃

σ∈� F−1
σ (0). Since GA,S is sequentially compact, let us assume that

(e[n],u[n], y[n], α[n], L [n]) → (e,u, y, α, L) ∈ E × GA,S .

Therefore there exists σ ∈ � such that L ∈ Vσ−1 and for sufficiently large n, L [n] ∈
Vσ−1 , too. Without loss of generality we can assume that Pσ = I, so that Fσ simply
becomes

F (ξ, e,u, y, α)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(32a) Dxh(s)uh(xh) − λh(s)p(s)

(32b)

−p(0)(xh(0) − eh(0)) − qbh

−p(s)(xh(s) − eh(s)) −
A∑

a=1
msabah , s ∈ {1, . . . , S − A}

−p(s)(xh(s) − eh(s)) + bs−(S−A)
h , s ∈ {S − A + 1, . . . , S}

(32c) −λh(0)qa −
S−A∑
s=1

(λh(s) + μh(s))msa + λh(S − A + a) + μh(S − A + a)

(32d) min

{
μh,

[−ψ(L)

IA

]
bh + AhΦ

1 (p) e1h

}

(32e)
H∑

h=1

(
x\
h − e\

h

)

(32f)
H∑

h=1
bh

(32g) p1(s) − 1
(32h) vec

[
IS−A | ψ (L)

] · R (p, y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

Then it suffices to show that, up to a subsequence, (ξ [n])n∈N converges to a certain
ξ ∈ Ξ : indeed the conditionF (ξ , e,u, y, α) = 0 follows by the continuity ofF .As
we are going to use a diagonal argument, every time we say that a sequence converges
we mean it has a converging subsequence. Let us start with the convergence of x[n].
For a fixed h ∈ H , we know that, for every n ∈ N,

(
x[n]
h ,b[n]

h

)
is solution to the

problem

max
(xh ,bh)

u[n]
h (xh)

s.t. − p[n] (0)
(
xh (0) − e[n]

h (0)
)

− q[n]bh = 0 (33)

−Φ1(p[n]) (x1h − e[n]1
h

)
+
[−ψ(L [n])
IA

]
bh = 0 (34)

[−ψ(L [n])
IA

]
bh + A[n]

h Φ1(p[n])e[n]1
h ≥ 0 (35)
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and then, since (e[n]
h , 0) belongs to the constraint set, it has to be u[n]

h (x[n]
h ) ≥ u[n]

h (e[n]
h ).

Since (e[n]
h )n∈N converges to eh ∈ R

G++, it holds that the compact set Eh = {e[n]
h

}
n∈N∪

{eh} is a subset of R
G++ and we have

u[n]
h (x[n]

h ) ≥ u[n]
h (e[n]

h ) ≥ min
xh∈Eh

u[n]
h (xh) ≥ min

xh∈Eh
uh(xh) − ε[n],

for a suitable sequence (ε[n])n∈N in R++ such that ε[n] → 0 if n → ∞, by the
definition of the topology on C2(RG++). Indeed we can define, for every n ∈ N,

ε[n] = max
w∈Eh

∣∣u[n]
h (w) − uh (w)

∣∣.

Let x∗
h ∈ Eh be such that minxh∈Eh uh(xh) = uh(x∗

h), and let 1 = (1, . . . , 1) ∈ R
G

and δ > 0 be small enough such that x∗
h − 2δ1 ∈ R

G++. Obviously, since by (3),
uh(x∗

h) > uh(x∗
h − δ1), there exists n1 such that n ≥ n1 implies uh(x∗

h) − ε[n] ≥
uh(x∗

h − δ1) and thus, for every n ≥ n1,

u[n]
h (x[n]

h ) ≥ uh(x∗
h − δ1). (36)

Of course, because of the validity of S + 1 Walras’ laws in our model, we can also
assume that, for every n ≥ n1,

0 � x[n]
h ≤

H∑
h=1

e[n]
h ≤

H∑
h=1

eh + 1.

Our purpose now is to prove that for infinite values of n it is uh(x
[n]
h ) ≥ uh(x∗

h −2δ1).
Let x̂h ∈ [

0,
∑H

h=1 eh + 1
]
be a cluster point of (x[n]

h )n≥n1 . Then we can assume

x[n]
h → x̂h . Consider any x̃h ∈ R

G++ such that uh (̃xh) = uh(x∗
h − 2δ1). If we take n

large enough, by (36), it is u[n]
h (x[n]

h ) − u[n]
h (̃xh) ≥ 0. Then, for n sufficiently large,

0 ≤ u[n]
h (x[n]

h ) − u[n]
h (̃xh) ≤ Dxhu

[n]
h (̃xh)(x

[n]
h − x̃h) =

= (Dxhu
[n]
h (̃xh) − Dxhuh (̃xh)

)
(x[n]

h − x̃h) + Dxhuh (̃xh)(x
[n]
h − x̃h).

Taking the limit as n → ∞ in the previous inequality, we get

Dxhuh (̃xh)(̂xh − x̃h) ≥ 0.

Then

x̂h ∈
⋂

x̃h∈{y∈RG++: uh(y)=uh(x∗
h−2δ1)}

{
y ∈ R

G : Dxhuh (̃xh)(y − x̃h) ≥ 0
}

. (37)
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Since the right hand side of (37) is exactly {y ∈ R
G : uh(y) ≥ uh(x∗

h − 2δ1)}, which
is a subset of R

G++ by (5), then x̂h ∈ R
G++ and the proof is complete. As regards the

convergence of λ[n], from (32a), (32g) and (3) we find that, for every h ∈ H and
s ∈ S ,

λ
[n]
h (s) = Dx1h(s)

u[n]
h (x[n]

h ) → Dx1h(s)
uh(xh) = λh(s) ∈ R++,

since Dx1h(s)
u[n]
h →Dx1h(s)

uh uniformly on compact subsets of R
G++. Then, from (32a)

and (3), it follows that, for every s ∈ S ,

p[n](s) = Dxh(s)u
[n]
h (x[n]

h )

λ
[n]
h (s)

→ Dxh(s)uh(xh)

λh(s)
= p(s) ∈ R

C++

and thus (p[n])n∈N converges to an element p ∈ R
G++.

By (32b) we then immediately get the convergence of b[n]
h to an element bh ∈ R

A.

Let us now check the convergence ofμ[n]
h .Let us setS ′

h = {s ∈ S ′ : μ
[n]
h (s) → 0}

and S ′′
h = S ′ \ S ′

h . We have only to show that μ
[n]
h (s) is convergent for s ∈ S ′′

h .

From (32c) it follows that

λ
[n]
h (0)q[n]b[n]

h = −
S−A∑
s=1

A∑
a=1

(λ
[n]
h (s) + μ

[n]
h (s))m[n]

sa b
[n]a
h

+
A∑

a=1

(
λ

[n]
h (S − A + a) + μ

[n]
h (S − A + a)

)
b[n]a
h = −

S−A∑
s=1

A∑
a=1

λ
[n]
h (s)m[n]

sa b
[n]a
h

+
A∑

a=1

λ
[n]
h (S − A + a)b[n]a

h −
∑

s∈{1,...,S−A}∩S ′
h

A∑
a=1

μ
[n]
h (s)m[n]

sa b
[n]a
h

+
∑

s∈{S−A+1,...,S}∩S ′
h

μ
[n]
h (s)b[n](s−(S−A))

h −
∑

s∈{1,...,S−A}∩S ′′
h

A∑
a=1

μ
[n]
h (s)m[n]

sa b
[n]a
h

+
∑

s∈{S−A+1,...,S}∩S ′′
h

μ
[n]
h (s)b[n](s−(S−A))

h .

If for s ∈ S ′′
h , μ

[n]
h is bounded above, then it admits a convergent subsequence and

we are done. Suppose otherwise. Then, μ[n]
h is not bounded above and there exists a

subsequence converging to +∞. Notice that if s ∈ S ′′
h there exists n(s) ∈ N such

that μ
[n]
h > 0, for all n ≥ n(s) and thus

∑
a m

[n]
sa b

[n]a
h = α

[n]
h (s)p[n](s)e[n]

h (s), if s ∈
{1, . . . , S− A} and b[n](s−(S−A))

h = −α
[n]
h (s)p[n](s)e[n]

h (s), if s ∈ {S− A+1, . . . , S}.
Set then n∗ = max{n(s) : s ∈ S ′′

h } and for n ≥ n∗ the above expression becomes
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−
S−A∑
s=1

A∑
a=1

λ
[n]
h (s)m[n]

sa b
[n]a
h +

A∑
a=1

λ
[n]
h (S − A + a)b[n]a

h

−
∑

s∈{1,...,S−A}∩S ′
h

A∑
a=1

μ
[n]
h (s)m[n]

sa b
[n]a
h +

∑

s∈{S−A+1,...,S}∩S ′
h

μ
[n]
h (s)b[n](s−(S−A))

h

−
∑

s∈{1,...,S−A}∩S ′′
h

μ
[n]
h (s)α[n]

h (s)p[n](s)e[n]
h (s)

+
∑

s∈{S−A+1,...,S}∩S ′′
h

μ
[n]
h (s)(−α

[n]
h (s)p[n](s)e[n]

h (s)) = −
S−A∑
s=1

A∑
a=1

λ
[n]
h (s)m[n]

sa b
[n]a
h

+
A∑

a=1

λ
[n]
h (S − A + a)b[n]a

h −
∑

s∈{1,...,S−A}∩S ′
h

A∑
a=1

μ
[n]
h (s)m[n]

sa b
[n]a
h

+
∑

s∈{S−A+1,...,S}∩S ′
h

μ
[n]
h (s)b[n](s−(S−A))

h −
∑

s∈S ′′
h

μ
[n]
h (s)α[n]

h (s)p[n](s)e[n]
h (s)

and thus from (32b) we obtain

−λ
[n]
h (0)p[n](0)(x[n]

h (0) − e[n]
h (0)) = λ

[n]
h (0)q[n]b[n]

h = −
S−A∑
s=1

A∑
a=1

λ
[n]
h (s)m[n]

sa b
[n]a
h

+
A∑

a=1

λh(S − A + a)b[n]a
h −

∑

s∈{1,...,S−A}∩S ′
h

A∑
a=1

μ
[n]
h (s)m[n]

sa b
[n]a
h

+
∑

s∈{S−A+1,...,S}∩S ′
h

μ
[n]
h (s)b[n](s−(S−A))

h −
∑

s∈S ′′
h

μ
[n]
h (s)α[n]

h (s)p[n](s)e[n]
h (s).

Letting n → ∞ we find

S−A∑
s=1

A∑
a=1

λh(s)msab
a
h −

A∑
a=1

λh(S − A + a)b
a
h − λh(0)p(0)(xh(0) − eh(0))

= −
∑

s∈S ′′
h

μh(s)αh(s)p(s)eh(s)

and thus, if μh(s) = +∞ for some s, we would find that the left hand side should be
−∞, which is impossible, as all its terms are finite. Thus μh(s) ∈ R, for every s, as
desired.

Finally, from (32c) we easily get that also qa is convergent, for every a ∈ A . The
proof is complete.
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