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Abstract
Dawsonite, a hydrated carbonate, is a key mineral studied for Carbon Capture and Storage (CCS) initiatives. It forms in high 
pCO2 environments, enabling gas storage in a solid state within geological reservoirs, thereby helping mitigate greenhouse 
gas emissions. The Rio Bonito Formation has gained attention as a potential CO2 reservoir due to its favorable characteristics 
such as porosity, permeability, depth, thickness, organic matter content, and the presence of an effective sealing layer (Palermo 
Formation), particularly in the central region of the Paraná Basin. This study reveals the natural occurrence of dawsonite 
within the Rio Bonito Formation in the southern part of the Paraná Basin, in Rio Grande do Sul State, Brazil. Dawsonite 
was identified in quartz sandstones through petrographic analysis, indicating its formation during mesodiagenesis, where it 
crystallized within moldic pores. The presence of dawsonite was further confirmed through scanning electron microscopy 
coupled with energy-dispersive X-ray spectroscopy (SEM–EDX) and X-ray diffraction (XRD) techniques. This discovery 
marks the first documented occurrence of dawsonite within the Rio Bonito Formation. It suggests that under similar condi-
tions, other sections of the Rio Bonito Formation may also include dawsonite, thereby expanding the potential for onshore 
CCS in the Paraná Basin.
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Introduction

Dawsonite, a hydrated sodium aluminum carbonate 
(NaAlCO3(OH)2), was considered a rare mineral up to the 
twentieth century (Loughnan and Goldbery 1972). However, 
today it is regarded as an unusual mineral on Earth's sur-
face, having been identified in several parts of the world. 
Examples include Argentina (Comerio et al. 2014), Australia 
(Golab et al. 2006), Belarus (Limantseva et al. 2008), Brazil 
(Teles et al. 2022), China (Liu et al. 2011; Li et al. 2024), 

Italy (Wopner and Höcker 1987), Japan (Okuyama 2014), 
Mongolia (Dong et al. 2011), Poland (Rybak-Ostrowska 
et al. 2020), Romania (Cseresznyes et al. 2024), Tanza-
nia (Hay and Reeder 1991), United States (Burnham et al. 
2015), and Yemen (Worden 2006). Dawsonite belongs to 
the orthorhombic crystal system and was first identified by 
Harrington (1875). It is a whitish mineral with a silky luster 
and a fine fibrous habit (Golab et al. 2006), occurring mainly 
in an authigenic subsurface context. It is substantially more 
unstable and therefore rarer on the surface (Saldanha et al. 
2023; Cseresznyes et al. 2024).

Mineral dawsonite forms at temperatures between 25 
and 200 ºC (Li et al. 2017; Qu et al. 2022), while synthetic 
dawsonite can be produced between 60 and 180 ºC (Li et al. 
2022; Knorpp et al. 2023) under high partial pressure of 
CO2 (Marinos et al. 2021; Li et al. 2023) and remains sta-
ble in alkaline pH environments (Hellevang et al. 2010). 
Dawsonite is mostly found in rocks at depths between 1000 
and 2200 m (Qu et al. 2022), although there are records of 
its occurrence at depths shallower than 200 m (Limantseva 
et al. 2008; Comerio et al. 2014 and this work) and at depths 
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greater than 3000 m (Worden 2006). It is mainly found in 
clastic rocks, accounting for approximately 75% of its occur-
rence (Qu et al. 2022), including feldspathic (Li and Li 2016) 
and quartz sandstones (Gao et al. 2009), pyroclastic rocks 
(Dong et al. 2011) and sedimentary tuffs (Zalba et al. 2011). 
Dawsonite is also recorded in igneous rocks (Sirbescu and 
Nabelek 2003), limestones (Goldbery and Loughnan 1977), 
oil shales (Palayangoda and Nguyen 2015), coal (Ming et al. 
2017) and soils (Reynolds et al. 2012).

Dawsonite has recently gained prominence due to its CO2 
mineral trapping potential (Hellevang et al. 2005, 2011, 
2013; Kaszuba et al. 2011; Lu et al. 2022). Initiatives to 
mitigate greenhouse gas (GHG) atmospheric concentrations 
by safely storing GHGs in the subsurface for long periods 
(Carbon Capture and Storage—CCS) have been gaining 
notoriety as carbon neutrality and circular economy policies 
become popular (Nobre et al. 2021, 2022a). Mineral trapping 
is a type of CCS strategy discussed since the 1990s (Lohuis 
1993), involving the injection of CO2 into geological reser-
voirs with suitable compositions, porosities, permeabilities, 
fluids, and thermodynamic conditions to cause the precipita-
tion of carbonate mineral phases (e.g., dawsonite), thereby 
immobilizing the CO2 in the formation (Bachu et al. 1994). 
Geochemical (Gaus et al. 2005) and CO2 injection models 
(Johnson et al. 2004) for mineral trapping with dawsonite 
crystallization have demonstrated higher potential for long-
lasting CCS than strategies such as hydrodynamic or dis-
solution capture (Moore et al. 2005). However, if pCO2 in 
the formation is not kept high, dawsonite can destabilize and 
release CO2 (Hellevang et al. 2005; Ketzer et al. 2005; Lu 
et al. 2022). This indicates that the rock package must meet 
specific prerequisites to behave as an effective CO2 reservoir.

A good geological reservoir for mineral trapping must 
present a permeability high enough to allow the mobility and 
dissemination of CO2 in the subsurface, in addition to high 
porosity to accommodate a significant volume of gas. Fur-
thermore, the reservoir must not be associated with freshwa-
ter aquifers due to the huge importance of this resource for 
human life (Xu et al. 2004; Lu et al. 2022). Computational 
models vary in their conclusions but generally indicate that 
ideal reservoirs are found at depths greater than 800 m, com-
prising a layer at least 20 m thick and sealed by cap rock at 
least 10 m thick (Soong et al. 2004; Xu et al. 2005; André 
et al. 2007; Qu et al. 2022). The Rio Bonito Formation of 
the Paraná Basin has demonstrated the greatest potential for 
CCS actions in South America, with packages of porous, 
quartz, and feldspathic sandstones and thick coal seams and 
carbonaceous shales with a high organic matter content, 
which are strategic rocks due to its high CO2 adsorption 
capacity (Ketzer et al. 2009; Abraham-A and Tassinari 2023; 
de Oliveira et al. 2023; Abraham-A et al. 2024a; 2024b).

This study unveils the first finding of natural dawsonite 
within the Rio Bonito Formation, occurring in quartz 

sandstones sampled from cores associated with wells drilled 
for coal exploration along the eighties. The dawsonite iden-
tification in this formation improves its potential for mineral 
trapping (CCS), confirming that the Rio Bonito Formation 
provides the required conditions for dawsonite crystalliza-
tion. The characterization of dawsonite, its textures, and 
associated microstructures was carried out using petro-
graphic microscopy, scanning electron microscopy (SEM) 
with coupled energy dispersive x-ray spectroscopy (EDX) 
system and x-ray diffraction (XRD).

Geological background

The Rio Bonito Formation is part of the Gondwana I 
Supersequence (Carboniferous-Lower Triassic) of the 
Paraná Basin (Milani et al. 2007). The Rio Bonito Forma-
tions is part of the transgressive portion of the Permo-Car-
boniferous transgressive–regressive cycle recorded in this 
supersequence. It comprises conglomerate, very fine- to very 
coarse-grained sandstone, claystone, and coal seams, some 
of which have economic significance. The Rio Bonito For-
mation contains significant reserves of methane adsorbed 
in the coal layers, which are preserved due to adequate seal-
ing (Kalkreuth et al. 2008; 2013). Its deposition is related 
to tidal-dominated fluvial and estuarine environments and 
wave-dominated shoreface environments (Perinotto and Cas-
tro 2000; Lopes and Lavina 2001; Holz 2003; Cagliari et al. 
2014; Bicca et al. 2020; Kern et al. 2021).

The Rio Bonito Formation may be up to 350 m thick, 
with an average thickness exceeding 170 m. Positioned in 
the central-southern region of the Paraná Basin, it occurs at a 
target depth exceeding 800 m, meeting the requirements for 
CO2 storage. It is overlain by the Palermo Formation, which 
serves as a proposed sealing rock, with a minimum thick-
ness of 20 m and an average thickness surpassing 120 m. 
The Palermo Formation is composed of fine- to very fine-
grained sandstones and siltstones interspersed with thinly 
laminated shales, mudstones, and occasionally limestones 
(Ramos et al. 2015; de Oliveira et al. 2023; Abraham-A 
2023; 2024a). The Rio Bonito Formation thins out towards 
the south of the basin. In the Rio Grande do Sul State, where 
dawsonite was found (Fig. 1), the greatest thicknesses of the 
formation (ranging from 150 to 200 m) are related to paleo 
valleys distributed along the basin’s edge. However, these 
thicknesses may significantly diminish over the basement 
highs (Ketzer et al. 2003; Jasper et al. 2006).

The Well 5-CA-91-RS (Fig. 2 and 3) drilled by the Geo-
logical Survey of Brazil (SGB-CPRM) provided the study 
samples. This well cuts into the Pirambóia (Fig. 1), Rio 
do Rasto and Palermo formations before reaching the Rio 
Bonito Formation. Dawsonite was identified in quartz sand-
stones at depths from 541.20 to 541.05 m (Fig. 3A) and 
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566.25 to 566.00 m (Fig. 3B), herein referred to as intervals 
A and B (Fig. 2).

Porosity ranges between 10 and 20% in the sandstones 
and 1.6 to 4.3% in the coal seams of the Rio Bonito Forma-
tion (Milani et al. 2007; Ketzer et al. 2003; Lourenzi and 
Kalkreuth 2014). In addition to sandstones, coal seams, and 
carbonaceous shales also have potential for CO2 adsorption 
due to their relevant contents of organic matter, ranging 
from 5 to 25% (Lourenzi and Kalkreuth 2014; Costa et al. 
2016; Bicca et al. 2020). De Oliveira et al. (2023) conducted 
stratigraphic correlations between drilling cores in the Par-
aná Basin, mapping an area of 383,951 km2 where the Rio 
Bonito Formation fully meets the requirements for onshore 
mineral trapping.

Material and methods

Sample collection and preparation

The studies were conducted on cores from well 5-CA-
91-RS (Fig. 3) provided by the Geological Survey of Brazil 

(SGB-CPRM) and stored at its headquarters in Caçapava 
do Sul City, in the central portion of the Rio Grande do Sul 
State. The 4.85 cm wide well was drilled between 1976 and 
1977 in the Gravataí municipality as part of a coal explora-
tion campaign promoted by the Brazilian Ministry of Mines 
and Energy. The rock samples were repurposed in 2023 to 
evaluate mineral trapping potential. SGB-CPRM provided 
2 kg (equivalent to 0.75 L) of rock samples from the Rio 
Bonito Formation for characterization tests.

A portion of this material was cut into 4 × 2 × 0.5 cm 
slivers using a cutting disc to prepare thin sections for 
microscopy following a method adapted from Pike and 
Kemp (1996) and Adams et al. (2014). The slivers were 
immersed in a mixture of 10 g of epoxy resin, 0.5 g of 
Oracet B® blue dye (to dye the rock's porous blue), and 
5 g of Araldite® hardening agent dissolved in 50 mL of 
hydrated ethanol to liquefy the mixture. This solution was 
then subjected to a vacuum pump for 24 h to ensure com-
plete percolation throughout the porosity of the quartz 
sandstones. After drying and subsequent resin hardening, 
the samples were affixed onto a glass slide and polished 
until they reached a thickness of 30 µm. The choice of 

Fig. 1   Geological map of the area where well 5-CA-91-RS was drilled
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resins was an adaptation of traditional methods to optimize 
costs and sample preparation time, as observed in adapta-
tions to other sedimentary materials (see Montana 2020; 
Broekmans et al. 2022). The same thin sections used in 
petrography were utilized for SEM–EDX analysis. Thin 
sections for microscopy were prepared at the Geological 
Thin Section Laboratory of the Universidade do Vale do 
Rio dos Sinos (UNISINOS).

For XRD analysis, 1 kg of sample was ground to 75 µm 
(#200 mesh) followed by successive homogenization stages 
and quartering until 10 g of powder was selected. Given the 
homogeneous nature of the quartz sandstone, no special care 
was required to select any specific rock segment for grind-
ing, in accordance with the methods of Waseda et al. (2011) 
and Ali et al. (2022).

Analytical methods

Petrographic analyses were conducted using a Zeiss Axio-
Lab A1 Microscope with a Zeiss AxioCam MRc camera 
system from the Fluid Inclusion Lab at UNISINOS.

SEM–EDX analyses were performed at the Technolog-
ical Institute of Paleoceanography and Climate Change 
(ITT OCEANEON) at UNISINOS in Zeiss EVO MA 15 
electron microscope. The microscope operated at an accel-
eration voltage (EHT) of 25 kV and a working distance 
(WD) of 8.5 mm, with a probe current of 8 nA. Sam-
ples were gold-coated with a layer thickness of 46 nm. 
The SEM was coupled with an Oxford Instruments EDX 
spectrograph featuring an X-Max detector. Analyses were 
performed over seven interactions with a live time of 
180 s each. This analytical technique was employed to 
generate false-color images for mapping strategic chemi-
cal elements (C, O, Na, Al, and Si) to identify dawsonite 
in quartz sandstone, following the methodology outlined 
by Gomes (2015).

XRD was performed at ITT OCEANEON at UNISINOS 
on an Empyrean PANalytical diffractometer with a reflec-
tion-transmission configuration, spinning at two revolutions 
per second, with a goniometric range from 2 to 75° (2θ), a 
step of 0.0131° with 170 s per step, and a Cu tube operating 
at 40 kV and 40 mA. Bragg–Brentano HD incident beam 
geometry was used, with a 0.02 rad Soller slit, a 20 mm 
fixed mask, a 1/4" fixed anti-scattering slit, and a 1/16" fixed 
divergent slit. A 7.5 mm anti-scattering slit and a 0.02 rad 

Fig. 2   Stratigraphic sequence of well 5-CA-91-RS between 500 and 
600  m depth, showing the Palermo and Rio Bonito Formations. A 
and B represent the dawsonite finding zones. A between 541.20 and 
541.05 m, and B between 566.25 and 566.00 m

▸
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Soller slit were mounted on the diffracted beam. The dif-
fractometer was equipped with a PIXcel 3DMedipix3 area 
detector with 255 channels.

Results

Dawsonite (Fig. 4B, 4C and 4E) was initially found in thin 
sections under polarized light optical microscopy (petro-
graphic microscopy) within quartz sandstones containing 
grains ranging from 0.2 mm to 1.5 mm (Fig. 4A), alongside 
carbonate (identified in XRD as dolomite) and muscovite. 
The sandstone exhibited moderate to well-sorting, with sub-
angular to subrounded grains. Two types of pores, measuring 
0.1 to 1.0 mm, were observed: isolated intergranular primary 
porosity (Fig. 4D) and moldic secondary porosity (Fig. 4G), 
indicating mineral dissolution during diagenesis. Diagenetic 
processes include quartz overgrowth (Fig. 4F), carbonate 
cement deposition (Fig. 4H), and partial dissolution of 

framework grains, formingwhich form moldic pores where 
dawsonite precipitated during mesodiagenesis (Fig. 4B-G).

Following the identification of dawsonite as thin radiating 
acicula filling the moldic porosity of the quartz sandstones 
(Fig. 5A), the sample was analyzed by SEM for composi-
tional imaging using EDX (Fig. 5). In the image captured 
by secondary and backscattered electrons (respectively 
Fig. 5A and 5B), the contrast in morphology and average 
atomic number between the unfilled pore, dawsonite, and 
quartz-dominated framework is discernible. The simultane-
ous presence of carbon (Fig. 5C), oxygen (Fig. 5D), sodium 
(Fig. 5E), and aluminum (Fig. 5F), alongside the complete 
absence of silicon (Fig. 5G), corroborates the petrographic 
observations.

Definitive confirmation of the dawsonite occurred after 
performing an XRD analysis on the total rock powder 
(Fig. 6). The XRD results confirmed the presence of daw-
sonite, identified the carbonate as dolomite, and confirmed 
the presence of muscovite.

Fig. 3   Cores from well 5-CA-
91-RS. A Core from 541.20 
and 541.05 m and B core from 
566.25 to 566.00 m. Both 
intervals (A and B) contain 
dawsonite
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Final remarks

The literature presents several technological uses for daw-
sonite, such as in catalysts (Zumbar et al. 2021), fire retard-
ants (Zhang et al. 2024), nanotechnology (Duan et al. 2013), 
sorbents (Zhao et al. 2020) and water treatment (Li et al. 
2020). These applications highlight the dawsonite's potential 
for advanced applications (Nobre et al. 2022b, 2023). These 

Fig. 4   Thin sections of quartz sandstones of the Rio Bonito Forma-
tion in the well 5-CA-91-RS. Photos A and C to H correspond to 
cross-polarized transmitted-light images and B relates to a polarized 
transmitted-light image. A Quartz (Qz) sandstone with dolomite (Dol), 
muscovite (Ms), and dawsonite (Dws). B, C, E, and G show dawsonite 
formed from moldic porosity (Dws mp). D Example of an isolated pore 
(ip) and dawsonite-filled moldic pore (Dws-fmp). F Quartz overgrowth 
(Qz-og). H Carbonate cementation (dolomite) in quartz sandstone. 
Mineral abbreviations follow Whitney and Evans (2010) for Dol, Ms, 
and Qz, while the nomenclature for Dws follows Warr (2021)

◂

Fig. 5   SEM of dawsonite grown in moldic porous and its surround-
ings. C-G are on the same scale shown in B. A Secondary electron 
image. B Backscattered electron image. C Compositional image of 

carbon. D Compositional image of oxygen. E, F, and G correspond to 
compositional images of sodium, aluminum, and silicon, respectively
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Fig. 6   XRD results of powder from total quartz sandstone sample of 
the Rio Bonito Formation. A The diffractogram of total rock powder. 
B Interpretation of XRD results: Quartz was identified by the main 
peak at 2θ = 26.5º, and the secondary peak at 2θ = 21º; dawsonite was 

diagnosed by its main peak at 2θ = 15.5º, and the secondary peak at 
2θ = 32º; muscovite was detected by its main peak at 2θ = 9º, and the 
secondary peak at 2θ = 26.5º; and dolomite was verified by its main 
peak at 2θ = 31º, and the secondary peak at 2θ = 41º
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advanced applications rely on synthetic crystals, as natural 
dawsonite is not typically abundant or stable enough at the 
surface to be mined as a commodity. However, its crystalli-
zation induced by high pCO2 levels makes dawsonite promi-
nent as a CCS strategy.

The discovery of dawsonite in the Rio Bonito Forma-
tion represents a significant advancement in understand-
ing the potential of this unit for CO2 trapping, particularly 
within quartz sandstones as investigated in this study. This 
paper marks the first documented occurrence of dawsonite 
within the Rio Bonito Formation. Dawsonite formed during 
mesodiagenesis and was always found filling moldic pores, 
indicating that some primary minerals dissolved in earlier 
diagenetic stages, creating the necessary chemical conditions 
for dawsonite formation. Thus, the documented dawsonite 
is not a primary mineral, aligning with descriptions in the 
literature that highlight its common authigenic occurrence 
(Saldanha et al. 2023; Cseresznyes et al. 2024).

In the studied region, the Rio Bonito Formation is 
closer to the surface than in the Paraná Basin depocenter. 
In this context, dawsonite was found at depths of 541.20 
to 541.05 m and 566.25 to 566.00 m. While these depths 
are shallow for mineral trapping initiatives, they facilitate 
sample acquisition, as drilling depths exceeding 800 m are 
substantially more expensive. Previous studies (Ketzer et al. 
2009; Abraham-A and Tassinari 2023; de Oliveira et al. 
2023; Abraham-A et al. 2024a; 2024b) have demonstrated 
the high potential of the Rio Bonito Formation for CO2 stor-
age in the basin's deeper portions. The finding of dawsonite 
reinforces this potential, as it is the most prominent mineral 
formed in the CO2 mineral trapping process. It is reasonable 
to infer that occurrences of dawsonite may exist in other sec-
tions of the Rio Bonito Formation, particularly those adja-
cent to layers of coal and organic matter-rich shales within 
the same unit. As a result, the discovery of dawsonite in the 
Rio Bonito Formation reinforces the potential of the Paraná 
Basin for onshore storage of considerable volumes of CO2 
in the future.

The petrophysical characteristics of the Rio Bonito For-
mation such as porosity, depth, thickness, and the presence 
of an effective sealing layer, highlights its growing potential 
for future CCS initiatives. Moreover, the presence of natural 
dawsonite further enhances this potential.
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