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Abstract The reversibility of sequential economic choices concerning production
and consumption is addressed. A geometric approach to substitution effects and out-
put/income effects is set forth in terms of vector fields on bundle space. By means of
suitable fixing relations the 0-homogeneity of such problems can be circumvented,
so as to define global parametrizations of effects, for which Lie brackets measure the
departure from commutativity. A couple of propositions are established, assessing the
benchmark relevance of homothetic models. Application to Farrell decompositions,
as tailored by Bogetoft et al. (Eur J Oper Res 168:450–462, 2006), results in complete
agreement with the results found by such Authors. The theoretical relevance of the
approach is thoroughly discussed.
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84 A. Mantovi

 Initial bundle                    EXE  → Expansion modified bundle 

          SUE    ↓             SUE    ↓

Substitution modified bundle          EXE   →        Final bundle  

Fig. 1 A commutative diagram for EXE and SUE (a truism for the infinitesimal effects in Slutsky equations)

1 Introduction

Irreversibility has long been recognized as an inherent feature of relevant economic
choices, concerning for instance exploitation of exhaustible resources, commitment to
binding agreements (possibly, contracts) and exercise of (partially) irreversible invest-
ment opportunities under uncertainty, typically modelled via stochastic processes.
Furthermore, bounds of rationality (for instance, endowment effects, framing effects,
biases, etc.) may preclude smooth reversions of resource allocations. On top of that,
according to Stiglitz (2000, p. 1459), “there are natural irreversibilities associated with
the creation of knowledge: history has to matter.”

Differentiating from such lines of inquiry, we shall address the irreversibility of
sequences of choices of producers and consumers. It is the aim of the present contri-
bution to argue about the relevance of the order with which basic effects drive sequen-
tial economic choices, so that reversing such an order may not re-establish initial
conditions (choices). Definitely, we shall tailor an analytical framework for the com-
mutativity (Fig. 1) of independent and finite substitution effects (“SUE” henceforth)
and output/income effects (expansion effects, “EXE” henceforth), so as to address a
facet of the irreversibility of microeconomic choices which the extant literature does
not seem to encompass. Perhaps, Bogetoft et al. (2006) represent the closest perspec-
tive to the one we shall be dealing with, in which the order of effects and the benchmark
role of homotheticity are at stake. Weber (2010) argues about the reversibility of the
compensated-income function.

The ‘nuisances’ generated by income effects are well known to be rooted in the
inherent entanglement between EXE, price changes and SUE. On the one hand,
producers’ and consumers’ optimization problems are 0-homogeneous in expendi-
ture/income and prices (for instance, doubling both income and prices has no effect
on the solution bundle; we shall denote such a property by “0-h”). On the other hand,
price changes onset both EXE and SUE according to Slutsky equations: the variation
in an optimal bundle can be decomposed as the superposition of a notional infinites-
imal EXE and a notional infinitesimal SUE, being the order of such fictitious effects
inherently irrelevant (Cowell 2005, p. 87). In fact, applied Slutsky equations typically
employ functional forms lacking generality,1 thereby setting inherent limits to the
analysis of EXE and SUE.

1 For instance, as pointed out by Chambers (1988), “one would never use a Cobb–Douglas function to
investigate the magnitude of different elasticities of substitution since it forces all Allen elasticities to equal
unity.” According to Cornes (1992), “Its extreme simplicity is both a strength and a weakness of the Cobb–
Douglas form. Empirically, it is not sensible to impose unit income elasticities and zero uncompensated
cross-price responses, because both generally conflict with empirical findings.”
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Commutativity of expansion and substitution effects 85

Furthermore, comparative statics deals, by definition, with commuting effects: def-
initely, the first order Taylor expansion of a function g(x, y),

g(x + h, y + k)− g(x, y) ≈ ∂g

∂x
h + ∂g

∂y
k (1)

entails a (commutative) sum of contributions which reverse their signs together with the
‘driving effects’ h and k; so to say, comparative statics is bound to the commutativity
of infinitesimal effects (recall, according to Baumol (1973), “We have become used
to comparative statics arguments whose results are remarkable for their banality”). As
is well known, once finite effects are at stake, the commutativity represented in (1)
may not hold anymore, as manifested in the problem of the commutativity of vector
fields in the theory of dynamical systems, which we shall employ in our approach to
global (i.e. defined on all of bundle space), independent and finite EXE and SUE, so
as to fix the homotheticity benchmark in terms of scale symmetry, and then measure
the departure from such a benchmark in terms of the Lie bracket2 of expansion and
substitution flows, thereby tailoring a unified approach to both finite and infinitesimal
effects.

We shall be concerned with the microeconomics of both single output producer’s
and consumer’s choices, between which we shall not differentiate unless suggested
by the sharpness of the arguments; we shall therefore generally employ the following
unifying conventions. By the term input we shall refer to both production inputs and
consumption goods, and employ x and y to denote both the inputs and the variables
representing the quantities of such inputs.3 By expansion paths we shall refer to both
output and income expansion paths. We shall denote both isoquants and indifference
curves by the expression level curves. By budget constraint and marginal rate of sub-
stitution (MRS) we shall denote corresponding notions for producers and consumers.
SUE shall be typically parametrized by the input ratio4 κ = y/x or MRS (equivalent to
price ratio by FOC). Our manifold shall be the space B = (0,∞)× (0,∞) (endowed
with the natural differentiable structure) of the combinations (bundles) of inputs x
and y: we shall disregard problems admitting ‘corner’ solutions (thereby ruling out
perfect substitutability), which would force us to introduce more ‘costly’ geometry
(manifolds with boundary) without correspondingly beneficial insights. For the same
reasons we shall disregard multioutput settings. Objective functions shall be smooth
and convex, so as to make sense of the following arguments.

Our geometric approach is meant to help escape the straitjacket of comparative
statics, which is well suited for addressing local conditions (typically FOC) and at the
same time ‘myopic’ with respect to global conditions, like the ones represented in the
definition of normal and luxury goods. As long established, it is the global picture of

2 For the geometric concepts we shall be dealing with see for instance Abraham and Marsden (1987),
Arnold (1992), for which “Poisson bracket” stands for “Lie bracket”, and Williams (2008).
3 We shall confine main arguments to a pair of inputs, aligning with standard approaches (for instance,
Varian 1992; Silberberg 2008).
4 Chambers (2002) argues about the naturality of such an index: “economists routinely prefer to work in
terms of quantities which are unit free” (ivi, p. 756), as represented for instance by elasticity measures. In
our perspective, the relevance of input ratios is grounded in their being adapted to the homothetic symmetry.
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expansion paths which establishes whether a good is luxury or not; the slope of Engel
curves at a single point cannot tell luxury. Needless to say, our framework is not meant
to deviate from the mainstream of microeconomic analysis, but rather to take a natural
step for embracing Engel curves and expansion paths in a global framework, in which
additive and scaling expansion flows on input space tailor EXE and their commu-
tation properties with SUE. Our differential geometric approach compares, to some
extent, with the one employed by Williams (2008) in the analysis of communication
in mechanism design.

In turn, our geometrical perspective deepens the benchmark relevance of homo-
thetic symmetry. In fact, our approach enlightens the relevance of the independence
of technical and allocative inefficiencies, with respect to which Bogetoft et al. (2006)
set forth a reversed decomposition of overall efficiency which counters the standard
approach named after Farrell (1957), thereby raising concerns about the consistency of
such measures. “From a conceptual point of view, we suggest that the interpretations
associated with the notions of technical and allocative efficiency are more ambiguous
if the size of the effects depends on the order of decomposition” (Bogetoft et al. 2006,
p. 451). Such an instance, as will be seen, can be given a fundamental microeconomic
status, accounting for the consistency of decompositions in the benchmark case of
homothetic problems; in fact, according to Chambers and Mitchell (2001), “Homo-
theticity may be the most common functional restriction employed in economics.”

The plan of the rest of the paper is as follows. In Sect. 2 we introduce our first
proposition on commutativity and homotheticity. In Sect. 3 we introduce vector fields
and Lie brackets. In Sect. 4 we set forth our global picture for EXE and SUE and
their commutation setting, and tailor our main proposition. In Sect. 5 we apply such
a framework to Farrell decompositions. A final section sketches possible avenues
for future research. A pair of appendices collect technical results supporting main
arguments.

2 Effects under scale symmetry

Recall, EXE are defined, at fixed prices, along a given expansion path, and parametrized
by expenditure/income. As is well known, such a definition is not ‘natural’ once we
consider classes of expansion paths: on the one hand, scaling prices is equivalent to an
income/expenditure effect; on the other hand, changes in price ratios onset entangled
EXE and SUE according to Slutsky equation. It is therefore of fundamental relevance
to deepen the benchmark role of homothetic problems, in which EXE can be globally
‘disentangled’ from SUE along the following lines.

2.1 Slutsky equations

Slutsky equations represent the cornerstone of the canonical approach to income and
substitution effects associated with infinitesimal changes in the prices of consumption
goods. Let I denote income, let Di represent Marshallian demand functions, and let
Hi represent Hicksian demand functions, with indices ranging from 1 to the number
n of goods; then, each of the n2 Slutsky equations
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Commutativity of expansion and substitution effects 87

∂Di (p, I )

∂p j
= ∂Hi (p, υ)

∂p j
− x∗

j
∂Di (p, I )

∂ I
(2)

defines an equilibrium disentanglement of changes in each demand function in terms of

a notional infinitesimal SUE ∂Hi

∂p j
dp j (a comparative statics for the Hi at the same level

υ of the utility function) and a notional infinitesimal EXE x∗
j
∂Di

∂ I dp j proportional to
the j-th component of the initial optimal bundle. Recall, (2) represent total differentials
of ordinary demand functions with respect to prices, once the identities (write C for
the cost/expenditure function)

Hi (p, υ) = Di (p,C(p, υ)) (3)

and Shephard’s lemma are properly taken into account. It is not difficult to represent
the ‘directions’ in input space of the effects in (2) by considering the whole matrix
of Slutsky equations and multiplying them by the infinitesimal changes in optimal
bundles (see for instance Varian 1992, p. 121).

As is well known, Slutsky equations are crucial for establishing a number of results,
for instance, the symmetry of SUE and the sign of own price effects. Furthermore,
Eq. (2) represent the integrability conditions guaranteeing the existence of a utility
function underlying a given set of demands functions (Varian 1992). True, in and by
themselves, the decompositions (2) do not convey sharp insights about the directions
of change of input ratios, unless definite functional forms are employed. Appendix 1
employs a Cobb–Douglas model in order to pin down the significance of such terms
in a benchmark homothetic case as a preliminary to our framework, which builds on
the benchmark role of straight expansion paths.

Recall, the classes of expansion paths, one for each price vector, embody the solu-
tions to the optimization problems of producers and consumers; such problems are
0-h, as a consequence of the fundamental constraint for ordinary demand functions
(for instance, Cowell 2005, p. 85), which in a two input setting reads

px Dx + py Dy = I. (4)

According to (4), scaling prices and income by the same factor does not alter the
solution, i.e. the problem is 0-h; as is well known, such an invariance property plays a
pivotal role in the analysis of partial equilibrium5 (needless to say, Slutsky equations
do share such an invariance property). Being a constraint, (4) holds both on equilib-
rium, where the D’s are Marshallian demand functions (of prices and income), and
off-equilibrium, where the D’s may represent the compositions of affordable bundles,
possibly specified according to some behavioral response to prices and income. Then,
(4) provides a sharp insight concerning straight expansion paths: for fixed prices, if the
D’s increase proportionally with I, then EXE act along rays; homotheticity is in fact
the property (symmetry) guaranteeing that, for fixed input prices, Marshallian demand
functions grow proportionally along expansion paths (unit income elasticities).

5 In the words of Silberberg (2008), “Consumers respond to changes in relative prices, not absolute prices.”
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In such a setting, a recipe for the commutation of EXE and SUE can be tailored
as follows.

2.2 Homotheticity and commutativity

The benchmark relevance of homothetic models has long been assessed in terms of
straight expansion paths (rays through the origin of bundle space) and separability of
cost functions. Explicit functional forms (in first instance, Cobb–Douglas) are often
employed in devising arguments, due to the sharpness of the insights which can be
thereby represented. It is the aim of this subsection to deepen the relevance of homo-
theticity by virtue of the “blow ups” (in the words of Chambers and Mitchell (2001))
which generate homothetic profiles; such “blow-up” symmetry6 supports the state-
ment of Proposition 1 (below), establishing the commutativity of EXE and SUE in
homothetic settings. In a nutshell, homotheticity enables one to ‘bypass’ 0-h by virtue
of the fact that expansion paths are straight lines, rays, which can be cogently parame-
trized by scale, whereas, in the general problem, expansion paths are not straight and
cannot sensibly be parametrized by scale. Evidently, the (duality) mapping from the
space of parameters (prices and income) to (primal) input space is not a bijection (due
to 0-h) irrespective of homotheticity; the ‘surplus’ characterizing homothetic models
is that scale invariance is adapted to 0-h.

Figure 2 pictures a representative homothetic problem, in which the spots may
represent optimal choices (bundles) given a definite price ratio and a definite level
of income, but may as well represent off-equilibrium states to which we can apply
both EXE and SUE (for this reason no budget constraint is represented). It seems
to be implicitly accepted in the literature, though not explicitly stated (for instance,
no mention is to be found in Varian (1992), nor in Mas-Colell et al. (1995)) that in
homothetic problems the sequence of a finite EXE and a finite SUE can be reversed
in both orders, thereby re-establishing the original state (Fig. 1). As is well known,
underpinning such property is the fact that MRS are constant along rays, so that optimal
bundles consist of the same proportions of inputs once only EXE are in place.

The so called “blow up” symmetry of the objective function (which, recall, does
not imply constant return to scale), guarantees that MRS, and therefore FOC, are
unchanged along rays, in perfect analogy with the similitude of euclidean geometry:
once we expand a pattern (for instance, a set of curves), the same proportions hold as
in the initial pattern. It is remarkable that on the basis of such a simple observation
we are in a position to prove our first proposition, an insightful step in the direction of
our full fledged argument.

Consider a consumer7 endowed with homothetic preferences over two goods, and
facing a definite budget constraint, thereby identifying an optimal bundle A (Fig. 2).

6 Recall, a symmetry is a property of a system that is preserved with respect to the action of a group
of transformations of the system. Homotheticity entails properties preserved by “blow-ups”; any class of
homothetic level curves is invariant with respect to the action of scale transformations.
7 The focus on consumer, as already pointed out, is meant to sharpen the argument; an ‘isomorphic’
argument concerning a single output producer may as well be conceived, as enlightened by application to
Farrell decompositions (Sect. 5).
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Fig. 2 Sample expansion paths (blue lines) and level curves (red curves) for a representative homothetic
problem. Marginal rates of substitution are constant along expansion paths, as implied by homothetic/scale
symmetry (color figure online)

Then, consider a change in the prices of the goods, and possibly a change in income,
determining a new optimal bundle B. Capitalizing on homothetic symmetry, we can
connect A with B by a pair of paths generalizing Slutsky decompositions towards
the definition of independent EXE and SUE, as depicted in Fig. 2. A first path
consists of a sub-path, starting at A, generated by an income effect, leading to the
point R on the level curve containing B. A second sub-path, generated by a suit-
able substitution effect, consists of the part of the level curve joining R and B. The
income effect acts along an income expansion path (right bound blue line), and con-
nects optimal bundles for the same relative prices (prices to numeraire) for vary-
ing income. The substitution effect acts along the final indifference curve (upper red
curve).

As depicted in Fig. 2, a second path connecting A with B can be conceived by
reversing the order of effects. A first substitution effect pushes A towards the point
L on the initial level curve, the one point with the final goods ratio. Then, an income
effect pushes L towards the final point B. Indeed, it is hardly surprising that both paths
lead to the same final point, since such paths have been constructed for such a purpose.
Furthermore, it is somewhat trivial to notice that both substitution effects entail the
same initial and final goods ratio, since they connect the same straight expansion paths.
Noticeably, the two income effects correspond to the same proportional increase in
income: in fact, being

AR

OR
= LB

OB
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(equivalently, the triangles ORB and OAL are similar), the segments AR and LB cor-
respond to the same proportional increase in income, despite their different euclidean
length,8 and to the same Shephard’s distance from the final utility level.

We have thereby established that for homothetic consumers, any pair of optimal
bundles (choices) can be joined by properly defined finite and independent EXE and
SUE in both orders. We are thus in a position to state

Proposition 1 Finite and independent SUE (parametrized by input ratio) and scaling
EXE do commute on a region of (possibly the whole of) input space if the objective
function is homothetic on that region.

Proposition 1 accounts for both well known results and quite advanced issues, like
the consistency of standard and reversed Farrell decompositions, which we discuss in
Sect. 5. Proposition 1, being established on geometrical grounds, paves the way for
the introduction of expansion and substitution flows on input space, which will lead
us to our full fledged result (Proposition 2).

3 Vector fields and Lie brackets

The standard physical picture motivating the relevance of vector fields poses that a
vector field on a space may represent the ‘velocity’ field of ‘particles’ moving in such
a space, whose trajectories do not cross each other (thereby defining a flow) being
the velocity at any point uniquely determined. A dynamical parameter represents the
‘time’ it takes for the particles to travel along trajectories, given an initial position.
Such a mechanical picture has been progressively deepened in its mathematical struc-
ture during the twentieth century (we refer the reader to the literature on differential
geometry for a thorough account of vector fields and flows).

A vector field X on a manifold generates a flow on such manifold in terms of its
integral curves, i.e. curves everywhere tangent to X and parametrized by the proper
‘velocity’. The trajectories which constitute flows are more than one-dimensional sets
on the manifold, they are parametrized sets, i.e. they are functions from real intervals
to the manifold, for which the ‘velocity’ parameter does matter. So to say, integral
curves of a vector field are somewhat like the timetables of trains, for which not only
the position of the railway matters, but also the speed at which such railways are
travelled. In such a setting, the Lie derivatives LX generalize the ordinary directional
(partial) derivatives of calculus (linearity and Leibniz rule hold), and are defined on
every smooth tensor field on the manifold; our microeconomic perspective enables us
to confine attention to Lie derivatives of functions and vector fields.

The Lie derivative of a smooth function g with respect to the vector field X is the
field of directional derivatives of g along the flow of X; write

LX(g) = X(g) = d

dt
g(t), (5)

8 Recall, the Euclidean distance between points in input space bears no economic significance; for instance,
Shephard’s distance can be defined irrespective of any Riemann structure on the manifold of bundles.

123



Commutativity of expansion and substitution effects 91

with the smooth function g considered along each trajectory as a function of the flow
parameter t . Analogously, the Lie derivative of a vector field Y with respect to the
vector field X is a vector field which represents the ‘derivative’ of Y along the flow
of X; write (for any smooth function g)

LX(Y)(g) ≡ [X,Y](g) ≡ X(Y(g))− Y(X(g)) (6)

and call it Lie bracket of X and Y. Such bracket is skew symmetric (its sign reverses
with the order of the entries) and satisfies the Jacobi identity. Remarkably, the Lie
bracket characterizes the commutativity of the flows of the two vector fields (therefore
two vector field are said to commute if their Lie bracket vanishes).

In order to start grasping such a profound issue, notice that coordinate vector fields
do commute. The underlying intuition poses that the change in the value of a function
g(x, y) in passing from a point to another can always be decomposed as the sum of
an increment along the x direction and an increment along the y direction, namely,

g(x + h, y + k)− g(x, y) = �x g +�y g (7)

being the order in which such directions are contemplated evidently irrelevant. Com-
pare (7) with formula (1) which represents the differential of the function. In geometric
representation, the infinitesimal commutativity encompassed in (7) can be expressed
in terms of the Lie brackets of the coordinate vector fields, i.e.,

[
∂

∂x
,
∂

∂y

]
= 0 ⇔ ∂

∂x

(
∂g

∂y

)
− ∂

∂y

(
∂g

∂x

)
= 0 (8)

for any smooth function g on the manifold. The significance of such commutativity is
easily spelled out: to say that coordinate vector fields do commute is tantamount to say
that the change in the function f from following a coordinate curve, and then following
another coordinate curve, does not depend on the order in which such coordinate
paths are sequenced. The commuting mixed derivative ∂2

∂x∂y (Schwartz’s theorem of
standard calculus) is guest: once coordinate vector fields are at stake, the relative flows
do commute, contrary to the general Lie bracket, which can be written (Arnold 1992,
p. 207)

[
∂

∂s
,
∂

∂t

]
g = ∂2g

∂s∂t

∣∣∣∣
s=t=0

. (9)

with respect to the parameters s and t of the flows. Such a bracket measures the
departure from commutativity of the two flows. One could argue that the commutativity
represented in (8) reflects the ‘orthogonality’9 of the vector fields in the brackets; that
is not the case, as the following examples will make clear.

9 Recall, one is not in fact in a position to define orthogonality unless a Riemann structure has been
introduced on the manifold; definitely, our arguments do not employ the Euclidean metric on bundle space.
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Being the Lie derivative linear, we can represent basic insights by focusing vector
fields with only one component. First, it is not difficult to convince oneself that propor-
tional vector fields have vanishing Lie derivative. Then, simple classes of commuting
‘orthogonal’ vector fields are given by ϕ(x) ∂

∂x and ψ(y) ∂
∂y , being ϕ and ψ smooth

functions; true, for any smooth function g(x, y),

[
ϕ(x)

∂

∂x
, ψ(y)

∂

∂y

]
g(x, y) ≡ ϕ(x)

∂

∂x

(
ψ(y)

∂g

∂y

)
− ψ(y)

∂

∂y

(
ϕ(x)

∂g

∂x

)

= ϕ(x)ψ(y)

[
∂

∂x
,
∂

∂y

]
g(x, y) = 0

Corresponding to the vanishing of such local measure, we expect the associated flows,
for finite parameter intervals, to commute: in fact, the flow of the first vector field is
made of x-coordinate lines, and its velocity is independent of y; an analogous property
holds for the second vector field. Then, one can follow the flow of one vector field for
a finite interval, and then follow the flow of the other vector field for another finite
interval, and the final point does not depend on the order in which flows are sequenced.

Such insights can be sharpened by focusing the commutativity of the coordinate
vector field ∂

∂x with the vector fields y ∂
∂y and x ∂

∂y . The Lie brackets under inquiry
result in (as usual, for any smooth function g)

[
∂

∂x
, y

∂

∂y

]
g(x, y) ≡ ∂

∂x

(
y
∂g

∂y

)
− y

∂

∂y

(
∂g

∂x

)
= 0, (10)

[
∂

∂x
, x

∂

∂y

]
g(x, y) ≡ ∂

∂x

(
x
∂g

∂y

)
− x

∂

∂y

(
∂g

∂x

)
= ∂

∂y
(g). (11)

The vanishing of the Lie bracket (10) on all input space entails the commutation
of the flows, as can be intuitively grasped by noticing that such flows consist of
coordinate lines along which the velocity does not depend on the fixed coordinate.
On the opposite, the nonvanishing Lie bracket (11) (which results in the y coordinate
vector field) entails that the flows under inspection do not commute: the velocity of the
vector field x ∂

∂y depends on the x coordinate, so that it makes a difference if one follows
its flow for different values of x, and hence the order matters with which our flows are
sequenced (see Appendix 2). In fact, flows represent global geometric ‘pictures’ for
first order ODEs (dynamical systems), whose analytical structure provides the local
coordinate characterization of the system; once a pair of flows commute, the associated
dynamical systems define different paths leading to the same point, the trivial case
being represented by coordinate vector fields.

4 Expansion and substitution flows

It is the aim of the present section to introduce a geometric representation of EXE and
SUE by means of flows on input space generated by suitable vector fields, thereby
establishing a proper commutation settings for EXE and SUE so as to guarantee
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Commutativity of expansion and substitution effects 93

(i) commutation for homothetic problems (Proposition 1), and (ii) consistency with
standard representations of effects. As a preliminary insight, recall that in two dimen-
sions there is a trivial level of analysis for the commutativity of flows: provided level
curves do span all values of input ratios (the ‘regular’ case we are interested in), one
can always find a suitable SUE which connects any pair of expansion paths, so that
one can connect any two points on bundle space by sequences of portions of expansion
paths and level curves. Evidently, our analysis triggers more structure: effects are to
be properly parametrized, and their commutativity is expected to connect effects of
the same size, so as to enter equations with a sound significance.

4.1 Additive expansion flows

As already pointed out, the very possibility of meaningfully representing EXE in
terms of flows on input space reflects the ‘regularity’ property our expansion paths are
meant to fit, i.e. we want such paths to fill (foliate) bundle space and never intersect
with each other. Equivalently, we expect prices and income to uniquely determine an
optimal point in bundle space. True, each expansion curve is naturally parametrized by
income for given prices, yet, connecting different curves by income parametrization
is not straightforward, due to 0-h. As is well known, we are in a position to define a
global parametrization at the expense of fixing a relation between income and prices
(the choice of a numeraire is a typical example of such fixing); building on the resulting
bijection, we can define expansion flows as follows.

Consider the Marshallian demand functions (of prices and income) solving the
optimization problem of a consumer. For given prices, and income ranging from zero
to infinity, we define an income expansion curve, parametrized by income. Therefore,
by differentiating such demand functions with respect to income we obtain the com-
ponents of a vector field with respect to coordinate vector fields (which define a basis
of the tangent space at each point of the manifold, a global frame), namely,

X = ∂Dx (p, I )

∂ I

∂

∂x
+ ∂Dy(p, I )

∂ I

∂

∂y
. (12)

The flow of (12) consists, by definition, of expansion paths parametrized by income.
Notice, the components of (12) are not unfamiliar, being parts of the EXE terms in
Slutsky equations. (12) embodies the geometric properties of income effects, which
can thereby be represented by portions of the integral curves of (12), as measured by
income increases (needless to say, such parameter intervals do not define euclidean
lengths). For normal goods such flow is ‘expanding’; the bending of such paths towards
one axis defines a luxury good. The vector field (12) is the generator of the flow defined
by expansion paths; EXE terms is Slutsky equations are proportional to the components
in (12). On the other hand, SUE terms represent infinitesimal paths along level curves,
built out of Hicksian demand functions, which identify optimal bundles as functions of
the level of output or utility and of prices. In essence, Slutsky equations connect points
on nearby expansion paths in terms of, on the one hand, SUE measured by changes
in compensated demand, and, on the other hand, EXE measured by changes in direct
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demand. We shall introduce (Sect. 4.3) a vector field generating SUE. Call additive
EXE those generated by (the flow of) the vector field (12), since they are measured by
(additive) increases in income, unlike the proportional increases which characterize
homothetic symmetry (Proposition 1), for which a suitable vector field is needed.

Evidently, in and by itself, expression (12) does not represent a vector field on bundle
space, since its components are not functions of x and y; yet, one can employ FOC in
order to turn (12) into a vector field on input space, provided a relation between income
and prices is fixed, so as to break 0-h. See Appendix 1 for the familiar Cobb–Douglas
case, by means of which we shall build our main Proposition.

4.2 Generator of homothetic (scale) symmetry

As established by Proposition 1 (by means of similitude arguments), homothetic mod-
els admit a natural scaling parametrization of EXE. Thus, let us look for a ‘connection’
between geometric similitude and analytical mappings in order to characterize the
benchmark role of homothetic problems with respect to general problems, and better
grasp the sense in which input ratio defines a parametrization of SUE adapted to the
benchmark homothetic symmetry. First, recall the well known fact that the “blow up”
symmetry can be generated by the scaling vector field

Z = x
∂

∂x
+ y

∂

∂y
, (13)

a radial vector field whose flow consists of scale transformations, solutions to the
initial value problems associated with the ODE system ẋ = x, ẏ = y, equivalent to
(13); the well known solution mapping

x(t; x0, y0) = x0et , y(t; x0, y0) = y0et (14)

is an exponential mapping which drags any point in bundle space along the corre-
sponding ray through the origin, so that any scale transformation is accomplished by
the homothety et : we thereby assess that the vector field (13) generates the “blow ups”
with respect to which homotheticity is defined. Recall, furthermore, that Shephard’s
input distance function is defined in terms of proportional (radial) reductions of inputs.
Evidently, for any positive α, the vector field αZ is as well a generator of “blow ups”
(with the proper rescaling of the flow parameter). We call (14) exponential mapping
since it shares the defining property of exponentials, namely, exp(tZ) exp(sZ) =
exp ((t + s)Z), for any t, s.

Capitalizing on the insights represented in proposition 1, call scaling EXE those
generated by the vector field (13); the properties of the flow (14) underlie Proposition 2
(below). In Appendix 1 we find that (13) is a simple function of the additive expansion
vector field for a Cobb Douglas model, namely, X f = a ∂

∂x + a y
x
∂
∂y = a 1

x Z, provided
x is taken as numeraire. It is not difficult to conjecture that the same holds for any
homothetic problem. By the properties of Lie brackets, we shall therefore reduce the
commutation properties of additive expansion vector fields to those of the scaling
vector field Z (13), with the caveat that the effects generated by Z are scaling effects,
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guest of Proposition 1. True, despite its radial nature, the flow (14) does not parallel
drag along budget constraints, so that it cannot be employed as a generator of ‘additive’
EXE.

4.3 Substitution flows

Turn now to the representation of SUE. It has not been difficult to connect our addi-
tive expansion flows with the income effects in Slutsky equations, since such terms
contain the components of (12). Definitely, the substitution terms in Slutsky equations
contain derivatives with respect to prices, but evidently prices do not represent viable
parametrizations in the primal setting of bundle space. Therefore, we have to trans-
form price derivatives into derivatives with respect to a cogent primal parametrization:
it is natural to elect input ratio to natural parametrization in that it is adapted to the
homothetic benchmark.

Let us introduce a vector field whose flow is meant to generate the substitution
effects along a given class of level curves. We proceed in two steps. A first step
identifies a field of vectors parallel to level curves, as explicitly10 dependent on the
objective function f according to

S̃ f = ∂ f

∂y

∂

∂x
− ∂ f

∂x

∂

∂y
(15)

(evidently, equivalent utility functions f give rise to parallel vector fields according to
such formula). By construction, the objective function f is constant along the flow of

the vector field (15): S̃( f ) ≡ LS̃( f ) = ∂ f
∂y

(
∂ f
∂x

)
− ∂ f

∂x

(
∂ f
∂y

)
= 0; such an algebraic

structure resembles the euclidean scalar products between the vector field (15) and
the gradient of f, and one may be tempted to conclude that such vector fields are
orthogonal; that is not the case (see footnote 9). For our workhorse Cobb Douglas
model f (x, y) = xa y1−a such a vector field reads

S̃ f = (1 − a)

(
x

y

)a
∂

∂x
− a

( y

x

)1−a ∂

∂y
.

Our task has been partially performed: we have constructed a vector field with the
proper direction at each point in bundle space, which is uniquely determined by the
objective function under inquiry. In order to complete out task, we have to check that
our substitution vector field is parametrized by input ratio, so as to comply with the
commutation setting tailored by Proposition 1. Thus, we normalize the vector field
(15) by its action on the input ratio, thereby obtaining a flow whose parameter grows
exactly like the input ratio, namely,

S f ≡ 1

S̃ f (
y
x )

(
∂ f

∂y

∂

∂x
− ∂ f

∂x

∂

∂y

)
(16)

10 Once a vector field is defined, one of two possible verses for the flow is fixed; evidently, for our purposes,
the opposite vector field (opposite components) does the job as well.
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For the Cobb Douglas case above we find S̃ f
( y

x

) = −xa−2 y1−a, so that the substi-
tution vector field results in

S f = −(1 − a)x2 y−1 ∂

∂x
+ ax

∂

∂y
. (17)

with S f
( y

x

) = 1.
To sum up, we have succeeded in defining flows generating SUE like the ones

entering Slutsky equations. It is not difficult to convince oneself that the terms ∂Hi

∂p j
in

Slutsky equations are parallel to the vector field (16) (see Varian 1992, p. 121).

4.4 Flows and commutation

Finally, we are in a position to employ our flows on bundle space in order to charac-
terize locally the degree of departure from the homothetic benchmark. Proposition 1
establishes that commutativity holds for homothetic models once scaling EXE are con-
sidered; we thus expect such commutativity not to hold for additive expansion effects;
furthermore, we expect Lie brackets to provide useful insights in such respects.

For our Cobb–Douglas models f (x, y) = xa y1−a the relevant Lie bracket reads

[S f ,X f
] =

(
−(1 − a)x2 y−1 ∂

∂x
+ ax

∂

∂y

)
a

(
∂

∂x
+ y

x

∂

∂y

)

−a

(
∂

∂x
+ y

x

∂

∂y

)(
−(1 − a)x2 y−1 ∂

∂x
+ ax

∂

∂y

)

(being x the numeraire). By the linearity of the Lie bracket, we can expand the algebra
according to the general structure (Arnold 1992 p. 208; Williams 2008 p. 39)

[S f ,X f
]

x = (S f )x
∂(X f )x

∂x
+ (S f )y

∂(X f )x

∂y
− (X f )x

∂(S f )x

∂x
− (X f )y

∂(S f )x

∂y[S f ,X f
]

y = (S f )x
∂(X f )y

∂x
+ (S f )y

∂(X f )y

∂y
− (X f )x

∂(S f )y

∂x
− (X f )y

∂(S f )y

∂y
(18)

Instead of performing such algebra, compute first the Lie bracket [S f ,Z], which
we expect to vanish on account of Proposition 1: being SUE measured by input ratio,
we expect the substitution vector field to commute with the scaling vector field (13).
In fact, performing the proper algebra we get

[S f , Z
]

x = (S f )x
∂Zx

∂x
+ (S f )y

∂Zx

∂y
− Zx

∂(S f )x

∂x
− Z y

∂(S f )x

∂y

= −(1−a)x2 y−1 · 1+ax · 0−x(a−1)2xy−1−y(1 − a)x2 y−2 =0 (19)
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[S f , Z
]

y = (S f )x
∂Z y

∂x
+ (S f )y

∂Z y

∂y
− Zx

∂(S f )y

∂x
− Z y

∂(S f )y

∂y

= −(1 − a)x2 y−1 · 0 + ax · 1 − xa − y · 0 = 0 (20)

The vanishing of the Lie bracket [S f ,Z], assessed componentwise by (19) and (20),
parallels the content of Proposition 1 and introduces a differential perspective in which
the parametrization of the substitution vector field (input ratio) is adapted to the homo-
thetic symmetry, which can be generated by Z. As already pointed out, we then expect
the Lie bracket [S f ,X f ] not to vanish, as can be easily checked as follows: for any
smooth function g,

[S f ,X f
]
(g) =

[
S f ,

1

x
Z

]
(g) = S f

(
1

x
Z(g)

)
− 1

x
Z(S f (g)) = S f

(
1

x

)
Z(g)

(21)

The following interpretation of such a formula is insightful. The nonvanishing Lie
bracket (21) signals that sequences of paths built out of finite effects (a finite EXE
followed by a finite SUE and the other way round) do not end up at the same final point.
True, being SUE parametrized by input ratio, they connect rays, so that the ‘missing
paths’ must be along rays: in fact, (21) identifies a radial vector field, which generates
the (finite or infinitesimal) ‘missing paths’ which determine the non commutativity of
flows. In much the same way, had we measured EXE in the standard additive guise,
we would have missed the commutativity of effects in Proposition 1.

To sum up, the differential geometric perspective represented in such brackets
complements the euclidean geometric perspective represented in Proposition 1. We
thereby re-establish, on differential geometric grounds, the benchmark relevance of
homothetic models, at the same time paving the way for the Lie bracket to assess
a fundamental measure of the (non)commutativity of EXE and SUE. The following
proposition distils the heart of our analysis.

Proposition 2 SUE (measured by input ratio) do commute with scaling EXE if and
only if the problem is homothetic. The Lie bracket between the scaling and substitution
vector fields provides a meaningful local measure of the departure from commutativity
which characterizes non homothetic models, in that it defines a flow on (and therefore
a direction at each point of) input space.

Then, building on the insights generated by formula (21), we can state the following

Conjecture In homothetic problems, the Lie bracket between the expansion vector
field (12) and the substitution vector field (16) is a vector field parallel to (12).

Such a conjecture points at the general problem of setting free, to some extent, from
the straitjacket of functional forms, an issue which our geometric approach is meant
to trigger.

Finally, we are in a position to apply our theoretical approach to applied production
analysis, so as to attach ‘flesh and blood’ to our framework in terms of measures of
productive inefficiency.
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5 Standard and reversed decompositions of overall productive efficiency

As already anticipated, our Propositions account for the benchmark relevance of homo-
thetic models established by Bogetoft et al. (2006, “BFO” henceforth) with respect to
the definition of productive efficiency. Recall, Farrell (1957) set forth a decomposi-
tion of productive overall (in)efficiency (OE) as the product of technical (in)efficiency
(TE) and allocative (in)efficiency (AE), thereby setting the stage for a basic strand of
applied production analysis. Farrell (1957) did posit that TE is to be computed first, by
projecting the actual inefficient input bundle onto its efficient counterpart along the ray.
The ratio between technically efficient inputs and initial inputs is called TE; evidently,
TE is maximized (TE = 1) if the initial bundle is already technically efficient. Then,
along the efficient isoquant defining TE, one determines the optimal input bundle as
function of input prices; the ratio between the cost of the optimal bundle and the cost
of the TE bundle is called AE, which is maximized (AE = 1) if the TE bundle is the
one of least cost. Then, OE = TE·AE; despite the commutative property of products
of real numbers, the order matters, on both theoretical and empirical grounds, with
which such standard effects are computed: “One can say that allocative efficiency is
treated as the residual when evaluating the overall performance” (BFO, p. 450).

In fact, BFO set forth a reversed decomposition of OE meant to enlighten the
relevance of the order with which TE and AE are computed. Evidently, such a reversed
approach does fit our commutation framework, provided one interprets, on the one
hand, TE as a scaling EXE, and, on the other hand, AE as a SUE measured by bundle
cost. The naturality of such a correspondence should not be difficult do grasp on
intuitive grounds by comparing our Fig. 2 with Fig. 1 in BFO. True, BFO consider
multioutput problems, yet TE and AE are measured on input space,11 upon which
homotheticity plays a pivotal role.

Propositions 1 and 2 in BFO establish the benchmark role of (input- and ray-)
homothetic models, in which standard and reversed OE decompositions do coincide.
The proofs of such Propositions define an insightful algebraic perspective which com-
plements our geometric arguments for Propositions 1 and 2. The vanishing of the
Lie bracket represented in (19) and (20) assesses the benchmark role of homothetic
models, with respect to which the Lie bracket may define a natural local differential
measure of the second order allocative (in)efficiency AAE defined in BFO.

Beyond the theoretical relevance of the issue, which our previous analysis was
meant to enlighten, the managerial and organizational relevance of the hierarchies
between choices comes to the fore: the analysis of hierarchies between strategies of
improving TE and AE represents a beautiful setting (at least, in the author’s view) for
putting the theory at work. Following BFO, one may envisage TE as improving how
to do things right, whereas AE can be considered as ameliorating the way to do the
right things. Being organizations in charge of doing the right things right, and being
organizations complex structures which cannot be reconfigured straightforwardly, the
order matters with which such reconfigurations are studied and implemented: “it may

11 It is not difficult to convince oneself that, in single output settings, the hypotheses (A1), (A2) and (A3)
in BFO do collapse onto the hypothesis that we can identify the (efficient) isoquant corresponding to the
initial (inefficient) input combination, and then define SUE along such a curve.
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be easier to reallocate resources within a hierarchy or via markets, than to actually
change the production procedures (including the culture, power configuration, incen-
tive structure etc.) used in the individual production units” (BFO, p. 451). Needless
to say, our framework is not meant to provide algorithms for solving such complex
problems, but rather to enlarge the language by means of which such problem can
be represented. After all, managing complexity entails, in first instance, providing a
sound representation of the underlying degrees of freedom. In such respects, our geo-
metric approach may contribute handles for dealing with recent advances in micro-
economics.

For instance, Chambers and Färe (1998) introduce the notion of translation homo-
theticity (“TH”) as a generalization of homotheticity, whose rationale can be grasped
as follows. Let L denote input requirements sets for our technology, and consider
translations of the reference input requirements set L(1); our technology is TH if, “as
one moves out from any point on L(1) in the direction of g, that movement will cut
isoquants or indifference curves at points having the same marginal rate of substitu-
tion as the point L(1).” (ivi, p. 632). Noticeably, such Authors represent the explicit
mapping between a TH technology and a homothetic technology for single output.
Since translating vector fields is a well defined notion w.r.t. a given coordinate system
(inputs), and such translated fields display “blow up” symmetry w.r.t a new “origin”,
TH may be enlightened by our geometric approach to flows on input space. Corre-
spondingly, more advanced notions (such as input and output TH, Chambers 2005,
and references therein) may benefit from the geometric toolkit defined by flows and
Lie brackets.

6 Perspectives

It was the aim of the present contribution to argue about the relevance of enlarging
the language of microeconomics towards the commutativity of EXE and SUE as an
insightful perspective on partial equilibrium. We have gone through a differential
geometric approach to the parametrizations of EXE and SUE meant to embrace well
known instances (like expansion paths and Slutsky equations) and sparkle promising
advances (like the commutativity of EXE and SUE). It is quite natural to conjecture the
relevance of applying such a framework to the analysis of welfare, general equilibrium
and market failures (in first instance, nonconvexities); in fact, before that, a number
of promising avenues of inquiry can be envisioned.

In first instance, the comparison between standard and reversed Farrell decompo-
sitions may represent an insightful line of progress in the relation between theoretical
and applied microeconomics, in which the benchmark role of homothetic models is
pivotal. In fact, being technical efficiency measures expressed as ratios (scaled by
input distance), the scaling properties represented by our scaling vector field may play
a major role in tailoring technical as well as conceptual advances in applied produc-
tion analysis. Evidently, the hypothesis of single output can be relaxed: in multioutput
settings our geometric approach may shed new light on the relevance of non-radial
changes (Chambers and Mitchell 2001) and translation homotheticity (Chambers and
Färe 1998; Chambers 2005).
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An intriguing line of research may focus the argument set forth by Baumol (1973),
according to which the ambiguity of the sign of the income effect is crucial to the rele-
vance of the Linder theorem. In such respects, our representation of EXE and SUE may
provide ‘handles’ for addressing such an ambiguity, much like the theory of optimal
control provides handles (in first instance the maximum principle) to address intertem-
poral controlled optimization, which cannot be reduced to a sequence of instantaneous
optimizations. Possibly, the introduction of flows on bundle space may pave the way
for intertemporal optimizations or evolution processes.12 Then, the nuisances raised
by income effects may turn to pregnant microeconomic insights.

Stiglitz (2000) points out that major advances in twentieth century economics per-
tain to the economics of information, which, for instance, enables one to tailor the
relevance of information imperfection and information asymmetries in the departures
from the perfection benchmark represented by general equilibrium. With an ‘oppo-
site’ attitude, the present contribution aims at deepening the foundations of micro-
economics in a deterministic setting with perfect information. True, in the author’s
vision, the relevance of the present analysis is grounded in the sharp logic defined
by the commutativity of EXE and SUE, which deepens the benchmark role of homo-
thetic symmetry as adapted to the 0-h property of partial equilibrium in production and
consumption, the ‘skeleton’ of microeconomics. We have been arguing about the rel-
evance of global parametrizations of basic effects, irrespective of the functional form
of objective functions, thereby setting a general framework for posing new problems
(like our Conjecture, Sect. 4) and improving the representation of duality, possibly
enlarging the methods of empirical analysis.

Definitely, a natural step forward seems to be represented by a geometric analysis
of luxury in terms of expansion flows. Luxury goods, recall, represent a general trait
of consumption, namely, the case for income effects to shift monotonically the relative
composition of optimal bundles. As such, the analysis of luxury may enlighten the
generality of the present approach.
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Appendix 1. Cobb–Douglas homotheticity

Consider the class of constant returns to scale (CRS) Cobb–Douglas objective func-
tions f (x, y) = xa y1−a, with 0 < a < 1, for which MRS are constant along rays
through the origin: it is not difficult to fix the explicit dependence of MRS on the point

12 For instance, replicator dynamics is defined by means of vector fields on the simplexes representing the
space of mixed strategies (see for instance Weibull 1995; Gintis 2009). For an advanced perspective on the
theory of optimal control see Grass et al. (2008).
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in bundle space, since along a level curve with level υ one is faced with the functional

dependence yυ(x) = υ
1

1−a x
−a
1−a , out of which one can establish the dependence of

MRS on the input ratio κ = y/x by first differentiating yυ with respect to x, and then
plugging in the form of f, so as to obtain (Varian 1992, p. 12)

−
∂ f
∂x
∂ f
∂y

= ∂yυ
∂x

(κ) ≡ MRS(κ) = −a

1 − a
κ, ∀υ ∈ range( f ). (22)

Such a property of homothetic models is thus particularly manageable in Cobb–
Douglas models, which we employ for a review of optimization problems preliminary
to further developments.

Consider the CRS Cobb–Douglas objective function f (x, y) = x
1
3 y

2
3 and the

constraint I = px x + py y; as is well known, by virtue of the convexity of f, such an
optimization is simply performed in terms of the FOC

∂ f

∂x
= 1

3

( y

x

) 2
3 = λpx ,

∂ f

∂y
= 2

3

(
x

y

) 1
3 = λpy, (23)

according to which the gradient of the objective function must be proportional to the
price vector (the familiar “price ratio = MRS” rule), the constant of proportionality
being the multiplier λ. Being MRS constant along rays, one immediately obtains that
the components of optimal bundles, as functions of prices and income, read

x∗ = I

3px
= Dx (I, px ), y∗ = 2I

3py
= Dy(I, py), (24)

and that the optimal multiplier λ∗is such that f = Iλ∗. For fixed prices, (24) define the
familiar straight Engel curves of Cobb–Douglas models, representing normal goods
whose consumption is proportional to income, and weighted by the exponents (1/3
and 2/3 in the case at hand) in the objective function f . As expected, ordinary demand
functions are proportional to the ratio of income to own prices, and uncompensated
cross-price responses vanish (Cornes 1992, p. 50), a manifestation of the general
instance that homothetic problems entail no primal (nor dual) level effects. For fixed
prices, the functions (24) define curves in bundle space parametrized by income,
the well known straight expansion paths of homothetic models (the ratio of ordinary
demand functions is constant), along which MRS is constant. Income effects are easy to
compute in this case, and can be disentangled from substitution effects (Proposition 1
in the main text).

For varying price vector, the curves (24) define a flow in bundle space, in that they
do not cross each other, and each curve inherits a natural parametrization by income.
It is tempting then to define an expansion vector field (uniquely determined by the
objective function) generating such an expansion flow as

X f = 1

3px

∂

∂x
+ 2

3py

∂

∂y
(25)
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with ‘constant’ components along each ray, being the ray identified by the price ratio
(notice that a flow may consist of straight lines even if the components of the vector
field are not constant, they only need be proportional). True, once we try and express
the components of (25) in terms of x and y we stumble on 0-h in income and prices,
and we need a fixing relation


(I, px , py) = 0 (26)

with respect to which to define a vector field on input space, at the cost of breaking
0-h. A noticeable example of such a fixing procedure is given by the condition of unit
cost of the reference bundle in the definition of benefit functions (Luenberger 1996).
A natural fixing relation is the choice of a numeraire (compare Williams 2008, p. 67):
we can choose for instance px = 1, thereby measuring both I and py in units of px;
write

J ≡ I

px
, p ≡ py

px
. (27)

Then, express the demand functions (24) in terms of the independent parameters (27)
and differentiate with respect to J to obtain the components of the expansion vector
field.

X f (x numeraire) = a
∂

∂x
+ a

y

x

∂

∂y
= a

1

x
Z. (28)

As expected, such vector field is radial, and its flow is naturally parametrized by
‘normalized’ income J in (27). (28) is a simple function of the scaling vector field, so
that its Lie brackets with relevant vector fields can be computed in terms of Z (Sect. 4).
The income to px effects measured by J, evidently, need be connected to ordinary
income effects by a proper recipe. A useful fixing relation would be one such that

X f = y ∂
∂x + y2

x
∂
∂y = y

x Z (it is evidently relevant to assess the economic significance
of such a fixing). Notice that fixing a numeraire has a geometrical drawback in the
representation of input space: 0-h does not hold anymore, so that we cannot represent
the effects of scaling prices for fixed income, a transformation of parameters which is
no more available.

Now, turn to the significance of Hicksian demand functions. The form is well known

of the cost function C(px , py, υ) = υp
1
3
x p

2
3
y for Cobb–Douglas models, so that the

Hicksian demand functions

H x,y(px , py, υ) ≡ Dx,y(px , py,C(px , py, υ))

result in

H x (px , py, υ) = 1

3
υ

(
py

px

) 2
3

, H y(px , py, υ) = 2

3
υ

(
px

py

) 1
3

. (29)
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Such functions represent optimal bundles along level curves: given convexity, along
any level curve there is a unique point at which such level curve is tangent to the
budget constraint. Such a point can thus be uniquely characterized by the level of
the objective function and by the price vector. The functional forms (29) represent
a factorized dependence on level and price ratio, as a consequence of (22). We are
then in a position to write explicitly Slutsky equations for the problem at hand (Varian
1992, p. 122), for instance

Dx
y (p, I ) = H x

y (p, υ)− Dx
I (p, I )H y(p, υ)

0 = 1

3
· 2

3

1

py
υ

(
py

px

) 2
3 − 1

3px

2

3
υ

(
px

py

) 1
3

The vanishing of the RHS can be considered as a compatibility condition with respect
to Cobb–Douglas models, for which the vanishing of the LHS is a consequence of
vanishing cross-price elasticities.

Appendix 2. Elementary flows and Lie brackets

Consider the vector fields X1 = ∂
∂x , X2 = y ∂

∂y , whose Lie bracket vanishes, as
established in the main text (Sect. 3). By definition, the flow of the vector field X1 for
a parameter interval t drags the point (x0, y0) to the point

(x(t), y(t)) = (x0 + t, y0);

correspondingly, the flow of the vector field X2 for a parameter interval s drags the
point (x0, y0) to the point

(x(s), y(s)) = (x0, y0es).

Then, consider a path starting at (x0, y0), following the flow of X1 for an interval
parameter t, and then following the flow of X2 for an interval parameter s: such path
ends up at the point

(x(t, s), y(t, s)) = (x0 + t, y0es);

evidently, a path following the same flows in reversed order, for the same parameter
intervals, ends up at the same point: we thereby confirm that the vanishing Lie deriva-
tive of the vector fields (a local condition) is associated with the commutativity of the
flows (a non local condition).

Consider then the vector field X3 = x ∂
∂y , whose Lie bracket with X1 = ∂

∂x is
nonvanishing (main text); we expect the associated flows not to commute, as we
confirm by the following explicit computation. The flow of X3 for an interval parameter
s drags the point (x0, y0) to the point

(x(s), y(s)) = (x0, y0 + x0s).
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Thus, consider a path starting at (x0, y0), following the flow of X1 for an interval
parameter t, and then the flow of X3 for an interval parameter s. Such a path ends at
the point

(x(t, s), y(t, s)) = (x0 + t, y0 + (x0 + t)s). (30)

Conversely, consider a path starting at (x0, y0), following the flow of X3 for an interval
parameter s, and then the flow of X1 for an interval parameter t . Such a path ends at
the point

(x(s, t), y(s, t)) = (x0 + t, y0 + x0s). (31)

In a nutshell, the x coordinate influences the speed in the y direction, so that it matters
for which value of x we follow the flow of X3, and the two paths (30, 31) do not
commute. Notice, in the main text we have established that the Lie bracket of the two
vector fields results in ∂

∂y ; compare such a differential measure of noncommutativity
(a tangent vector at each point of the manifold) with the finite measure represented by
the segment

(x0 + t, y0 + x0s)− (x0 + t, y0 + (x0 + t)s) (32)

joining the final points of the two possible paths: the Lie bracket provides a differential
measure of noncommutativity of infinitesimal paths, which, upon integration, provides
a finite measure of the noncommutativity of finite paths. For the case at hand such an
integration is trivial, since the Lie bracket is a coordinate vector field, and its integration
can be represented by means of the explicit formula (32).
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