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Abstract The Cap de Creus granitic pegmatites in the eastern
Catalan Pyrenees were dated using in situ U-Pb geochronolo-
gy by laser ablation ICP-MS on zircon and columbite-group
minerals (CGM), which are present in the different types of
pegmatites from type I (K-feldspar pegmatites, least evolved)
to type IV (albite pegmatites, most evolved) and therefore
allow dating the different pegmatitic pulses. In a type III peg-
matite where zircon and CGM are co-genetically associated in
the same sample, both minerals were dated using zircon and
tantalite reference materials, respectively, to avoid laser-
induced matrix-dependent fractionation. In one sample,
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xenotime genetically associated with zircon was also dated.
Two ages were obtained for type I and three ages for type 111
pegmatites. Three of these 5 ages range from 296.2 + 2.5 to
301.9 + 3.8 Ma and are allocated to the primary magmatic
stage of crystallization and therefore to the emplacement
event. Two younger ages (290.5 + 2.5 and 292.9 + 2.9 Ma)
obtained on secondary zircon and xenotime, respectively, are
interpreted as late post-solidus hydrothermal remobilization.
There is no age difference between type I and type III pegma-
tites. The mean 299 Ma primary magmatic age allows the
main late Carboniferous deformation event to be dated and
is also synchronous with other peraluminous and calc-
alkaline granites in the Pyrenees. However, the youngest ages
around 292 Ma imply that tectonics was still active in Early
Permian times in the Cap de Creus area.

Keywords Geochronology - Pegmatites - Cap de Creus -
Zircon - Columbite-group minerals

Introduction

The Cap de Creus peninsula (NE Spain) in the easternmost
end of the Pyrenean Axial Zone is a remarkable center of
interest for geologists because of its well-exposed outcrops
that reveal a complex tectonic, metamorphic and magmatic
history. Several episodes of deformation and regional meta-
morphism are accompanied by calc-alkaline and
peraluminous magmatism and affected a late Proterozoic se-
ries of metasediments and metavolcanics during the Variscan
orogeny. An important group of mineralized granitic pegma-
tites is associated with these tectonic events.

The study of granitic pegmatites in Europe is gaining inter-
est because these highly fractionated rocks are important
sources of industrial minerals and strategic metals such as Li

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00710-016-0455-1&domain=pdf

M. Van Lichtervelde et al.

and the high field strength elements Nb-Ta and Sn (Linnen
et al. 2012). In Europe rare-element granitic pegmatites are
abundant in the Variscan terrains (French Massif Central,
Iberian Massif, Moldanubian domains of Czech Republic,
Slovakia and Germany). The Cap de Creus area is one of these
fields.

Studies on the geology of Cap de Creus essentially dealt
with structural aspects and tectonic interpretations of the
Variscan orogeny (Carreras 1975, 2001; Carreras and
Druguet 1994, 2013; Druguet and Hutton 1998; Druguet
2001; Fusseis et al. 2006) and the petrology of the
peraluminous pegmatites (Corbella and Melgarejo 1993;
Alfonso et al. 1995, 2003; Alfonso and Melgarejo 2008).
Apart from the recent study by Druguet et al. (2014) that dated
a granodiorite and a quartz diorite intrusion, geochronology of
the Variscan in Cap de Creus was only indirectly inferred from
other studies in the Eastern Pyrenees (e.g., Aguilar et al.
2014).

The peraluminous pegmatite swarm that crops out in the
Cap de Creus area consists of different types of pegmatites,
ranging from type I (K-feldspar pegmatites, least evolved)
to type IV (albite pegmatites, most evolved), distributed
along zones of increasing intensity of the deformation
and metamorphic grade. Consequently, dating the Cap de
Creus pegmatites could better frame the geological history
of the Variscan orogeny in the Pyrenees and particularly
could help to place a timeline on the succession of tectonic
events. The pegmatites contain U-bearing accessory min-
erals such as zircon, xenotime and columbite-group min-
erals (CGM). The aim of our study is to date these minerals
in order to constrain the pegmatite emplacement. Age cor-
relations with published geochronological data on
peraluminous granite and migmatitic rocks from the area
may also help to establish a model for the anatectic versus
granitic origin of the mineralized pegmatites during the
Variscan orogeny.

Columbite-tantalite is well suited for U-Pb age determina-
tion of pegmatite emplacement. It generally contains around
500 ppm U, but values up to 10,000 ppm are not uncommon,
and it accommodates low common Pb. Solid state U-Pb dif-
fusion is also thought to be minor in CGM (Romer and Wright
1992). Columbite-tantalite is a common primary magmatic
mineral phase in pegmatites, and its refractory nature makes
it resistant to hydrothermal alteration and weathering. Large
crystals several hundred microns in size allow detailed char-
acterization of their internal textural features, thus permitting
precise location of the ablation laser spots with respect to
possible late precipitation phases, metamict zones and U-
bearing inclusions. Columbite-tantalite is a good alternative
to date pegmatites where zircon is too U-rich and highly
metamict. The present study gives ages from both zircon and
CGM associated together in the same samples, using a thor-
ough sorting out of metamict grains.
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Geological setting
General features

The study area is located in the Northern Cap de Creus pen-
insula (Fig. 1). It consists of metasedimentary rocks
(metagreywackes, metapelites, rare quartzites) with minor
metavolcanic intercalations. The protolith of this sequence is
referred to as the Cadaqués series (Navidad and Carreras
1995) and is considered Neoproterozoic in age. During the
Variscan, the rocks of the Cadaqués series were affected by
polyphase deformation with three main deformation episodes
(D1, D2, D3; Druguet 2001), the two first ones occurred dur-
ing the prograde LP-HT regional metamorphism and the last
one during late shearing events under retrograde conditions.
Metasediments show a gradient from the chlorite-muscovite
zone in the south (out of the map in Fig. 1) to the sillimanite-K
feldspar zone in the north. Locally, migmatites were formed in
the sillimanite-K feldspar zone (Druguet et al. 1997). High to
medium grade schists in the northern part of the area are ex-
tensively intruded by pegmatite (Fig. 1; Carreras and Druguet
1994; Bons et al. 2004).

The oldest deformation in the area (D1) led to the develop-
ment of a first continuous and penetrative N-S trending
bedding-parallel schistosity (Sl) in the metasediments prior
to the metamorphic climax. Later intense and inhomogeneous
D2 deformation led to folding and shearing of S1 with upright
or steeply inclined axial surfaces which trend approximately
NE-SW in less deformed areas and E-W in more deformed
areas. Parallel with the increase of metamorphic grade, the
intensity of the D2 event increases from south to north, where
a 200 m thick E-W trending zone of high strain is observed
and S1 is transposed into a steeply dipping composite S1/S2
foliation with a few relics of tight to isoclinal D2 folds
(Druguet and Carreras 2006). L2 lineations are generally
steeply plunging towards the NW. D2 structures formed
around peak metamorphic conditions, as shown by the pres-
ence of synkinematic sillimanite and by partial melting of
metasediments. A third episode of deformation of unknown
age occurred under retrograde (greenschist facies) metamor-
phic conditions and was characterized by strain localization
that gave rise to a network of D3 shear bands with predomi-
nantly reverse-dextral movement. These form the classical
Cap de Creus shear zones and mylonites which overprint
and therefore postdate all the preexisting structures (Carreras
2001). Unambiguous field relationships show that pegmatites
intruded after D1 and before D3, that is more or less contem-
poraneously with D2 (Fig. 2).

Published geochronological data of Cap de Creus

The Cadaqués metasedimentary series, although not directly
dated, is inferred to be older than the El Port de la Selva gneiss



U-Pb geochronology of the Cap de Creus pegmatites

|

00

|
AQUITANIAN BASIN

EBRO BASIN

Toulouse ﬁ

[ ] N a

Farallons

a3 0 Figuerese Rose3
QQJ | 1 1 b
FRANCE
’ ;\/\ . . s .

C"“’LF“& p I:I Post-Variscan cover - pre-Variscan granitoids (orthogneisses)
)?SPAW | - Silurian to Westphalian series
LK(#/ [ variscan granitoids [ Precambrian-Lower Paleozoic series

Punta dels "+

¥ oD

Cala

|| Late Dyshear zones

egmatites (I to IV
= F|)1d?cate pegmatite types)

metamorphic rocks:
migmatite complexes

Sil-Mu and Sil-Kfs zones
Crd-And zone
Bt zone

U.T.M. 4687.5

Mediterranean Sea

w, Cap
« de
== Creus

U.T.M. 4685

Fig. 1 a Geological map of the central and eastern Pyrenean Axial Zone
(modified from Druguet et al. 2014). b Geological map of the north Cap
de Creus area, showing the distribution of the four pegmatite types (mod-
ified from Corbella and Melgarejo 1993) within the three metamorphic
zones (Sil-Mu: sillimanite-muscovite; Sil-Kfs: sillimanite-K-feldspar;

(located about 5 km west of the Punta dels Farallons, Fig. 1b),
whose igneous precursor intruded the metasedimentary se-
ries and was dated at 553.0 = 4.4 Ma (Castifieiras et al.
2008). Zircons from the Tudela migmatite (northern part
of the Cap de Creus, Fig. 1b) yield inherited ages from the
Precambrian protolith, with two main age clusters at c¢. 2.9—
2.2 Ga and c. 730-542 Ma (Druguet et al. 2014). However,
based on field structural relationships, Druguet et al. (2014)
interpret that the migmatization event was synchronous
with the emplacement of a syntectonic quartz diorite from

Crd-And: cordierite-andalusite; Bt: biotite; the chlorite-muscovite zone
is further to the south, out of the map). The main shear zones of the
mylonite belt and the sampled pegmatite localities are also shown.
Labels 2a, 2b and 2c correspond to the locations of photographs in
Fig. 2. Modified from Druguet and Carreras (2006)

the Tudela migmatitic complex dated at 298.8 + 3.8 Ma by
these authors. The western and southern granitoid stocks,
known as Rodes and Roses stocks respectively (Fig. 1a),
consist of granodiorite and tonalite and were emplaced
within lower-grade rocks at 290.8 + 2.9 Ma (Druguet
et al. 2014). For further geochronological data in the
Pyrenees, the reader can refer to Laumonier et al. (2004);
Cocherie et al. (2005); Casas et al. (2010); Liesa et al.
(2011), Aguilar et al. (2014), Den¢le et al. (2014) and
Casas et al. (2015).
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Fig. 2 Field photographs showing the relationships between pegmatite
dykes and deformation phases (see location on Fig. 1). a Pegmatitic vein
crosscutting bedding/S1 and being slightly folded by D2. Zone of low D2
strain south of Puig de Culip. b Syntectonic pegmatite dykes are folded

Pegmatites

Four types of peraluminous, lithium-cesium-tantalum-family
pegmatites (after the classification of Cerny and Ercit 2005)
were distinguished among the ~400 bodies that crop out in
Cap de Creus. This distinction was made on mineralogical and
textural criteria (Corbella and Melgarejo 1993). Type I peg-
matites are barren with graphic textures and a relatively simple
concentric structure roughly consisting of border, first inter-
mediate and second intermediate zones; in addition to biotite
and muscovite, peraluminous minerals as cordierite, silliman-
ite, andalusite, almandine and schorl are very common in all
these zones. Xenotime is associated with zircon in this peg-
matite type. Type Il pegmatites are transitional with the most
evolved pegmatites; the main differences with type I are the
occurrence of a well developed quartz core and the existence
of late albite units. In addition to the above mentioned
peraluminous minerals, these pegmatites may contain chryso-
beryl, gahnite, green beryl, Ca-Fe-Mn-Mg-phosphates and
some Be- and Al-phosphates. Nb-rich minerals of the colum-
bite group are scarce in all units as well as wolframite, Sc-rich
rutile and uraninite. The internal structure of type III pegma-
tites is more complex with large quartz cores and well devel-
oped albite and quartz-muscovite replacement units. Biotite is
absent and schorl is scarce; garnet is enriched in the spessar-
tine component. White beryl, montebrasite and Li-Fe-
phosphates are common in the second intermediate unit and
in the albite or quartz-muscovite replacement veins, as well as
Ta-rich minerals of the columbite group, cassiterite and urani-
nite. Type IV pegmatites are the most evolved in the field. In
addition to the above mentioned units, they may also contain
late Al-phosphate veins. Beryl or chrysoberyl, montebrasite
and Li-Mn phosphates are common. Ore minerals consist of
Ta-Mn rich members of the columbite group, as well as cas-
siterite, tapiolite and aeschynite. Following the classical peg-
matite classification (Cemny and Ercit 2005), type II pegma-
tites belong to the beryl-columbite subtype, type III belong to
the beryl-columbite-phosphate subtype, and type IV belong to
the albite subtype. Type I pegmatites are nearly sterile and
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by D2 in a zone of strong D2 strain, as shown by a penetrative composite
S1/82 fabric. North of Puig de Culip. ¢ Mylonitic foliation (S3) affecting
schists and a pegmatite body at the margin of a late dextral zone. NW Cala
Culip

may be considered as pegmatitic granite rather than pegmatite
sensu stricto.

The four types of pegmatites occupy different zones paral-
lel to the tectono-metamorphic zoning (Fig. 1): types I and II
occur in high-grade and high-D2 strain rocks of the migmatite
and sillimanite-muscovite zones that lie along the northern
coast, whereas types III and IV occur in medium-grade meta-
morphic rocks of the cordierite-andalusite zone to the south.
The size and frequency of the pegmatite bodies decrease from
type I to type IV (Corbella and Melgarejo 1993): along the
northern coast, large stocks of pegmatitic granite may reach a
length of several hundreds of meters and a width of more than
50 m, whereas 2 km further to the southwest, only a few
bodies outcrop with a maximum length of 30 m.

In general, pegmatite dykes follow the main S2 foliation,
and are locally affected by late shearing. Some dykes that were
emplaced oblique to S2 foliation are affected by ductile folding.

Sampling and analytical procedure

Rock samples were collected on six dykes representative of
type I, III and IV pegmatites (Fig. 1), but only two locations
(L3 and L7) were relevant for dating. Polished sections and
thin sections were prepared for mineralogical description and
investigation of the mineral textures to determine the primary
magmatic versus secondary nature of the dated minerals. In
samples where zircon suitable for dating was observed, a larg-
er sample volume was crushed and zircon was separated using
a standard separation procedure: 1) gravity separation using
either a shaking table or a gold pan; 2) heavy liquid separation
using tetrabromo-ethane; 3) magnetic separation to eliminate
the metamict zircon grains; 4) heavy liquid separation using
metyleniodide. Thirty to 40 separated grains per sample were
mounted in lines in epoxy resin blocks that were subsequently
polished. In L7 sample, xenotime occurs in direct contact with
zircon and was therefore dated together with it. Because of
their coarse-grained habit, CGM crystals were directly dated
on the polished sections.
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Back-scattered electrons (BSE) images were taken for each
zircon and CGM grain, and crack- and inclusion-free domains
were selected for the laser spots. In sample L7 where zircon
shows complex textures, additional cathodoluminescence
(CL) images were taken in order to highlight the metamict
parts of the altered domains.

Quantitative chemical analyses were carried out with a
Cameca SX50 electron probe micro-analyzer (EPMA) using
a 15 kV accelerating voltage, 20 nA beam current, 1 wm beam
diameter, 10 s and 5 s acquisition times on peak and back-
ground respectively, natural and synthetic calibrant materials
(Ta, Nb, and W metals, cassiterite, zircon, hematite, wollas-
tonite, MnTiO3, ScPO,4, UO,, ThO,, Pb glass), and ZAF cor-
rection procedures.

Uranium-lead dating of CGM, xenotime and zircon was
carried out in-situ at the Goethe University of Frankfurt
(GUF) using a slightly modified method as the one previously
described in Gerdes and Zeh (2006, 2009) and Zeh and
Gerdes (2012). Thermo-Scientific Element II sector field
ICP-MS was coupled to a Resolution M-50 (Resonetics)
193 nm ArF Excimer laser (CompexPro 102, Coherent)
equipped with two-volume ablation cell (Laurin Technic,
Australia). Samples were ablated in a helium atmosphere
(0.6 I/min) and mixed in the ablation funnel with 0.7 I/min
argon and 0.02 1/min nitrogen. Signal strength at the ICP-MS
was tuned for maximum sensitivity while keeping oxide for-
mation below 1 %. The laser was fired with 5.5 Hz at a fluence
of about 2-3 J cm 2. This yielded with the above configura-
tion at a spot size of 30 um and depth penetration of
0.6 um s ' a sensitivity of 11,000-13,000 cps/ug g ' for
>3, Raw data were corrected offline for background signal,
common Pb, laser induced elemental fractionation, instrumen-
tal mass discrimination, and time-dependent elemental frac-
tionation of Pb/U using an in-house MS Excel© spreadsheet
program (Gerdes and Zeh 2006, 2009).

Laser-induced elemental fractionation and instrumental
mass discrimination were corrected by normalization to the
reference zircon GJ-1 (0.0982 + 0.0003; ID-TIMS GUF val-
ue). Repeated analyses of the reference zircon Plesovice and
91,500 (Slama et al. 2008; Wiedenbeck et al. 2005) during the
same analytical session yielded an accuracy of better 1 % and
a reproducibility of <2 % (2 SD). The same applies to mona-
zite run as secondary standards normalized to GJ-1 using the
same analytical setting and tune parameter except of the spot
size: 15 pum relative to 33 um for GJ-1. Repeated analyses
(n = 9) of the reference monazite Manangotry and Moacir
(Horstwood et al. 2003; Gongalves et al. 2016) yielded an
accuracy of around ~1 % and reproducibility of 2-3 % (2
SD). This is in line with previous studies at GUF that have
shown that LA-SF-ICP-MS with non-matrix matched stan-
dardization can yield precise and accurate U-Pb ages for dif-
ferent phosphate minerals (e.g., Meyer et al. 2006; Millonig
et al. 2013 and references therein). Thus no correction for

phosphate matrix have been applied for xenotime analysis.
However, in case of CGM the Coltan 139 (Gébler et al.
2011) was used as matrix matched standard. More details on
the operating conditions and instrument settings are given in
Gerdes and Zeh (2006, 2009) and in data Tables 1 and 2. All
uncertainties are reported at the 2sigma level.

One zircon age was duplicated at the Laboratoire Magmas
et Volcans of Clermont-Ferrand, equipped with an Excimer
193 nm laser coupled to a quadrupole Agilent 7500 ICP-
MS, using zircon GJ-1 as reference material (analytical
techniques described in Paquette et al. 2014). However, the
Thermo-Scientific Element II sector field ICP-MS in
Frankfurt is more adapted to Hercynian ages since it has a
better precision on the U/Pb ratios and its higher sensitivity
allows better correction for common Pb. For CGM ages, an
external manganotantalite crystal (Coltan 139; Gébler et al.
2011) from Madagascar was used to correct for matrix-
dependent U/Pb elementary fractionation. This reference
was used to date CGM from African pegmatites with the goal
to fingerprint illegally mined coltan (Melcher et al. 2008,
2015). The Coltan 139 reference is a large manganotantalite
crystal that is isotopically and chemically homogeneous at the
micrometer scale, has a U concentration of about 1600 ppm
and low common Pb (Gébler et al. 2011). It displays an inter-
cept age of 505.6 + 3.4 Ma obtained by LA-ICP-MS and
verified by ID-TIMS. Where necessary, the various textural
domains of zircon and CGM were dated, and most crystals
were measured in both core and rim for comparison.
Concordia diagrams were plotted using Isoplot 3.7 (Ludwig
2008).

Results
Dated pegmatites and minerals

Six pegmatite dykes (Fig. 1) were studied but only two of
them displayed CGM, xenotime and/or zircon crystals that
were suitable for dating. Textural and chemical features of
CGM and zircon were studied in all pegmatites where they
were observed. In type I pegmatites L1 and L5, no CGM was
found and most zircon crystals were too small (c. 10 um) to be
dated. In type II pegmatite L2, zircon crystals were too small
and altered to be dated, but CGM displayed a few prismatic
crystals that could be dated in Clermont-Ferrand. However,
standardization on zircon lead us to exclude those CGM ages.
In type IV pegmatite L4, the zircon crystals were larger (c.
100 um), but they were highly metamict and rich in uraninite
inclusions, and displayed uninterpretable ages due to loss of
radiogenic Pb on one hand and entry of common Pb on the
other. Although CGM are also common in type IV pegmatites,
they are generally associated with the aplitic albite units and
their crystals were too fine-grained to be dated. The two dated
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pegmatites belong to type I (L7) and type III (L3). Their geo-
graphic coordinates and description are given in Table 3.
Pegmatite L3 (type III) is a well-zoned pegmatite located in
the cordierite-andalusite metamorphic zone. The dyke is
100 m long and 10 m wide. Pegmatite L7 (type I) is a large
(200 x 20 m) homogeneous dyke emplaced in the sillimanite-
K-feldspar zone.

Textural and chemical features of CGM and zircon

In type II to type IV pegmatites, columbite-group minerals
occur as millimeter to centimeter-sized tabular crystals includ-
ed in major mineral constituents like mica and albite (Fig. 3a)
and sometimes arranged in “star shape” (Fig. 3d-e).
Backscattered electron images reveal complex chemical zon-
ing including simple progressive zoning, oscillatory zoning
and patchy zoning. Bizonal crystals with broad bands showing
sharp chemical contrasts between a dark Nb-rich core and a
bright thin Ta-rich rim are common (Fig. 3d-e). Other Nb-Ta-
minerals associated with CGM include wodginite, cassiterite
and microlite. Zircon and CGM may be found intimately as-
sociated, either as intergrowth (Fig. 3b) or as inclusions
(Fig. 3c). Zircon is mostly found as fine-grained (<1 mm)
euhedral crystals disseminated in major silicate minerals. It
can be slightly zoned with concentric bands (Fig. 3h), but
radiation damage generally masks this zoning (Fig. 31).
Metamict and inclusion-rich crystals such as the ones shown
in Fig. 3i-j were discarded for age dating. Zircons from the
type I pegmatite L7 are coarser-grained and present complex
oscillatory zoning with zones of porous inclusion-rich zircon
(Fig. 3f-g); these two types of zircon zones are later distin-
guished as primary versus secondary based on their geochem-
istry. Xenotime occurs in direct contact with pegmatite L7
zircons. It shows resorbed textures and systematically occurs
near zircon cores, which evokes exsolution during
dissolution-reprecipitation of primary zircon.

CGM chemistry includes minor concentrations of TiO,
(<1.7 wt%), WO;3 (<1.4 wt%), SnO, (<1 wt%), ZrO,
(<0.5 wt%), UO, (<0.4 wt%) and Sc,05 (<0.2 wt%). EPMA
analyses show a large range of compositions (Table 4) that
plot in the ferrocolumbite to ferrotantalite parts of the CGM
quadrilateral (Fig. 4). Core to rim variations illustrate the com-
mon Ta over Nb enrichment that is generally observed during
CGM fractionation. Nb-Ta fractionation is also visible from
type II to type IV CGM, and can be illustrated in a Rayleigh-

Table 3  Description of the two dated pegmatite localities

type Nb/Ta vs. Ta,Os fractionation diagram (Fig. 5). Fe-Mn
fractionation leads to a general Fe enrichment over Mn.
Zircon chemistry reveals high concentrations of UO, (up to
1.6 wt%), and HfO, concentrations ranging from 2.1 to
6.1 wt%, which slightly increase from type I to type III and IV
pegmatites (Table 5). Figure 5 illustrates this Zr/Hf fractionation
trend. In type I zircon from the L7 pegmatite (Fig. 3f-g), three
types of zircon zones were distinguished based on backscattered
images and show distinct chemistry (Table 5; see Fig. 6 for
outline of zircon zones). The highly porous and inclusion-rich
cores have negligible UO, and Y,Os concentrations, whereas
the oscillatory zones (zrl) have low UO, and Y,0O; concentra-
tions (0.6 and 0.1 wt% in average). On the Zr/Hf fractionation
trend (Fig. 5), these two zircon zones plot on a continuous trend
which can be interpreted as magmatic fractionation. These zir-
con zones are therefore interpreted as primary. Alternatively, the
patchy zones (zr2), which crosscut the oscillatory zones, have
high UO, and Y,Oj3 concentrations (up to 3 and 1.9 wt% re-
spectively) and low totals due to metamictization. They also
display high levels of impurities (P, Ca and Fe). The P + Y
component is negatively correlated with Zr + Hf + Si (apfu);
its incorporation is explained by the vector P* + Y>* = Si** +
Zr**, which reflects the solid solution between zircon and
xenotime (Fig. 6). This third zircon type plots outside the Zr/
Hf fractionation trend and is therefore interpreted as secondary.
Few EPMA analyses of xenotime revealed UO, and ThO, con-
centrations of 4 and 0.1 wt% in average, respectively.

U-Pb dating

Full age data is available in Table 1 (pegmatite L.3) and Table 2
(pegmatite L7). Table 6 summarizes the number of grains that
were analyzed, the total number of analyses and the number of
analyses that were used to calculate Concordia ages.
Concordia ages are given except when they are too few, in
this case intercept ages are given.

For pegmatite L3 (type III), U-Pb analyses of zircon and
CGM reported in Concordia diagrams (Fig. 7) spread over a
large range of isotopic ratios along discordant lines, indicating
extensive lead loss. For CGM, 6 points plot on the Concordia
line and give an age of 301.9 £ 3.8 Ma (MSWDc, g = 1.3 with
C + E = concordance + equivalence). No distinction can be
made between the two main BSE zones (see laser spot
locations in Fig. 3e). For zircon, only one age plots on the
Concordia line but the 26 discordant ages define an upper

GPS coord. Pegmatite type

Rock description

Dated minerals

L3 N42°19°30” - E03°15°31”  1II
L7 N42°20°01” - E03°15’50” 1

Aplitic albite vein adjacent to quartz pocket in well-zoned pegmatite
Poorly-zoned, medium-grained, simple pegmatite with abundant

Zircon and CGM

Zircon and xenotime

garnet + tourmaline and minor sillimanite + cordierite
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Fig. 3 BSE pictures showing
CGM inclusions within mica in
pegmatite L4 (a), the intimate and
cogenetic association between
CGM and zircon in pegmatite L2
(b) and L3 (c¢), the star-shape habit
of CGM at different scales, and its
bizonal chemical zoning in
pegmatite L2 (d) and L3 (e),
complex zoning in type-I zircon
and its association with xenotime
in pegmatite L7 (f-g), various
zircon habits, from slightly zoned
(h, pegmatite L3) to highly
metamict (i, pegmatite L4) and
inclusion-rich (j, pegmatite L5).
In Fig. 3e, laser-spot locations for
U-Pb dating are marked with
circles. ms: muscovite, zrn:
zircon, Xtm: xenotime

intercept at 298.7 + 5.7 Ma (MSWD =1.5). The BSE images
of the analyzed zircon grains (Figs. 3j and 8) reveal highly
porous and inclusion-rich crystals, supporting lead loss as the
cause of the dispersion on the Discordia line. The duplicate
analyses performed in Clermont-Ferrand (inset of Fig. 7b),
indicate a combination of discordance and common Pb con-
tribution. The eight remaining concordant analyses display a
Concordia Age 0f297.3£2.1 Ma(MSWD¢,z=1.6,n=8). A
second, smaller group of concordant analyses displays a youn-
ger age (ca. 275 Ma).

In pegmatite L7 (type I), oscillatory-zoned (primary, zrl in
Fig. 6) and porous (secondary, zr2 in Fig. 6) zones of zircon
were thoroughly distinguished during laser spot
location (Fig. 9), and the age results display two age groups
(Fig. 10). In primary zircon (zrl), 19 of the 28 U-Pb ages plot
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on the Concordia and display an age of 296.2 + 2.5 Ma
(MSWDc,g = 1.7, n = 19). For secondary zircon (zr2), the 36
analyses are spread over a large range of isotopic ratios and 12 of
them plot on the Concordia line and give an age of
290.5 + 2.5 Ma (MSWDc,¢ = 0.7). Eight of the 12 xenotime
U-Pb analyses plot on the Concordia and display an age of
292.9 £2.9 Ma MSWDc,g = 0.76).

Discussion
Columbite versus zircon dating

In-situ U-Pb geochronology by LA-ICPMS on columbite-
group minerals has been developed in the 2000s (Smith et al.



U-Pb geochronology of the Cap de Creus pegmatites 13

Table 4 Chemical compositions

of columbite-group minerals as Type 11 Columbite Type III Columbite Type 111 Tantalite Type IV Tantalite

determined by EPMA and

structural formulae calculated for N 24 454 70 35

6 oxygens wit%
Ta,Os 19.09 25.57 54.93 47.04
Nb,Os 63.62 56.09 27.28 34.06
TiO, 0.52 0.62 0.86 0.40
SnO, 0.03 0.29 0.35 0.17
WO, 0.14 0.28 0.23 na.
U0, 0.05 0.05 0.05 0.05
Zr0, bdl 0.02 0.03 bdl
PbO bdl 0.01 0.04 bdl
ThO, bdl 0.03 0.02 n.a.
Sc,04 0.03 0.04 0.10 n.a.
FeO 11.56 12.28 11.29 12.69
MnO 7.73 6.26 4.77 4.74
Total® 102.78 101.54 99.95 99.17

Structural formula for 60

Ta>* 0.31 0.43 1.07 0.89
Nb™* 1.69 1.55 0.88 1.07
Ti* 0.02 0.03 0.05 0.02
Sn* 0.001 0.007 0.006 0.005
Total site B 2.02 2.02 2.01 1.99
Fe** 0.57 0.63 0.68 0.74
Mn?* 0.38 0.33 0.29 0.28
Sc* 0.002 0.007 0.010
Total site A 0.95 0.96 0.98 1.02

bdl below detection limit (0.02 wt% ZrO, and ThO,, 0.01 wt% PbO)
N number of analyses, n.a. not analyzed
#High totals on Nb-rich CGM are due to analytical problems on Nb

2004) and is now widely applied for pegmatite age determina-
tion (Melcher et al. 2008, 2015; Dewaele et al. 2011; Melleton

0.7
CGM 2,
& Type ll Y, ©
A 0 Type il /’f%‘%o
06 + 2 N A Type IV ©

Ta/(Ta+Nb) atomic ratio

04 02 03 0.4 05 06 0.7
Mn/(Mn+Fe) atomic ratio

Fig. 4 Chemical variations of CGM in the columbite quadrilateral.
Arrows indicate core to rim variations in single samples

et al. 2012; Deng et al. 2013). However, most geochronologi-
cal studies have used zircon standardization, arguing that
matrix-dependent effects are low (Melcher et al. 2008). Some
of these geochronological results are Precambrian in age, and
are therefore less sensitive to U/Pb fractionation. Che et al.
(2015a, b) recently evaluated the effect of matrix-dependent
fractionation by comparing U-Pb ages obtained on CGM using
two different references (Zircon 91,500 and Coltan 139), and
noticed a significant matrix effect leading to approximately 7—
15 % younger ages where zircon references were used com-
pared to the CGM reference. In our study, CGM ages were
obtained using zircon GJ-1 primary reference and Coltan 139
was only used as a secondary control reference, therefore the
Concordia age 0f 301.9 + 3.8 Ma may be slightly shifted on the
Concordia, which may explain the slight difference between
that age and the zircon Concordia age of 297.3 + 2.1 Ma ob-
tained in the same sample. However, the two ages are coeval
within error, and the reliability of the CGM age is evidenced by
the fact that Coltan 139 yields a correct age when normalized
to GJ-1 zircon in the same analytical series (Table 1).
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Fig. 5 Rayleigh fractionation HfO2 (wt%)
trends for zircon and CGM of the 2 3 4 5 6
different pegmatite types v A ' ' T Zroon
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Dating pegmatite emplacement

The primary magmatic origin of CGM and zircon dated at c.
299 Ma is evidenced by several indicators. Textural relation-
ships between zircon, CGM and major silicate minerals (feld-
spars, muscovite or garnet) indicate that zircon and CGM are
cogenetic and crystallized at the pegmatitic stage. The patchy
zones in L7 zircon (Figs. 3f-g and 6) are an exception; they are
interpreted as secondary post-solidus phases. In CGM, the
sharp chemical contrast between Nb-rich cores and Ta-rich
rims is not reflected by a detectable change in their ages. In
pegmatite L7 (type I) zircon, the porous and inclusion-rich
cores have similar chemistry compared to primary magmatic
oscillatory-zoned zircon (Fig. 6), which reflects their

Table 5 Chemical compositions of zircon as determined by EPMA

Label L5 L7-cores L7-zrl L7-zr2 L3 L4

Type I 1 I 1 I v

N 15 8 82 24 17 13

wt%
SiO, 31.38  32.02 31.71 28.29 30.88  30.71
710, 63.28  63.83 63.32 58.14 62.18  61.47
HfO, 4.03 3.17 2.62 2.25 533 5.30
P,0s5 0.15 0.25 0.50 222 0.08 0.14
CaO 0.02 0.01 0.01 0.24 0.03 0.04
FeO 0.17 0.16 0.16 0.97 0.05 1.16
Y,0; 0.06 0.00 0.09 0.96 0.05 0.06
Ce,03 0.04 0.02 0.03 0.03 0.05 0.04
Ta,Os5 0.12 n.a. n.a. n.a. 0.18 0.14
PbO, 0.14 n.a. n.a. n.a. 0.11 0.11
U0, 0.78 0.04 0.60 1.51 0.69 0.74
ThO, n.a. 0.10 0.06 0.07 n.a. n.a.
Total 99.53  99.62 99.11 95.09 99.31 98.84

N number of analyses, n.a. not analyzed
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pegmatitic origin instead of being inherited cores. Generally,
the high Zr (and HFSE in general) solubilities in F-Li-P-rich
pegmatitic melts (Linnen 1998) lower the chances to find
inherited zircon cores in pegmatites. Consequently, it can be
stated with high confidence that the obtained zircon and CGM
ages dated at c¢. 299 Ma are representative of the pegmatite
emplacement. The parallel trends followed by the Zr/Hf and
Nb/Ta Rayleigh fractionation curves (Fig. 5) are also evi-
dences that CGM and zircon both followed magmatic frac-
tionation trends and therefore crystallized together at the mag-
matic stage (Hulsbosch et al. 2014).

The different zones of pegmatite L7 (type I) zircon reflect
several crystallization stages. Oscillatory-zoned zircon may
have crystallized at magmatic stages, whereas the patchy

= [
=
s &A%é AA
<19 O &
I
¥ : <& %
518 Zircon zones & o <><>
Py W core &0
D 171 |AZA

<& 2r2

1.6
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
P+Y (apfu)

Fig. 6 BSE picture of a zircon crystal (pegmatite L7) showing an
inclusion-rich core, oscillatory-zoned primary zircon (zrl) and patchy-
zoned secondary zircon (zr2), as well as xenotime (xtm). The graph
shows Si+ Zr + Hf vs. P + Y apfu contents for the different zircon zones
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Table 6  Synthesized age data

Pegmatite Mineral NI N2 Mineral characteristics Crystal size  [U] (ppm) [Pb] (ppm) Reference Age Cor*

(pum) material

L3 Zm 26 17 Euhedral zoned crystals 200 3000-30,000  50-600 zircon 298.7+5.7 1I[1]
CGM 34 3 Needle-shaped zoned crystals 500 60400 2-20 CGM 301.9+3.8 C|[6]

L7 Zm (zrl) 28 28  Oscillatory-zoned crystals 500 2000-15,000 100-600 zircon 2962 +25 CJ19]
Zm (zr2) 36 36 Porous patchy zones 200 2000-34,000 100-900 zircon 290.5+25 CJ12]
Xenotime 12 9 Anhedral grains overgrown 100 5000-25,000 200-1000 titanite 2929+29 CI8]

on zircon

Errors are given as 20

N1 total number of analyses, N2 number of analyzed grains

2C or I — age determined by Concordia (C ) or Intercept (I). In brackets are the number of analyses that plot on the Concordia

zones, which crosscut the oscillatory zones (see Fig. 3f), could
represent a secondary either magmatic or hydrothermal stage

L3 CGM

a 0.055

[ Concordia age = 301.9 +3.8 Ma ]
MSWD(C+E) =1.3,n=6
0.045 |
]
)
&
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0.015 . . L L . .
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b L3 Zircon
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30
Upper intercept age
298.7 £5.7 Ma 25
004 | MSWD =1.5,n =26
21
o }
g 003 1837,
N 4 Concordia age
el o/ 297.3 +2.1 Ma -
w& 14 © 0050 =
& o002}
10
0.01 - b W
' 3
[ 0002 038
0.00 L . L -
0.0 0.1 0.2 0.3 0.4

207p,, 235

Fig. 7 U-Pb data in Concordia diagrams for L3 CGM and zircon. The
inset of b) shows duplicate ages from LMV Clermont-Ferrand. Data-
point error ellipses are 20

of crystallization. The highly porous nature of patchy zircon
zones suggests a replacement texture, whereas its elevated U
content indicates that it is strongly metamict. Such patchy
textures could also be the result of the metamictization and
alteration of the most U-rich zircon bands in the oscillatory
zoning, as previously shown by Paquette et al. (2003), which
would explain that the patchy zones follow the growth
banding of magmatic zircon. In the Zr/Hf fractionation trend
(Fig. 5), patchy zircon plots outside the Rayleigh trend at high
Zr/Hf ratios, suggesting a non-magmatic origin, whereas all
other zircon zones plot on a continuous Rayleigh curve typical
of magmatic fractionation. The cores are also highly porous
and inclusion-rich, and may represent primary zircon which
has undergone dissolution-reprecipitation processes with ex-
solution of its U and Y contents during the secondary event.
The high Y + P concentrations of patchy zircon, negatively
correlated with Zr + Hf + Si, suggest an important xenotime
component, therefore implying that patchy zircon and
xenotime are co-genetic. Whereas limited amounts of Y were
integrated in primary magmatic zircon, Y was probably added
by fluids during post-solidus alteration, and precipitated as Y-
rich secondary zircon and xenotime replacing and overgrow-
ing primary zircon. An alternative explanation is that
xenotime was a primary magmatic phase like oscillatory-
zoned zircon and it was dissolved and recrystallized during
the hydrothermal event, with some Y being remobilized and
integrated into secondary zircon. The U/Pb ratio of xenotime
therefore dates the hydrothermal event. The slight age differ-
ence between primary (296.2 £ 2.5 Ma) and secondary
(290.5 + 2.5 Ma) zircon and its associated xenotime
(292.9 + 2.9 Ma) suggests that the secondary (hydrothermal?)
event took place after pegmatite emplacement.

Implications for the geochronology of late Variscan
tectonics

The five obtained ages define two groups of statistically dis-
tinct ages that lie between 296 and 302 Ma for the first, and
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Fig. 8 Laser spot locations for U-
Pb dating in pegmatite L3 zircon.
Backscattered electron images.
The 100 um scale bar is valid for
all pictures

290 and 293 Ma for the second (Fig. 11). Despite their small
overlap when 2-sigma error bars are considered, the two age
groups remain distinct. These results have important implica-
tions for the geochronology of late Variscan tectonic events in
the Cap de Creus. In a recent paper, Druguet et al. (2014)
obtained similar results on syntectonic quartz diorite from
the Tudela migmatitic complex, dated at 298.8 + 3.8 Ma,
and granodiorite from the Roses pluton, dated at
290.8 + 2.9 Ma (U-Pb zircon geochronology using
SHRIMP). They concluded that the D3 ductile deformation
extended into the Lower Permian as a transitional stage be-
tween the Variscan and Cimmerian cycles. Taking their age
results and error bars into account, mean values of
298.9 + 6 Ma and 292.4 £ 4 Ma are calculated for the two
age groups (Fig. 11). The 298.9 Ma age corresponds to the
emplacement and primary crystallization of the pegmatitic
melts, regardless of type I or III, and is coeval with
migmatization. The 292.4 Ma age correlates with zircon re-
placement and xenotime crystallization as a consequence of
late hydrothermal reactions that affected the pegmatites after
their crystallization. However, no other evidence of this late
hydrothermal event was observed in our study, and its corre-
lation with the granodiorite emplacement remains very
hypothetic.

The pegmatites were emplaced near the peak of metamor-
phism, therefore the pegmatite age is contemporaneous or
slightly younger than this metamorphic peak. Type I to type
III pegmatites, were emplaced in the same time span, around
299 Ma. The high standard deviations on in-situ U-Pb geo-
chronological methods do not permit the different pegmatitic
pulses to be distinguished, although field evidences (early, syn
and late D2 emplacement) support a multiple-emplacement
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history for the pegmatites. Alfonso et al. (1995) report
columbite-tantalite crystals showing primary, pre-
deformation oscillatory zoning broken during the deformation
and subsequently overgrown by a “post-tectonic” Ta-rich rim.
Field structural data indicate that the pegmatites are syn-
tectonic with D2 and are affected by (and therefore predate)
D3. The idea that this late deformation event could have oc-
curred after the Carboniferous-Permian limit, concomitant
with the hydrothermal event at the origin of zircon and
xenotime recrystallization dated at c¢. 292 Ma, has to be further
investigated.

Although the relationship between D2 and D3 deforma-
tions has been extensively investigated (Druguet 2001;
Carreras et al. 2004), the lower geochronological limit for
the Variscan tectonic event remains unclear. After
Laumonier et al. (2015), this orogeny extended from
Namurian to Stephanian times (c¢. 325-300 Ma) in the
Pyrenees. However, the latest published data (Druguet et al.
2014) and our geochronological results indicate that the upper
limit of the Variscan orogeny in Cap de Creus extended into
the Early Permian. In this area, the granitoids and magmatic
rocks are clearly syntectonic (syn- to late-D2 and pre-D3), and
dated at c. 299 and 291 Ma (Late Carboniferous and Early
Permian) by Druguet et al. (2014). Druguet et al. (2014) dated
the migmatization event at ¢. 299 Ma based on field structural
relationships that indicate that the dated quartz dioritic
magmas are synchronous with migmatites, in agreement with
field relationships. Although the migmatites themselves only
present inherited zircons with Precambrian ages (542 Ma at
the earliest), strong field evidences in Cap de Creus and else-
where in the Pyrenees indicate that they are Variscan. In the
Pyrenees, a few granites were dated between 292 and 300 Ma
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Fig. 9 Laser spot locations for U-
Pb dating of pegmatite L7 zircon.
Backscattered electron images.
The 100 um scale bar is valid for
all pictures

(e.g., 298.5 £ 1.8 Ma for a syn-D2 leucogranite from the
Albera massif, using Th-U-Pb geochronology on monazite
by electron probe microanalysis, Laumonier et al. 2015).
Our geochronological results, yielding two distinct age groups
at ¢. 299 and 292 Ma, suggest that the last stages of the mag-
matic events in the Variscan Pyrenees could have extended
into the Early Permian.

The anatectic vs. granitic origin of pegmatites

The anatectic (melting of country rock) versus granitic
(extreme fractionation of granitic melt) origin of pegma-
tites is still strongly debated (see London 2008 for a
synthetic view of this topic), especially in cases where
no potential parental granite is observed and the pegma-
tites are associated with migmatites, which is the case in
Cap de Creus. The distribution of the pegmatites and
their fractionation trends indicate an origin by

differentiation of a granitic melt originating from the
north of the peninsula, whereas their spatial association
with migmatites has been used to argue for an anatectic
origin. The common absence of visible granite in the
vicinity of granitic pegmatites is generally explained
by the extreme mobility and the low solidus tempera-
tures of the highly-fluxed melts that can travel through
considerable distances before the onset of dyke crystal-
lization (Baker 1998). In general, pegmatites showing a
zoned distribution with increasing fractionation degrees
and mineralogical complexity are classically interpreted
as being genetically related to a single melt source
which evolved with fractional crystallization (London
2008). Arguments for a granitic origin of the Cap de
Creus pegmatites are 1) their zonal distribution with
sterile bodies located near the zone of maximum defor-
mation in the high metamorphic zones, and fractionation
degree increasing when moving toward the south down
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Fig. 10 U-Pb concordia diagrams for pegmatite L7 primary zircon,
secondary zircon and xenotime. Data-point error ellipses are 20

the metamorphic gradients, and 2) progressive geochem-
ical trends in feldspar, micas (Alfonso et al. 2003), and
in Nb-Ta oxides (Alfonso et al. 1995) from type I to
type IV pegmatites. The source granite could have been
emplaced during the main deformation event in the
migmatized area, and would now be hidden further to
the north of the peninsula, or translated to the southeast
by late dextral shear zones.

Arguments for the anatectic origin are provided by sta-
ble isotope constraints (Damm et al. 1992). The authors
conclude that the pegmatites are derived from anatexis of
the metapelitic rocks at shallow crustal levels, but their
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study only takes into consideration the type I pegmatites
near the lighthouse of Cap de Creus. In the Albera massif
about 50 km northwest of the Cap de Creus peninsula, the
peraluminous granites were interpreted as anatectic by
Autran et al. (1970). Several hundred pegmatite dykes
occur concentrically and zonally around muscovite-
biotite granite stocks, close to their boundaries with the
Precambrian orthogneisses and the Paleozoic series,
therefore Autran et al. (1970) suggested an anatectic ori-
gin for the pegmatites as well. However, Mallo et al.
(1995) argue for an origin by magmatic fractionation of
the Albera pegmatites based on the geochemical trends of
the accessory minerals (phosphates and Nb-Ta-oxides).
Mallo et al. (1995) specify that the pegmatite source
would be the anatectic muscovite-biotite leucogranites.
The pegmatites in the Albera massif and in the Cap de
Creus peninsula are comparable in their structure, miner-
alogy, geochemistry and regional distribution, which sug-
gests a common origin.

The high fractionation degrees and highly mineralized
nature of type IIl and IV pegmatites suggest an origin by
extreme magmatic fractionation rather than in sifu partial
melting. Arguments are provided by the experimental work
of London and Evensen (2002) and Evensen and London
(2002) that shows taking the example of Be, that beryl sat-
uration in pegmatites only occurs after extended crystal frac-
tionation of large magma batches (>95 % crystallization),
themselves originating from low partial melting of a fertile
sedimentary source. Moreover, the continuous fractionation
trends displayed by zircon and CGM indicate a genetic af-
filiation between all Cap de Creus pegmatites. However, this
does not preclude that type I pegmatites, which are
unmineralized and would be better named as pegmatitic
granite, could be anatectic in origin. The large pockets of
that pegmatitic granite observed in the north of the peninsula
could have resulted from the partial melting of high-grade
schists concomitant to the development of the migmatitic
complexes. Their differentiation could have produced
evolved pegmatitic melts that migrated down the metamor-
phic gradient and crystallized up to 3 km away from their
source (Fig. 1). However, the presence of peraluminous
granites associated with pegmatites in the Albera massif,
also dated around 299 Ma (298.5 £ 1.8 Ma for a
leucogranite, Laumonier et al. 2015), suggests that a
peraluminous granite could also be the source of the Cap
de Creus pegmatites. Therefore, to confirm one or the other
model, geochemical and isotopic signatures of the
migmatites, unmelted sedimentary units, granitic intrusives
and pegmatites are necessary. 3D modeling of the pegmatite
batch distribution in relation to the structural context of em-
placement may also help quantifying the magma volumes
implied in anatexy versus granitic fractionation (Demartis
et al. 2011; Deveaud et al. 2013).
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Conclusion

The U-Pb dating of magmatic zircon and columbite-group
minerals in the Cap de Creus reveals that at least pegmatite
types I and III were emplaced at ¢. 299 Ma. Although field
relations clearly show that the various pegmatite types are not
all simultaneously emplaced, our data demonstrate that they
were formed and emplaced during the latest stages of the
Variscan orogeny, more or less synchronously with the D2
deformation event and the associated thermal peak.
Secondary zircon and xenotime that probably formed during
a late post-solidus hydrothermal event, were dated at c.
292 Ma. This age correlates with the intrusion of late post-
D2 calc-alkaline granites. This late hydrothermal event could
be related to the D3 localized deformation event that is clearly
post-magmatic, which would imply that the Variscan defor-
mation was still active during the Early Permian. However, the
age of the D3 event is to date unconstrained, and correlating
the hydrothermal event with the D3 deformation event on one
side, and the granodiorite emplacement on the other side, re-
mains very hypothetic because of the important overlap (con-
sidering uncertainties) between the different ages.

Our results are in agreement with recent geochronological
results from granitic rocks in the Variscan Eastern Pyrenees,
which show that the peak of magmatic activity is well dated
around 306 Ma. The pegmatitic melts were also generated
simultaneously with the partial melting of the metasediments
in high-grade metamorphic zones, but the extremely fraction-
ated character of the most evolved pegmatite types III and IV
suggests an origin by extreme magmatic fractionation rather
than in situ partial melting. An alternative model would be that
the most evolved pegmatitic melts could have originated from
the extreme fractionation of low volumes of anatectic melts,
but the presence of peraluminous granites associated with
pegmatites in the Albera region, also dated at 298.5 Ma, is
an evidence that peraluminous magmatism was active at that

time in the area, and therefore suggests that a peraluminous
granite could be the source of the most evolved Cap de Creus
pegmatites.
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