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Abstract
In the western Yangtze Block, abundant Eocene (~38–34 Ma) potassic adakite-like intrusions and associated porphyry copper
deposits are exposed in non-subduction setting, including Machangjing, Beiya, Binchuan, Habo and Tongchang intrusions. All
these ore-bearing porphyries share many geochemical characteristics of adakite such as depletion in heavy rare earth elements
(HREEs), enrichment in Sr and Ba, absence of negative Eu anomalies, high SiO2, Al2O3, Sr/Y, La/Yb and low Y, Yb contents.
They also exhibit affinities of potassic rocks, e.g., alkali-rich, high K2O/Na2O ratios and enrichment in light rare earth elements
(LREEs) and large ion lithophile elements (LILEs). Their Sr-Nd isotopic ratios are similar to coeval shoshonitic lamprophyres.
Geochemical data indicate that they were probably produced by partial melting of newly underplated potassic rocks sourced from
a modified and enriched lithospheric mantle. These underplated rocks have elevated oxygen fugacity, water and copper contents,
with high metallogenic potential. We propose that all the studied potassic rocks were emplaced in a post-collisional setting,
associated with the local removal of lithospheric mantle.

Keywords Potassic rocks . Lithospheric mantle . Porphyry copper deposit . Eocene .Western Yangtze

Introduction

Adakite represents a group of intermediate-felsic igneous
rocks that are emplaced in modern arc systems. Adakite is
notably characterized by its enrichment in high Al2O3 (>
15 wt.%), low Y (≤ 18 ppm) and Yb (≤ 1.9 ppm), as well as
its high Sr/Y (> 20–40) and La/Yb (> 20) ratios with positive

Sr and Eu anomalies (e.g. Defant and Drummond 1990, 1993;
Castillo et al. 1999; Defant and Kepezhinskas 2001; Moyen
2011). These rocks have been interpreted to be derived by the
interaction of melts derived from hot and young subducted
slab with the overlying mantle wedge during ascent (Defant
and Drummond 1990). It should be pointed out that the term
Badakite^, including BC-type adakite^, Bcontinental adakite^
and Bpotassic adaktie^ (e.g., Rapp et al. 2002; Wang et al.
2004a, b, 2006; Guo et al. 2006; Ding et al. 2007; Li et al.
2013), has been used in a more ambiguous manner in several
subsequent studies. These phrases in reality refer to the inter-
mediate to acid igneous rocks with high La/Yb (> 20), high Sr
(> 400 ppm) and low Y (< 18 ppm), Yb (< 1.9 ppm) contents,
which are regarded as Badakite-like^ or Badakitic^ geochem-
ical signatures (Moyen 2009). Therefore, in our current study,
the term Badakite^ is used to describe rocks sourced from
subducted slab, whereas Badakitic^ or Badakite-like^ rocks
refer to those having different sources. Several hypotheses
have been proposed for the formation of adakite-like rocks,
such as (1) direct partial melting of a metasomatized litho-
spheric mantle (e.g. Martin et al. 2005; Jiang et al. 2006,
2012); (2) high- or low-pressure assimilation-fractional crys-
tallization (AFC) of mantle-derived mafic magmas (Castillo et
al. 1999; Richards and Kerrich 2007); (3) partial melting of
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delaminated eclogitic lower crust (e.g. Xu et al. 2002); (4)
partial melting of thickened lower crust (e.g. Hou et al. 2004).

Porphyry Cu deposits constitute a significant source of Cu,
Mo and Au (Sillitoe 2010). It is well established that these
deposits were closely associated with adakites in arc setting
(e.g., Thieblemont et al. 1997; Richards 2011a, b). This geo-
logical relationship is supported by observations on different

scales: (1) on a global scale, adakitic igneous provinces gen-
erally overprint porphyry Cu metallogenic belts; (2) on a dis-
trict scale, porphyry and epithermal mineral deposits are often
hosted by or associated with adakties; (3) on a deposit scale,
the mineralization prefers adakites to other igneous rocks
(Thieblemont et al. 1997). Recently, porphyry Cu systems
occurring in adakite-like rocks have been also reported (Hou

Fig. 1 a Major Cenozoic fault
systems in Asia (Tapponnier et al.
1990); b Tectonic framework of
the eastern Tibet (Lu et al. 2015a);
c Simplified geological map of
the southeastern Tibetan plateau
and surrounding areas showing
the distribution of Cenozoic po-
tassic igneous rocks in western
Yangtze (modified after Lu et al.
2013a, 2015a)
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et al. 2009; Richards 2011a, b; Lu et al. 2013b), such as the
mid-Miocene Gangdese and Eocene-Oligocene Yulong por-
phyry Cu (-Mo) belts in the Himalayan orogenic belt (Hou et
al. 2003, 2009; Jiang et al. 2006). These belts were formed in
non-subduction setting (an intracontinental convergent envi-
ronment) in response to the Himalayan-Tibetan collisional
orogeny (Hou et al. 2003). However, the link between por-
phyry Cu deposit and ore-bearing porphyries in non-
subduction settings remains poorly understood.

In the western Yangtze Block (western Yunnan province),
porphyry Cu deposits are hosted by Eocene-Oligocene post-
collisional adakite-like intrusions in response to the Indo-
Asian collision (Fig. 1a). These intrusions provide an excel-
lent opportunity for researchers to better understand the
geodynamic processes that drive the generation of post-
collisional ore-bearing porphyries. In this paper, we investi-
gate multiple Eocene ore-bearing porphyries and coeval
lamprophyric dykes in Western Yunnan (Fig. 1b). New
whole-rock major, trace elemental and Sr–Nd isotopic data
for these intrusions are presented in this paper. Previous re-
ported data on coeval lamprophyres and other ore-bearing
porphyries are also included for comparison. Our major goals
are to better understand (i) the origin of these rocks; (ii) their
geological relationship with porphyry copper deposits, and
(iii) the associated geodynamic processes.

Geological background

The current study focused in a junction zone on western
Yunnan province between the Simao (the northern part of

Indochina Block; Metcalfe 2013) and Yangtze Block, where
the ASRR shear zone locally overprints the Jinsha suture (Guo
et al. 2005; Lu et al. 2012, 2013a, b) (Fig. 1c). The Yangtze
Block has an Archaean-Proterozoic basement composed of
high-grade metamorphic and metasedimentary rocks (Gao et
al. 1999), whereas the Precambrian metamorphic rocks of the
Simao block include Proterozoic migmatite, granulite and
schist (Wang et al. 2014). The collision between the two
blocks occurred during the Triassic and resulted in the closure
of the Paleozoic Jinsha Ocean (Yang 1998; Wang et al. 2000).
Since Triassic, W. Yunnan has occupied an intra-continental
position (Wang et al. 2000; Lu et al. 2015a).

In the Cenozoic, the India Plate collided with the Asian
Plate and subsequently extruded the Indochina Block with
emplacement of extensive Palaeocene potassic mafic and
felsic rocks (Fig. 1c). The mafic rocks are dominated by
lamprophyric dykes with minor mafic lavas, whereas the
felsic rocks are mainly composed of syenite porphyry, quartz
monzonite porphyry and monzogranite porphyry. These mafic
and fels ic intrusions intruded predominant non-
metamorphosed sedimentary sequences (Liang et al. 2007;
Lu et al. 2012, 2013a). The felsic rocks exhibit many geo-
chemical characteristics of typical adakites (Lu et al. 2013a)
and contain porphyry Cu (-Au-Mo) deposits (Deng et al.
2014), including Beiya Cu–Au ore field, Binchuan Cu depos-
it, Machangjing Cu–Mo–Au deposit, Habo Cu–Au ore depos-
it and Tongchang Cu–Mo deposit along with others (Deng et
al. 2014; Fig. 1c). Abundant crustal and mantle xenoliths are
present in these felsic intrusions, especially in the Liuhe sye-
nite porphyry (Fig. 1c). The xenoliths include garnet-
bearing amphibolite from the middle crust (~ 30 km

Fig. 2 Simplified geological maps of the investigated intrusions, including the Beiya (a) and Machangjing (b) intrusions. Ages of these felsic intrusions
and lamprophyres are also exhibited and the data sources are same as Table 1
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depth), granulite from the lower crust (~ 45–55 km
depth) and garnet pyroxenite from the upper mantle
(~87–95 km depth) (Zhao et al. 2003).

Petrography

In this contribution, we collected samples from potassic intru-
sions and lamprophyre dykes at Beiya and Machangjing. The
Beiya intrusion, which occurs as a group of felsic stocks, were
emplaced in Triassic-Permain volcanics and limestone
(Fig. 2a). It consists of syenite porphyry and granite porphyry
with typical porphyritic texture (Table 1). The main constitu-
ents of the phenocrysts (1–4 mm, ~ 40–60%) are K-feldspar,
plagioclase and biotite, with hornblende and quartz as minor
components. The groundmass (50–60%) exhibits a microcrys-
talline texture and is composed mainly of K-feldspar and pla-
gioclase, with a small amount of quartz. Some lamprophyric
dykes from the Beiya region intruded Triassic strata (Fig. 2a).
These lamprophyres are porphyritic with phenocrysts (1–
2 mm, 40%), dominated by clinopyroxene, hornblende and
phlogopite in a groundmass of clinopyroxene-hornblende-
phlogopite-plagioclase. The Machangjing intrusion consists
of syenite porphyry and granite porphyry with a typical por-
phyritic texture (Table 1) and was emplaced in Ordovician-
Devonian sandstone and limestone (Fig. 2b). The phenocrysts
(1–3 mm, ~ 30–40%) are constituted of K-feldspar, plagio-
clase, biotite and quartz. The groundmass (60–70%) is com-
posed of K-feldspar, plagioclase and biotite with a microcrys-
talline texture. Also, previous data on the coeval lamprophyres
and ore-bearing Beiya, Binchuan, Habo and Tongchang por-
phyries are also summarized in this paper for comparison.
These intrusions consist primarily of syenite porphyry, quartz
monzonite porphyry and granite porphyry. The detailed tex-
ture and mineralogy for them are summarized in Table 1.
Previous studies implied that all the studied lamprophyre
dykes and porphyry intrusions were formed in the Eocene
with magmatic crystallization ages of ~38–34 Ma (Table 1).

Sample descriptions and analytical methods

Sampling

We collected samples (length: 20 to 30 cm, width: 15 to
20 cm, height: 10 to 20 cm) from surface exposures and
prospecting trench. They are representative due to come from
both edges and centers of the studied intrusions. The freshest
nine samples, including two samples (11BY01–1, 11BY02–1)
from the Beiya intrusion, two samples (11BY02–2, 11BY02–
3) from the Beiya lamprophyres and five samples
(10MCQ01–1 ~ −5) from the Machangjing intrusion, were
selected for the analysis of whole-rock major and trace Ta
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elements as well as Sr-Nd isotopes. The sample locations are
shown in Fig. 2. These samples are first crushed to gravel-size

chips and then further grounder to less than 200-mesh in an
agate mill prior to the whole-rock analyses.

Major and trace elements

The major elements in the samples were identified by X-ray
fluorescence (XRF) using fused glass beads on a Rigaku
ZSX100e spectrometer (Rigaku, Tokyo, Japan) at the
Analytical Center, Chengdu Institute of Geology and
Mineral Resources. Analysis of the international rock standard
(GSR-1 and GSR-3) suggests than both precision and accura-
cy are better than 5% of error.

For analyzing the abundances of trace element, 50 mg
of each grounded sample was dissolved at about 190 °C
for 48 h in a Teflon bomb containing a mixture of
1.5 mL HNO3 and 1.5 mL HF. Subsequently, the bomb
was opened to allow complete evaporation of the solu-
tion at about 115 °C until it is dry. This process is
followed by addition of 1 ml HNO3. After the solution
was evaporated to dryness again, 3 mL of 30% HNO3

was added to re-dissolve the precipitates. The bomb was
then resealed and reconstituted solution inside was heat-
ed to 190 °C for 12 to 20 h before being diluted by 2%
HNO3 to 100 g by for analysis. The abundances of trace
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elements were determined on an Agilent 7500a
Inductively Coupled Plasmas-Mass Spectrometry (ICP-
MS) at the State Key Laboratory of Geological
Processes and Mineral Resources, China University of

Geosciences Wuhan (SKLGPMR, CUGW). Analyses of
international rock standards (DNC-1, BHVO-2 and BCR-
2) indicate that precision and accuracy for trace elements
are better than 10% of error.
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Whole-rock Sr-Nd isotope analysis

For Sr-Nd isotope analyses, chemical digestion and separation
are performed in a Class 100 ultra-clean laboratory. 100 mg of
the grounded sample powder was digested by a mixed solu-
tion of HNO3 and HF in a Teflon beaker. Sr and Nd were
separated from each other and purified through conventional
cation-exchange chromatography. Sr-Nd isotopic ratio of each
sample was measured in a Class 1000 ultra-clean laboratory.
The Sr–Nd isotopic ratios of the purified solutions were deter-
mined on a Triton TI Thermal Ionization Mass Spectrometer
(TIMS; Thermo Electron, Osterode, Germany) at the
SKLGPMR, CUGW. The rat ios of 87Sr/86Sr and
143Nd/144Nd ratios were normalized to 86Sr/88Sr = 0.1194
and 146Nd/144Nd = 0.7219, respectively. The 87Sr/86Sr ratios
of the NBS987 Sr standards and 143Nd/144Nd ratios of the La
Jolla Nd standards were determined as 0.710254 ± 0.000008
and 0.511856 ± 0.000012, respectively. The total analytical
blanks for Sr and Nd isotopes are less than 100 pg and
60 pg, respectively.

Results

All porphyry samples in this study were found to have acid
compositions and enriched in alkalis (Na2O + K2O = 7.9–
11.2 wt.%) with higher K2O/Na2O ratios (mostly >1.0)
(Fig. 3). These samples were plotted in the fields of shoshonite
and high-K calc-alkaline rocks (Fig. 3b). All samples contain
low total rare earth elements (REE) contents (67–269 ppm)
and are relatively enriched in light rare earth elements
(LREEs) with negligible Eu anomalies (Fig. 4a). Relative to
high field strength elements (HFSEs), they are enriched in
large ion lithophile elements (LILEs) with marked negative
Ta-Nb-Ti anomalies (Fig. 4b). All samples are characterized
by enrichment in Ba (mostly >1000 ppm), Sr (mostly
>400 ppm) contents as well as depletion in Yb (< 1.9 ppm)
and Y (mostly <18 ppm), with low contents of compatible
elements (Fig. 5). The initial Sr (87Sr/86Sri = 0.7067 to
0.7075) and Nd (εNd(t) = −5.9 to −1.7) isotopic ratios of these
ore-bearing porphyries are similar to those of the coeval
lamprophyres from W. Yunnan province (Fig. 6).

The two lamprophyric samples from the Beiya area have
been altered to varying degrees after emplacement and show
high loss on ignition (LOI) values (5.6–6.7). In this paper,
published data of Paleogene lamprophyre samples from W.
Yangtze are plotted for comparison. The W. Yunnan
lamprophyres comprised low levels of TiO2 and Fe2O3

T, var-
iable compatible element contents, as well as high levels of
K2O and LILEs (e.g. Ba and Sr) relative to HFSEs, with steep
REE patterns (Figs. 4, 5). These lamprophyres exhibit similar
Sr-Nd isotopic compositions (87Sr/86Sri = 0.7063 to 0.7064;
εNd(t) = −1.5 to −1.4) to the ore-bearing porphyries (Fig. 6).

Discussion

Ages of the ore-bearing porphyries

Laser ablation-inductively coupled plasma-mass spectrometry
(LA-ICP-MS) U-Pb zircon dating of Beiya quartz syenite por-
phyry yielded an age of 36.5 ± 0.3 Ma, which was consistent
with the Re-Os model age (36.9 ± 0.8 Ma) of molybdenite
separated from the Beiya ore body (He et al. 2013).
Lamprophyric dykes in Beiya were dated at 33.4 ± 0.6 Ma
by the 39Ar/40Ar method (Xue et al. 2008). Similarly, a phlog-
opite collected from a lamprophyre at Yao’an produced an
40Ar/39Ar age of 33.4 ± 0.5 M (Lu et al. 2013b). 40Ar/39Ar
dating of quartz and zircon LA-ICP-MS U-Pb dating of the
Machangjing ore-bearing porphyries yielded emplacement
ages between 40 Ma and 34 Ma (Peng et al. 2005; Liang et
al. 2007; Lu et al. 2012). Based on the Re-Os dating method,
molybdenites separated from the orebody show ages of 35.8
± 1.6, 35.3 ± 0.7, and 33.9 ± 1.1 Ma, which were coeval with
the ore-bearing porphyries (Wang et al. 2004a, b; Zeng et al.
2006; Guo et al. 2009; He et al. 2011). Lamprophyric dikes at
Machangjing showed similar emplacement age of 36.2 ±
0.2 Ma (Lu et al. 2013b). Other ore-bearing porphyries in
the western Yangtze, including Binchuan, Habo and
Tongchang, are also determined to be coeval with the Beiya
and Machangjing intrusions (Table 1).

All the potassic rocks in the western Yangtze have been
considered to result from the magmatic response to lithospher-
ic removal followed by asthenospheric upwelling (Lu et al.
2013a, b). The occurrence of the lamprophyres suggested lo-
cal rather than complete removal of lithospheric mantle un-
derneath the western Yangtze Block. High-resolution tomo-
graphic imaging of the crust and upper mantle under western
Yangtze reveals a clear high-velocity anomaly at a depth
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Fig. 6 87Sr/86Sr(36 Ma) vs. εNd(36 Ma) diagram for the studied
lamprophyres and ore-bearing intrusions. Published data sources are
same as Fig. 3
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between ~ 300 and 450 km from 100.5°E to 107°E (Liu et al.
2000; Fig. 7). The anomaly may refer to the delaminated lith-
ospheric mantle. Thus, convective removal caused by
Rayleigh-Taylor instability could most likely be a geodynamic
process responsible for the formation of these rocks. It should
be noted that all the potassic rocks were formed over a rela-
tively short time span between 40 Ma and 32 Ma (Lu et al.
2013b; Liu et al. 2017). The tomographic image also reveals
that the Yangtze Block has been subducted westward to 99°E
and to a depth of 250 km (Fig. 7). Then we consider that the
subducted lithosphere was blocking the continuous upwelling
of the asthenosphere, which could be the reason for the short
time span of the western Yangtze potassic rocks.

Origin of the ore-bearing porphyries

Coeval ore-bearing porphyries from the western Yangtze are
discussed for comparison, which include the Binchuan, Habo
and Tongchang intrusions (Table 1). All these porphyries ex-
hibit similar Sr-Nd isotopic components and elemental signa-
tures, such as the enrichment of K2O, LREEs, LILEs, low
compatible element contents, depletion of HREE and Y, as
well as high K2O/Na2O and Sr/Y ratios (Figs. 2, 3, 4, 5 and
6), to intrusions that we studied. Thus, all the ore-bearing
porphyries may share common petrogenesis. These ore-
bearing porphyries show similar geochemical characteristics
to adakite, distinguishing it from typical arc magma (Fig. 8),
high Sr, Al2O3, Sr/Y and La/Yb ratios and low Yb and Y
contents with the exception for K2O.

Original partial melts of a metasomatic lithospheric mantle
are generally low-SiO2 adakite-like (SiO2 < 60 wt.%, MgO >
4 wt.%) composition (Martin et al. 2005). All the ore-bearing
porphyries show relatively high SiO2 (mostly >65 wt.%) and
lowMgO (mostly <2 wt.%) contents (Table 2), arguing direct-
ly against the partial melting of lithospheric mantle (Table 3).

Partial melts derived from subducted slab are generally
characterized by enrichment in sodium (K2O/Na2O < 0.4)
and exhibit similar Sr-Nd isotopic ratios to MORB (Martin
et al. 2005), which is in contrast to our samples (Figs. 3, 6).
More importantly, the Yangtze Block had been located in an
intra-continental position since the Triassic (Wang et al. 2000;
Lu et al. 2015a). Thus, these adakite-like porphyries were
unlikely to have originated from a subducted slab.

The typical elemental signatures (e.g., high K2O, Ba and Sr
contents), REE and trace element patterns of these felsic in-
trusions are also evidently present in the coeval lamprophyres
(Figs. 3, 4, 5). And the similarity of Sr-Nd isotopic ratios
between the ore-bearing intrusions and coeval lamprophyres
indicates anAFC scenario (Fig. 6). In general, magmatic rocks
derived by AFC process have a wide compositional range and
exhibit inflections between elements on variation diagrams.
However, in the western Yangtze, the Eocene to Oligocene
magmatism is dominated by felsic components with the ab-
sence of intermediate rocks. In addition, the mafic rocks are
relatively small volume in size and generally occur as dykes,
making it unlikely for them to generate huge volumes of felsic
magmas via AFC. If these porphyries were produced by the
AFC of mafic magmas, the coherent decreasing trends in SiO2

vs. Al2O3, Na2O, CaO, Ba and Sr plots for the felsic rocks
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Fig. 7 A seismic tomographic section along latitude 23.5°N crossing western Yunnan (modified from Liu et al. (2000)). Blue areas represent high-
velocity anomalies; Red areas represent low-velocity anomalies
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would require significant removal of plagioclase
(Figs. 5, 9), which was contradicted by the absence of
negative Eu anomalies (Fig. 4). Thus, these ore-bearing
porphyries are unlikely to have been generated by the
AFC of mantle-derived basaltic magmas.

Kay and Kay (1993) proposed that partial melts of
delaminated dense eclogitic lower crust interacted with mantle
peridotite to produce adakite-like melts with high Sr/Yand La/
Yb ratios during continent-continent collision. Due to the as-
similation of mantle material, the resulting melts generally
exhibit low SiO2 (< 66 wt.%), elevated MgO (> 1.5 wt.%),
Mg# (> 35) and compatible element contents (Fig. 10). But
our samples have relatively high SiO2 as well as lowMgO, Cr
and Ni contents than the rocks derived from delaminated low-
er crust. Furthermore, on the basis of seismic profiles, crustal
thickness beneath western Yangtze Block is currently ca. 40–
55 km (Li et al. 2008; Sun et al. 2008) (Fig. 11), approximate-
ly equivalent to that (ca. 45–55 km) in the Eocene (Zhao et al.
2003). This suggests that significant crustal delamination did

not occur (Lu et al. 2013a). Thus, the petrogenesis of these
ore-bearing rocks could not be satisfactorily explained by
delaminated lower crustal melting.

These ore-bearing intrusions have similar Sr-Nd isotopic
components as the lower crustal garnet-bearing amphibolite
xenoliths, indicating that they were likely formed by partial
melting of thickened mafic lower crust (Fig. 6). Miocene ore-
bearing porphyries hosting post-collisional porphyry Cu de-
posits in the Himalayan orogenic belt have been attributed to
the dehydration melting of garnet-bearing amphibolite in a
thick lower crust (Hou et al. 2015, 2017). Ding et al. (2007)
investigated two Eocene adakite-like intrusions (Xifanping
and Zhiju) (ca. 35 Ma) from western Yangtze Block and ar-
gued that they were formed by partial melting of amphibolites
(representing Neoproterozoic mafic rocks) in the thickened
lower crust of the Yangtze block. Recently, Hou et al. (2017)
investigated lower crustal amphibolite and garnet-bearing am-
phibolite xenoliths within the Beiya porphyry intrusion. They
are interpreted as residuals of Neoproterozoic arc magmas
pounding at the base of the Yangtze Block and are enriched
in Cu and Au. Then, melting of the Neoproterozoic arc resid-
uals at 40–30Mamight supply metal endowment for the post-
collisional porphyry system. Utilizing a geohygrometer for
ore-bearing porphyries in the Himalaya orogenic belt, howev-
er, Lu et al. (2015b) demonstrated that these potassic high Sr/
Y magmas had high dissolved H2O contents >10 wt.%, which
could not be explained simply by dehydration melting of am-
phibolites (maximum of 6.7 ± 1.4 wt.%) (Sen and Dunn 1994;
Rapp and Watson 1995; Sisson et al. 2005). Furthermore, it
should be noted that all the ore-bearing porphyries are potassic
and have high K2O content and K2O/Na2O ratio. However,
experimental data on partial melting of amphibolites between
8 and 32 kbar found the resulting melts to be sodic with low
K2O contents (< 4 wt.%), and K2O/Na2O < 1 (Fig. 3; Sen and
Dunn 1994; Rapp and Watson 1995; Moyen and Stevens
2005). Thus, these potassic ore-bearing porphyries are unlike-
ly to have been derived from the garnet-bearing amphibolites.
From here we see that an alternative source would be needed
to account for the formation of these potassic, adakite-like ore-
bearing porphyries.

All the samples have high K2O content (mostly >4 wt.%)
and K2O/Na2O ratio (mostly >1), while most are plotted in the
fields of shoshonite (Fig. 4). Turner et al. (1996) have pro-
posed that shoshonitic rocks are generally derived from sub-
continental lithospheric mantle modified by introduction of
slab-derived fluids. According to the experimental data of
Wyllie and Sekine (1982), interaction between such fluids
and mantle peridotite can produce hybrid pyroxenites
consisting of pyroxene, garnet and potassic minerals (phlogo-
pite and potassic amphibole). Subsequent partial melting of
the hybridized mantle source can yield potassic mafic melts.
However, as discussed above, the investigated porphyries
were not directly produced by the AFC of mantle-derived
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magmas or partial melting of a modified lithospheric mantle.
They were most likely generated by partial melting of
underplated potassic mafic rocks that originated from a mod-
ified lithospheric mantle which will be discussed below.

The investigated porphyries have similar Sr-Nd isotopic
characteristics to the coeval lamprophyres which have been
interpreted as products of partial melting of the enriched sub-
continental lithospheric mantle modified by previous subduc-
tion (Li et al. 2002; Lu et al. 2015a). It should be noted that
these lamprophyres are also shoshonitic, have highK2O/Na2O
ratios >1 (Fig. 3) and contain potassic minerals (amphibole
and phlogopite). It was possible that part of the Eocene potas-
sic melts intruded the crust to yield lamprophyric dykes with
the rest underplating beneath continental lower crust to form
juvenile crust. Subsequently, partial melting of the potassic
juvenile crust might have produced the potassic ore-bearing
porphyries. Experimental data also indicated that the partial
melting of high-potassium basaltic rocks could produce some
adakite-like melts with relatively high K2O/Na2O ratios (Rapp
and Watson 1995; Sisson et al. 2005). The enrichment in Sr
and the absence of significant Eu anomalies in our samples
necessitate a source beyond the plagioclase stability field (Fig.
4 and Fig. 5). Furthermore, these ore-bearing porphyries ex-
hibit relatively low HREE (Yb = 0.51 to 1.98 ppm), Y (6.5 to
18.8 ppm) contents (Fig. 5) and relatively steep HREE pat-
terns (GdN/YbN = 1.1–2.2), indicating that garnet rather than
amphibole is residual in the source (Halla et al. 2009). The
low-HREE TTGs of Halla et al. (2009) share similar signa-
tures of HREEs to the ore-bearing porphyries. The former has
been interpreted as products of high-P (>2.0 Gpa) partial melt-
ing of a garnet-bearing basaltic source. However, they exhibit
lower Yb (average 0.4 ppm), Y (average 4.5 ppm) and higher
GdN/YbN (average 4.0), indicating that the ore-bearing por-
phyries have a shallower source than the low-HREE TTGs.
Garnet can be produced via the breakdown of amphibole +
plagioclase under fluid-free conditions at pressures between
12 kbar and 18 kbar (Rushmer 1993), while amphibole re-
mains stable with garnet up to at least 15 kbar (ca. 50 km)
(Patiño Douce and Beard 1995). The presence of garnet rather
than amphibole and plagioclase as the dominant residual min-
eral phase therefore requires a thickened lower crustal source
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Table 3 Sr-Nd isotopic components of selected rock samples

Intrusion Machangjing Beiya Beiya lamprophyre

Sample 10MCQ01–1 10MCQ01–2 10MCQ01–11 11BY01–1 11BY02–1 11BY02–2 11BY02–3
87Rb/86Sr 1.2239 1.3044 0.8336 2.0006 1.3746 1.1500 1.0609
87Sr/86Sr 0.707361 0.707473 0.707203 0.708520 0.708235 0.706991 0.706884
±2σ 7 12 13 10 8 8 10
147Sm/144Nd 0.0969 0.0985 0.0930 0.1009 0.1134 0.1213 0.1173
143Nd/144Nd 0.512525 0.512345 0.512349 0.512323 0.512317 0.512549 0.512544
±2σ 5 8 5 5 7 7 6
(87Sr/86Sr)i 0.7067 0.7068 0.7068 0.7075 0.7075 0.7064 0.7063
εNd(T) −1.7 −5.3 −5.1 −5.7 −5.9 −1.4 −1.5
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(its depth ≥ 50 km), most probably under eclogite-facies con-
ditions. The occurrence of eclogite xenoliths within the
Eocene Liuhe porphyry intrusion also implied that western
Yangtze Block had a thickened lower crust during the
Eocene (Cai 1992). Estimated pressure of the garnet-bearing
xenoliths within the Eocene Liuhe porphyry also supported
the speculation that western Yangtze Block had a thick crust
(~ 45–55 km in depth) (Zhao et al. 2004). Compared to those
adakite-like rocks derived from thick lower crust and experi-
mental melts of metabasaltic rocks and eclogites, the less
felsic ore-bearing porphyries have slightly higher Mg#, Cr
and Ni contents (Fig. 10), indicating a mixing of mantle-
derived magmas. This speculation is also corroborated by
the negative correlation between 87Sr/86Sri and εNd(t) (Fig.
6), and the occurrence of mantle-derived mafic enclaves in
the Machangjing intrusion (Guo et al. 2012). But the mixing
was likely limited because (1) the ore-bearing porphyries have
relatively low MgO contents (Fig. 10b); and (2) the coeval
lamprophyres and ore-bearing porphyries exhibit divergent
trends in the plots of SiO2 vs. Al2O3 and Na2O (Fig. 9).

Thus, the investigated ore-bearing porphyries were likely
to have been produced by partial melting of the
underplated potassic mafic rocks, with limited mixing
of mantle-derived magmas.

Implications for the genesis of the porphyry copper
deposits in non-subducting setting

Slabmelts are unusually oxidized, enriched in sulfur (Oyarzun
et al. 2001) and water (Sajona and Maury 1998), and contain
high initial Cu contents (Sun et al. 2011, 2012a, b). These
characteristics provide a plausible explanation why most por-
phyry Cu deposits are hosted by adakites and occur in sub-
duction settings. In this contribution, however, the ore-bearing
adakite-like porphyries might have been derived by the partial
melting of newly underplated potassic mafic rocks under post-
collisional setting, instead of slab melting at subducting zone.
As mentioned above, these latent underplated rocks and
lamprophyric dykes in western Yangtze shared the samemeta-
somatic lithospheric mantle source, which had been modified
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by materials released from subducted slabs. The lithospheric
mantle underneath the W. Yunnan has undergone a series of
subduct ion- re la ted metasomat ic events : (1) the
Neoproterozoic slab subduction related to the formation of
the Panxi–Hannan arc (Zhao et al. 2011; Zhou et al. 2002,
2006); (2) the subduction of the Paleo-Tethyan oceanic slab
during the Paleozoic (Guo et al. 2005); (3) the Neo-Tethyan
subduction (Lei et al. 2009). These slab-derived fluids would
infiltrate into the overlyingmantle wedge and undergo hybrid-
ization with peridotite to form metasomatic mantle domains
(Fig. 12a), composed of a series of discrete veins or masses
(Wyllie and Sekine 1982). Such processes would enable the
hybridized mantle domains to inherit the elevated oxygen

fugacity as well as high contents of water, sulfur and copper
copper from the slab fluids. Subsequently, partial melting of
these mantle domains would be responsible for the formation
of the newly underplated potassic rocks (Fig. 12b). The pres-
ence of phlogopite, amphibole and magnetite in the
lamprophyres suggests that the underplated rocks have high
oxygen fugacity and water content. Compared to lower con-
tinental crust (26 ppm; Rudnick and Gao 2003) and the am-
phibolite xenoliths in the Liuhe porphyry (~ 14–15 ppm; Deng
et al. 1998), most of these lamprophyres show a higher Cu
abundance (62.7 ppm in average) (Fig. 5). Thus, we conclud-
ed that the newly underplated potassic rocks have high
metallogenic potential.
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Conclusions

(1) The investigated Eocene potassic ore-bearing porphyries
exhibit adakitic affinities such as depletion in HREE,
absence of negative Eu anomaly, high Sr/Y, La/Yb and
low Y, Yb abundances.

(2) They were probably derived by partial melting of newly
underplated potassic mafic rocks.

(3) We propose that all the studied potassic rocks were
emplaced in a post-collisional setting, associated with
the local removal of lithospheric mantle.
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