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Abstract Zoning patterns, U-Th disequilibria ages, and
elemental compositions of zircon from eruptions of Askja
(1875 AD), Hekla (1158 AD), Orafajokull (1362 AD) and
Torfajokull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide
insights into the complex, extended, histories of silicic
magmatic systems in Iceland. Zircon compositions, which
are correlated with proximity to the main axial rift, are
distinct from those of mid-ocean ridge environments and
fall at the low-Hf edge of the range of continental zircon.
Morphology, zoning patterns, compositions, and U-Th ages
all indicate growth and storage in subvolcanic silicic
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mushes or recently solidified rock at temperatures above
the solidus but lower than that of the erupting magma. The
eruptive products were likely ascending magmas that
entrained a zircon “cargo” that formed thousands to tens
of thousands of years prior to the eruptions.

Introduction

Icelandic volcanism is controlled by a hotspot in conjunction
with a propagating mid-ocean ridge. Approximately 10—
12% of rocks in Iceland are silicic (Walker 1966; Saemunds-
son 1979; Gunnarsson et al. 1998), which is unusually
abundant in an intraoceanic setting (Jonasson 2007). Many
workers have investigated silicic rocks in Iceland and
debated petrogenetic explanations for their occurrence (e.g.
Carmichael 1964; Macdonald et al. 1987; Gunnarsson et al.
1998; Jonasson 2007; Lacasse et al. 2003; Sverrisdottir
2007; Martin and Sigmarsson 2007, 2010). In this study, we
describe the first use of zircon as a tool for investigating the
pre-eruptive evolution of silicic magma in Iceland.

Zircon can provide critical insights into complex,
extended histories of evolution, storage, and remobilization
within magmatic systems. Uranium-lead and U-Th disequi-
librium dating has demonstrated that volcanic zircons
record several hundred k.y. of pre-eruption history in many
but not all studied cases (e.g. Long Valley, USA, Reid et al.
1997; Taupo Zone, New Zealand, Brown and Fletcher
1999; Charlier et al. 2003, 2005; Mount St. Helens, USA,
Claiborne et al. 2010a; Yellowstone, USA, Vazquez and
Reid 2002; Bindeman et al. 2008; Crater Lake, USA,
Bacon and Lowenstern 2005; Soufriere, Lesser Antilles,
Schmitt et al. 2010; but in contrast to the Bishop Tuff,
Crowley et al. 2007, Simon et al. 2008).

Disparate interpretations of this phenomenon have
arisen: prolonged crystallization during the storage of
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uneruptible magma (e.g. Reid et al. 1997; Brown and
Fletcher 1999; Vazquez and Reid 2002) vs. inheritance of
young zircon from rapidly remelted solid rock (e.g. Bindeman
et al. 2001, 2008). Furthermore, zoning patterns and
elemental compositions are sensitive indicators of conditions
of zircon growth and further document the complexity of
histories of magma storage zones (e.g. Pupin 2000; Watson
and Harrison 2005; Claiborne et al. 2006).

Uranium-thorium dating is limited to young events
(<~350 ka), but precision down to a few k.y. is attainable
by in situ secondary ion mass spectrometry (SIMS)
methods (Bacon and Lowenstern 2005; Claiborne et al.
2010a). Combining precise in situ U-Th dating with
elemental analyses of zircon grains reveals records of
thermal and compositional evolution of melts and provides
insights into timing and rates of magma-system processes
(Claiborne et al. 2010a).

We have examined zircon from silicic volcanic rocks
from recent (primarily historical) eruptions in a variety of
tectonic regions of Iceland that are characterized by distinct
thermal structures and potential magma generating con-
ditions: Askja 1875 AD, on-rift; Torfajokull 871 and 1477
AD, on-rift, but near a rift termination; Hekla 1158 AD,
transitional; and Orafajokull 1362 AD, off-rift (see Fig. 1
for general locations and Table 1 for precise locations and
sample descriptions). We also analyzed zircon from two
prehistoric on-rift eruptions of silicic lava (~7500 BP,
~3100 BP) at Torfajokull.

By sampling young eruptions we are able to confidently
establish very precise ages (+ <1 yr for the historic eruptions)
for the eruptions, which can readily be compared to measured
U-Th disequilibrium ages, representing timing of zircon
growth. Furthermore, the absolute uncertainty in U-Th age
decreases with decreasing age, so it is expected that zircon

grains in younger eruptions can be dated more precisely than
zircon from older eruptions. The prehistoric eruptions that we
study from Torfajokull are both less than 10 ka, much younger
than the upper limit of effective U-Th dating.

Overview of investigated volcanoes

We provide below a summary of current knowledge of
these four well-studied volcanic systems based on pub-
lished descriptions as well as on our own observations and
sampling. Extensive previous work at each volcanic center
permits us to focus on the contributions of zircon to
understanding of silicic magmatism in Iceland.

Askja

Askja is an “on rift” volcano, located near the southern end
of the actively-spreading Northern Volcanic Zone (NVZ),
one of the major components of the axial rift zone that cuts
across Iceland (Sparks et al. 1981; Thordarson and Larsen
2007). The base of the central volcano comprises a ring-like
structure of sub-glacial palagonite (hydrated and devitrified
basalt; Sparks et al. 1981) with the 3-4 km diameter
Oskjuvatn caldera from the 1875 eruption, itself nested
inside of an older, 8 km diameter caldera from a pre-historic
eruption (Sparks et al. 1981). Since the 1875 eruption it has
been recognized that the Askja central volcano is linked
with the Sveinagja fissures located 70 km to the north, with
contemporaneous eruptions of rhyolite from the caldera and
basalt from the fissures (Sparks et al. 1981; Thordarson and
Larsen 2007). Ejecta from Askja are chemically distin-
guished from other volcanic deposits in Iceland with
comparable SiO, contents by their relatively high whole-

Fig. 1 General locations of
volcanoes examined in this
study: Askja, Oraefajokull,
Hekla and Torfajokull. Major
tectonovolcanic features as
given by Thordarson and
Hoskuldsson (2002): RVB,
Reykjanes Volcanic Belt; WVZ,
EVZ, NVZ: Northern, Eastern
and Western Volcanic Zones;
OVB, Oraefi Volcanic Belt;
SVB, Snaefellsness Volcanic
Belt; MIB, Mid-Icelandic Belt;
RR, Reykjanes Ridge; TFZ,
Tjornes Fracture Zone; KR,
Kolbeinsey Ridge; SISZ: South
Iceland Seismic Zone; WF,
Westfjords. Figure modified
from Thordarson and
Hoskuldsson (2002)
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rock MgO and TiO, (Larsen et al. 1999) and most depleted
5'%0 values (Muehlenbachs et al. 1974; Table 1). There
have been only two occurrences of silicic magma erupting
from the Askja caldera since the last deglaciation, first at
the start of the Holocene (Sigvaldason 2002) and most
recently the 1875 AD eruption examined in this study.
Tholeiitic ferrobasalt and icelandite were erupted in 1875,
as well as silicic and mixed pumices that have a
compositional range of 58-74 wt% SiO, (Macdonald et
al. 1987).

Some argue that extreme fractional crystallization alone
can explain the origin of rhyolites from ferrobasalt (e.g.
Wood 1978; Wood et al. 1979) while others cite fractional
crystallization as the dominant process at work, with
contributions from minor wall-rock assimilation, partial
melting of silicic xenoliths, and basaltic injection explain-
ing complex trace element geochemistry and low &'%0
values (Sigurdsson and Sparks 1981; Macdonald et al.
1987).

The 1875 AD eruption that formed the Oskjuvatn
caldera produced 2 km® of silicic tephra (Sigurdsson and
Sparks 1981; Macdonald et al. 1987; Larsen et al. 1999;
Jonasson 2007). Some of the pumice ejected during the
1875 eruption was purely rhyolite (“white rhyolite” of
Sparks et al. 1981), and this rhyolite is the host of the
zircon for our study. There are also many pumice clasts
with streaks of tholeiitic basalt, ferrobasalt and icelandite
that are thought to represent magma mingling immediately
before, or during, eruption (Macdonald et al. 1987).

Orzefajokull

Orzefajokull is located in the OrzefiVolcanic Belt (OVB), an
active intraplate volcanic zone located at the southern
margin of the Eastern Volcanic Flank Zone (Prestvik et al.
2001; Thordarson and Larsen 2007; Selbekk and Tronnes
2007). The OVB is thought to be a potential “embryonic”
(Thordarson and Larsen 2007), or incipient, rift, but for our
purposes in this study we classify Oraefajokull as “off-rift”
because of its distance (~50 km east) from the dominant
axial rift zone (Prestvik et al. 2001; Thordarson and
Hoskuldsson 2002; Thordarson and Larsen 2007; Selbekk
and Tronnes 2007). The central volcano, the largest in
Iceland, is thought to sit unconformably on uplifted and
eroded Tertiary basalt (Larsen et al. 1999; Prestvik et al.
2001; Selbekk and Tronnes 2007). The base of the volcano
is composed dominantly of subglacially erupted pillow
basalt and hyaloclastite breccia and tuff (Prestvik et al.
2001; Selbekk and Tronnes 2007). Explosive post-glacial
eruptions at Orzfajokull are thought to have originated
from an ice-filled summit caldera with an area of ~14 km?
(Selbekk and Tronnes 2007; Sharma et al. 2008). The
volcanic deposits from Orzfajokull are compositionally
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bimodal (basalt and rhyolite) with notably high Na,O and
low MgO concentrations that distinguish it from rift-zone
volcanoes (Larsen et al. 1999; Prestvik et al. 2001). It has
been proposed that rhyolite at off-rift volcanoes like
Orzefajokull is likely produced by fractional crystallization
because new, hot, magma is injected into crust that is
“thicker, cooler and stronger” (Selbekk and Tronnes 2007)
than crust in an extensional zone and better able to dissipate
heat without reaching solidus temperatures (Martin and
Sigmarsson 2007, 2010). Normal 5'®0 values (Table 1) are
consistent with derivation of Orzfajokull silicic rocks by
fractional crystallization.

There have been two explosive eruptions at Oraefajokull
in historical times, first in 1362 AD and again in 1727 AD
(Larsen et al. 1999; Selbekk and Tronnes 2007). The 1362
AD Plinian eruption that we have examined produced
~10 km? of silicic tephra, and is thought to have been “the
most voluminous explosive silicic eruption” (Larsen et al.
1999) in Iceland in historical times (Thorarinsson 1958;
Sharma et al. 2008). The compositional homogeneity of
phenocrysts and matrix glasses throughout the entire
recognized 1362 AD deposit is unique (Selbekk and
Tronnes 2007). This striking homogeneity is taken to
indicate a uniform and extremely well-equilibrated magma
chamber, or upper zone in an atypically large silicic magma
chamber (Selbekk and Tronnes 2007).

Hekla

Hekla is located at the western end of a propagating rift
that extends southwestward from the Eastern Volcanic
Zone (EVZ; Sverrisdottir 2007), and its tectonic setting is
therefore considered “transitional.” The volcanic center
forms a NE-SW trending ridge built upon basaltic
hyaloclastite of Pleistocene age (Sverrisdottir 2007).
Silicic magma erupts from a 5 km-long summit fissure
and from short radial fissures on the flanks of the volcano,
while basalt erupts from the Vatnafjoll fissure swarm that
runs parallel to the Hekla ridge (Gronvold et al. 1983;
Thordarson and Larsen 2007; Sverrisdottir 2007). Hekla
erupts lava and tephra that span compositions from
basalt through icelandite to rhyolite (Sverrisdottir 2007).
Approximately 95% of the intermediate lava that has been
erupted in Iceland in historical times has been erupted
from Hekla (Thordarson and Larsen 2007). The 1158 AD
silicic tephra that we sampled is distinguished from other
historical silicic tephras based on its relatively high FeO
and CaO, and low K,O contents (Larsen et al. 1999;
Table 2).

It has been observed that the SiO, content of magma
ejected from Hekla decreases throughout the course of a
single eruption. The SiO, content of the first erupted
material correlates with the period of time that has passed
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Table 2 Major and trace element geochemistry of pumice and lava samples

Askja 1875 AD Oraefajékull 1362 AD Hekla 1158 AD Torfajokull 871 AD 1477 AD 3100 BP 7500 BP
Major elements (mass%)
SiO, 71.9 72.4 68.7 66.9 66.3 70.1 71.9
Al,O3 12.6 13.2 14.6 14.4 14.9 14.9 14.1
Fe,05 (1) 4.63 3.97 5.95 4.97 5.79 3.26 2.70
MnO 0.11 0.10 0.15 0.10 0.12 0.08 0.07
MgO 0.86 0.04 0.30 1.85 0.96 0.22 0.13
CaO 2.79 1.10 2.78 2.43 2.51 1.06 0.75
Na,O 3.78 5.40 4.69 4.75 5.20 5.54 5.52
K,0 2.28 3.40 2.37 3.86 3.60 4.47 4.52
TiO, 0.89 0.27 0.40 0.69 0.54 0.32 0.24
P,05 0.20 0.02 0.07 0.10 0.08 0.04 0.02
(LOD) 1.23 1.97 1.03 0.24 0.17 0.41 0.50
Selected trace elements (ppm)
Rb 52 71 48 94 81 112 114
Sr 107 64 219 115 140 81 51
Ba 372 669 578 418 483 505 421
Cs 0.3 0.6 0.4 0.8 0.6
Pb <5 <5 <5 7 <5
Nb 40 94 91.9 127 114 135 160
Ta 2.28 4.74 4.47 6.3 6.34
Co 4.5 1.4 2.1 10.7 6
Cr <0.5 7.1 9.8 72 8.4
Ni 2 2 5 45 8
\Y% 27 <5 <5 54 39
Zr 388 813 718 605 668 755 778
Hf 10.7 21.1 18.2 16.2 17.7
Th 7.46 10.3 9.81 152 14.1
u 2.19 3.07 2.92 4.58 43
Sc 11.6 1.43 9.84 6.12 6.88
Y 57 102 76 56 59 76 96
La 40.1 69.5 70.1 78 74.8 94 94
Ce 81.2 150 143 152 154
Pr 9.67 18.3 17.3 16.7 17.3
Nd 39 73.9 68.2 60.3 61.9
Sm 9.14 17.2 15.1 11.9 12.3
Eu 2.13 3.06 3.65 1.72 2.3
Gd 9.63 18 14.6 11.1 11.5
Tb 1.66 3.23 2.48 1.77 1.92
Dy 10.3 19.4 14.6 10.8 11.5
Ho 2.15 3.82 2.86 2.12 2.23
Er 6.45 11.1 8.27 5.98 6.48
Tm 0.98 1.67 1.25 0.88 0.96
Yb 6.5 11.3 8.48 5.91 6.3
Lu 1.06 1.81 1.34 0.91 1

Major element compositions are normalized to 100% (excluding LOI).
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since the last eruption, with higher SiO, compositions
following longer periods of repose (e.g. Gronvold et al.
1983; Sverrisdottir 2007; Oswald et al. 2007). Historical
eruptions at Hekla, including the 1158 AD eruption, have
followed a generally consistent pattern, starting with a brief
(<1 hr) but vigorous subplinian to Plinian event in which a
great deal of magma is evacuated from the chamber,
followed by a period of simultaneous lava fountaining and
tephra ejection, and concluding with intermittent Strombo-
lian eruptions (e.g. Gronvold et al. 1983; Thordarson and
Larsen 2007).

Partial melting of tholeiitic crust with subsequent
magma mixing has been proposed as a mechanism for
silicic magma generation at Hekla, based on Th isotopes
and major-mineral composition and zoning (Sverrisdottir
2007). Fractional crystallization of a persistent basaltic
andesite magma chamber beneath the volcano has also
been suggested as a viable process for creating silicic
magma, based on mineral assemblages and compositions,
as well as whole-rock and glass compositions that display
continuous (i.e. no gaps) yet inflected (i.e. non-linear)
trends for some elements (e.g. Zr) extending from mafic to
silicic end members (Oswald et al. 2007). These inflected
trends are inconsistent with a history of magma mixing,
and are thus viewed as support of fractional crystalliza-
tion. Normal &'0 values (Table 1) are consistent with
rhyolite genesis by fractional crystallization of an initial
4.8%o basalt.

Torfajokull

Torfajokull is located in a volcanically active belt at the
intersection of the Eastern Volcanic Zone (EVZ) and the
South Iceland Seismic Zone (SISZ), and thus it is situated
in a “propagating rift” setting (Gunnarsson et al. 1998). The
Torfajokull central volcano is a large caldera structure,
30 km long in the WNW-ESE direction and 18 km wide in
the NE-SW direction, built upon 10 Ma tholeiitic crust
(Gunnarsson et al. 1998). More than 80% of the volcano
exposed at the surface is composed of silicic extrusive
rocks, and with a volume of ~225 km® and an area of
~450 km?, Torfajokull is the largest exposure of silicic rock
in all of Iceland, and perhaps in the entire oceanic crust
(Gunnarsson et al. 1998; Larsen et al. 1999). Torfajokull is
the largest high-temperature geothermal region in Iceland,
which has led to pervasive hydrothermal alteration of crust
in the area (Arnorsson et al. 1987; Gunnarsson et al. 1998).
Postglacial rhyolite and basalt have erupted from linear
fissures in the western part of the caldera, which is thought
to be the most actively fissuring section of the ERZ
(Gunnarsson et al. 1998). Basaltic volcanism often occurs
at the nearby Veidivotn fissure swarm contemporaneously
with rhyolitic eruptions from the Torfajokull caldera
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fissures (Blake 1984; Mork 1984; Jonasson 2007; Zellmer
et al. 2008).

One explanation for silicic magmatism at Torfajokull
is that >90% fractional crystallization of parental basalt
has yielded sub-alkaline rhyolites, and continued frac-
tionation of these sub-alkaline melts led to peralkaline
rhyolite generation (Macdonald et al. 1990). This
interpretation was based upon analysis of whole rock
geochemical trends. An alternative interpretation is that
magma influx related to rifting and fissuring of the crust in
the Torfajokull area supplies heat necessary for partial
melting of the hydrothermally altered crust (Gunnarsson et
al. 1998). In this view, based upon whole-rock trace
element geochemistry and low &'®0 values, the anatectic,
silicic partial melt is stored and continues to evolve to its
final composition by crystal fractionation before being
erupted (Martin and Sigmarsson 2007; Zellmer et al.
2008).

In this study we examined four post-glacial (two
pre-historic, two historic) eruptions of silicic lava:
7500 BP at Démadalshraun (0.74 km?, 0.0126 km®),
3100 BP from the Doémadalshraun vent (1.13 km?,
0.0396 km?), 871 AD Hrafntinnuhraun flow (4.87 km?,
0.160 km>) and the 1477 AD Namshraun flow (0.87 km?,
0.0084 km’;Macdonald et al. 1990). They all represent
variably-low 5'%0 magmas (3—4%o, Table 1, Gunnarsson
et al. 1998; Martin and Sigmarsson 2007), requiring
assimilation of variable amounts of low 5'%0 crust for
different eruptions.

Methods
Whole rock geochemistry

Samples of silicic pumice and lava were sent to Activation
Laboratories (ActLabs, Ancaster, Ontario Canada) for
lithogeochemical analyses, where they were initially pul-
verized in a steel mill. Actlabs applied a combination of
inductively coupled plasma optical emission spectrometry
(ICP), instrumental neuron activation analysis (INAA),
inductively coupled plasma mass spectrometry (ICP-MS)
and X-ray fluorescence spectrometry (XRF) to measure
major and trace element concentrations (package code: 4E-
Research+ICP/MS). Results, which were verified using a
suite of internationally-recognized standards, can be found
in Table 2.

Zircon separation methods
We removed individual zircon grains from bulk-rock

samples by a process that included crushing, density
separation by water table and heavy liquid (LST), magnetic
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susceptibility separation by Frantz magnetic separator, and
hand-picking. Approximately 5 kg of each sample was
processed for mineral extraction. The Askja sample
collected specifically for this study yielded no zircon by
these methods. Zircon, separated by HF dissolution at the
University of Oregon, from pumice previously collected
from the same eruptive unit, was therefore used for our
zircon analyses.

Zircon image analysis

Zircon grains were mounted in epoxy and polished to
expose grain interiors. Once mounted, grains were
imaged under a reflected light microscope and by
cathodoluminescence (CL) on the JEOL JSM 5600
scanning electron microscope (SEM) at the Microanalysis
Center shared by the US Geological Survey (USGS) and
Stanford University (see On-line Appendix A for all CL
images). We used reflected light and CL images to
characterize zircon populations using the following criteria:
maximum length, representative width, presence of discrete
(typically CL-dark) centers, presence and character of
zoning, and signs of resorption. We determined average
characteristics for individual zircon populations from each
sample in this study, and then conducted an inter-eruption
comparison with the goal of identifying (a) universal
morphological characteristics of historical zircon crystals
from Icelandic volcanoes, and (b) unique morphological
characteristics based on the individual volcanic system and
setting.

Oxygen isotope analyses

Oxygen isotope analyses relied on duplicated analysis of 1—
2 mg quantity of glass or mineral material and were
performed by laser fluorination in the University of Oregon
lab using MAT 253 gas source mass spectrometer (see
Bindeman, 2008 for details).

Zircon SHRIMP-RG trace element analysis

The Stanford-USGS sensitive high resolution ion
microprobe-reverse geometry (SHRIMP-RG) was used to
determine Hf, U, Th, Ti and rare earth elements (REE)
compositions of zircon. The basic operating parameters of
the SHRIMP-RG, clemental suite analyzed, and data
reduction techniques are as described in Claiborne et al.
(2006, 2010b). A beam size of 15 um was used in analysis,
and spot placement was guided by CL and reflected light
images. Where possible, multiple spots were placed on
grains to discern compositional differences between grain
interiors and rims. SHRIMP-Lab zircon standards MAD
and VP10 were used to calibrate trace element analyses.

Zircon saturation temperatures and Ti-in-zircon
thermometry

Zircon saturation temperatures were estimated using the
equation:

In DE™eov/melt — (3.8 — [0.85(M — 1)] + 12900/T
where D, Aovmelt ig the concentration ratio of Zr in zircon
to Zr in the host melt, Zr in zircon is taken to be
~476,000 ppm, M is the cation ratio (Na+K+2*Ca)/(Al*Si)
of the melt, and T is temperature in Kelvin (Watson and
Harrison 1983; Miller et al. 2003). For melt compositions,
we used whole-rock geochemical analysis. Because our
pumice and lava samples are dominantly unaltered volcanic
glass with small volumes of phenocrysts (<10%), bulk
analyses provide good estimates of melt composition at the
time of eruption.

We estimated zircon crystallization temperatures using
the Ti-in-zircon thermometer calibrated by Ferry and
Watson (2007):

log(ppm Ti — in—zircon)

—(5.711-£0.072) — (4800+86)/T(K) —log asio, +log arion).-

Temperatures calculated by this method are dependent
on estimates of melt aryo, and ag;p,. The ario; in a typical
silicic magma usually falls between 0.6 and 0.9 (Watson et
al. 2006; Ferry and Watson 2007). Overestimating arion
leads to an underestimate of temperature; for example, a
calculation with an activity of 0.9 may yield a temperature
of 777°C while an activity of 0.7 for the same sample will
yield a temperature of 803°C. The estimated ar;o, for melts
with the compositions of our samples range from 0.4 to >1
(based on the method of Hayden and Watson (2007) and Ti
concentrations in the whole-rock necessary to saturate rutile
at 750-900°C; in all cases, calculated values approach or
exceed unity at T=800°C). For consistency, we assumed a
uniform apo, of 0.7 (broadly consistent with our findings)
to calculate Ti-in-zircon temperatures. The agjo, of quartz-
undersaturated silicic melts is rarely less than 0.5 (Watson et
al. 2006; Ferry and Watson, 2007; Hayden et al. 2007; cf.
Carmichael et al. 1974), but overestimating agjo, can lead
to temperatures that are too high by tens of degrees (°C);
for example, a calculation with an activity of 1.0 may yield
a temperature of 805°C while an activity of 0.7 for the same
sample will yield a temperature of 782°C. Despite these
potential errors, we chose to use an assumed ag;o, of 1.0 in
our calculations since zircon crystals are likely to grow in
conditions near quartz saturation. Because we cannot
quantify the degree to which our estimated activities stray
from reality, we cautiously use the Ti-in-zircon thermometer
to qualitatively examine intra- and inter-population thermal
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relationships, rather than to place undue confidence in
precise temperatures.

U-Th disequilibrium dating

Model ages determined by the U-Th disequilibrium method
are well suited for determining precise (in an absolute
sense) ages of growth of young (<350 ka) zircon, especially
if initial 2>°Th/***Th of the melt is reasonably well known.
Uranium-thorium disequilibrium ages were calculated using
the method previously described by Lowenstern et al.
(2000) and Charlier et al. (2005). Our decision to focus our
efforts on historical eruptions allows us accurately identify
a “zero” age at the time of eruption. Initial whole-rock
B0Th/232Th ratios for individual volcanoes and, where
available, individual eruptions, were taken from published
literature (Table 1), and U-Th analyses of individual zircon
grains were conducted using the SHRIMP-RG with a beam
diameter of 30 um, guided, as for elemental analyses, by
CL images. SHRIMP-Lab zircon standards MAD, VP10
and R33 were used to verify the validity of our ages and
define the U-Th equiline.

Results
Whole rock geochemistry and mineral assemblages

The Askja 1875 AD pumice sample is extremely crystal-
poor (<1%), with minor plagioclase, clinopyroxene, Ti-Fe
oxides and very sparse accessory zircon. Our geochemical
analyses (Table 2) and physical observations of the coarse,
low-density pumice are consistent with those published for
“layer D” by Sparks et al. (1981) and Macdonald et al.
(1987). The Orzfajokull 1362 AD pumice is also extremely
crystal poor (<1%) with minor plagioclase, olivine, clino-
pyroxene, Fe-Ti oxides and accessory zircon (our observa-
tions; Selbekk and Tronnes, 2007). Our whole-rock results
are typical of published results describing the erupted
material (Table 2; Selbekk and Tronnes 2007; Sharma et
al. 2008). Pumice from the 1158 AD eruption of Hekla is
crystal-poor (<5%), with a phenocryst assemblage of
plagioclase, fayalitic olivine, clinopyroxene, Fe-Ti oxides,
apatite, and zircon. Whole rock geochemistry of our sample
matches almost perfectly that of published compositions for
1158 AD tephra (cf. Larsen et al. 1999). The lavas that we
collected from Torfajokull had <10% phenocrysts with
mineral assemblages that include plagioclase, anorthoclase,
clinopyroxene, Fe-Ti oxides, hornblende, olivine, apatite
and zircon (our observations; Gunnarsson et al. 1998). Our
whole-rock geochemical analyses for the prehistoric erup-
tions (3100 BP, 7500 BP) are consistent with published
results, while historical (1477 AD, 871 AD) eruptions show
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compositions with lower SiO, and K,O and higher Al,O4
and TiO, than published results (among other differences;
Table 2; Macdonald et al. 1990).

Zircon morphology and zoning

Zircon populations (summarized in Table 3) are very sparse
(<10/kg) and characteristically small (<150 pum average) in
our samples. Internal and external morphology of zircon
crystals (Fig. 2) is, for the most part, relatively simple and
broadly similar from grain to grain and sample to sample.
Euhedral shapes and thick euhedral internal zones with
relatively subdued CL contrast are typical; most grains lack
well-defined cores and oscillatory zoning is generally
barely visible. Well-defined dark centers are relatively
common only in Oraefajékull and historic Torfajokull zircon
grains, sparser in prehistoric Torfajokull samples, and
absent in zircon from Hekla and Askja. The dark centers
of Orafajokull zircon crystals are distinctly mottled, and
sector zoning is observed only in zircon from the
Orzfajokull sample. Rounded external morphology and
internal zone boundaries are uncommon except for the
historic Torfajokull samples (871 AD, 1477 AD), in which
a majority of zircon grains display rounding.

U-Th Ages

Zircon from six dated samples (Table 4) display model age
spectra spanning several tens of k.y., but each age spectrum
is distinct in detail (continuous vs. discontinuous, skewed
towards older or younger; Fig. 3a,b). Oraefajokull (1362
AD) zircon grew over a semi-continuous time span from
approximately 35 ka to near-eruption (~0 ka). Hekla (1158
AD) zircon grew in a period spanning >40 ky. The
calculated ages appear to define discrete clusters, but many
more grains must be analyzed to fully assess the reality of
episodic growth. Torfajokull 871 AD model ages are
confined to 10-30 ka; the other Torfajokull samples display
a broader, more scattered span of ages that preceded
eruption by ~0-50 ka. Taken as a whole, the entire
Torfajokull data set reveals apparently continuous zircon
growth from near zero to 50 ka, with a well-defined
maximum at 10 ka. Attempts to date Askja 1875 AD zircon
were unsuccessful due to large errors related to very low U
concentrations and Th-U ratios.

Minor and trace element geochemistry (U, Th, Hf, Ti, REE)

Uranium and Th concentrations in zircon have been widely
studied because of the value of zircon U-Th-Pb geochro-
nology, and Th/U ratios have been shown to correlate with
zircon growth environments and with tectonic and litho-
spheric realms (Sawka and Chappell 1988; Bea 1996;
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Table 3 Averaged observations of zircon population morphological features

Eruption Count Max length (um) Max. width (um) Aspect ratio® Discrete interior™ Obvious zoning Obvious rounding®
Askja 1875 AD (al)* 10 119 59 2 0.1 0.7 0.1
Askja 1875 AD (intact) 4 120 54 2.1 0.3 0.5 0.3
Orzf. 1362 AD (all) 39 133 38 2.5 0.5 0.8 0.2
Oraf. 1362 AD (intact) 20 131 40 33 0.6 1.0 0.2
Hekla 1158 AD (all) 46 166 43 33 0.2 0.7 0.1
Hekla 1158 AD (intact) 16 161 42 3.3 0.2 0.8 0.2
Torfa. 871 AD (all) 9 91 42 2 0.3 0.9 0.6
Torfa. 871 AD (intact) 5 108 41 2.5 0.6 0.8 0.6
Torfa. 1477 AD (all) 17 103 54 2 0.2 0.4 0.5
Torfa. 1477 AD (intact) 6 115 58 2 0.2 0.7 0.7
Torfa. 7500 BP (all) 37 112 64 1.7 0.2 0.7 0
Torfa. 7500 BP (intact) 16 128 63 2 0.4 0.8 0
Torfa. 3100 BP (all) 32 84 47 1.7 0.1 0.8 0
Torfa. 3100 BP (intact) 6 107 48 2 0.2 1.0 0
ALL SAMPLES (all) 191 123 49 2 2 0.7 0.2
ALL SAMPLES (intact) 72 132 48 2.5 2.5 0.8 0.2

* Aspect ratio (length/width) was determined for individual grains; the average is the mean of calculated aspect ratios.

2 <

®Data in columns titled “discrete center,

obvious zoning,” and “obvious rounding” refers to the fraction of grains that display these features.

A discrete center is identified as a dark interior that is distinguishable, with clear boundaries, from the rest of the surrounding zircon grain.

9 Evidence of rounding (possible resorption) at grain rims and at the boundaries of discrete interiors.

¢ “all” refers to all recognizable zircon—both intact grains and fragments of grains.

O’Hara et al. 2001; Hoskin and Schaltegger 2003; Grimes
et al. 2007). Hafnium is an indicator of fractionation, with
higher concentrations suggesting growth from more
evolved melts from which zircon has already been removed

(e.g. Claiborne et al. 2006, 2010b). Titanium concentration
has been shown to correlate with temperature of crystalli-
zation (Watson and Harrison 2005; Watson et al. 2006;
Ferry and Watson 2007; Claiborne et al. 2010a,b). Rare

Fig. 2 Cathodoluminescence images of representative zircon crystals
from this study. A-B: Askja; C-E: Torfajokull 871 AD; F-H: Torfajokull
1477 AD; I-J: Oreefajékull; K-L: Hekla. Grain B from Askja and C from
Torfajokull display oscillatory zoning. Grains C, E, F and H from
Torfajékull, T and J from Orzfajokull all have discrete dark centers.

Grains E and H from Torfajokull have rounded centers and external form
that are suggestive of resorption. Grain G from Torfajokull and K from
Hekla have internal zoning features suggestive of resporption. Grain J
from Orafajokull has a dark, discrete, mottled interior zone
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Table 4 In situ U-Th disequilibrium dating

zircon grain® 28U232Th £2%UP2Th - 2P°Th/A?Th  £2°Th/*?Th  model age (years) model error (+ years) model error (— years)
Hekla (0.97)°

1.11-B 5.65 0.17 1.68 0.12 17786 4345 4178
1.31-B 4.78 0.15 222 0.13 43230 7669 7164
10.11-B 8.06 0.25 0.18 0.01 —11449 1421 1402
12.2C 2.93 0.09 1.36 0.06 24075 8175 7603
12.2C-B 445 0.14 1.76 0.12 28002 6659 6275
13.11-B 3.85 0.12 1.15 0.08 7082 5094 4866
16.11-B 4.80 0.15 1.56 0.10 18181 4820 4615
22.11-B 4.52 0.14 1.06 0.07 2683 3885 3751
Oraefajokull (0.99)

3.1T-B 2.66 0.08 1.09 0.06 6943 8169 7598
4.1C 2.46 0.08 1.12 0.04 10476 8572 7945
71T 2.50 0.08 1.40 0.07 34253 12238 10999
7.2C 2.53 0.08 0.95 0.03 -2570 6832 6428
7.2C-B 2.96 0.09 1.08 0.04 5124 6449 6088
8.11 3.44 0.11 1.07 0.06 3563 4992 4773
9.1E-B 4.09 0.12 1.47 0.08 18426 5649 5370
15.3C 3.24 0.10 1.09 0.05 5017 5241 5000
15.3C-B 2.68 0.08 1.08 0.04 5695 7472 6991
16.11 2.29 0.07 1.14 0.05 13058 10111 9250
20.1C-B 1.17 0.04 1.00 0.02 5290 101182 51494
Torfajokull (0.9) 1477 AD

1.11-B 5.49 0.17 1.28 0.09 9281 3271 3175
3.1I-B 2.61 0.08 1.49 0.07 45639 12331 11074
5.2C-B 2.82 0.09 1.10 0.03 12284 6202 5867
8.2I-B 3.73 0.11 1.42 0.07 22264 5672 5391
9.1C-B 4.84 0.15 1.29 0.06 11294 3370 3269
10.11-B 438 0.13 1.25 0.07 11484 4057 3911
13.1C-B 2.84 0.09 1.10 0.04 12025 6279 5937
14.21-B 4.61 0.14 1.01 0.06 3372 3326 3228
871 AD

1.1U 3.77 0.11 1.42 0.07 21862 5469 5207
4.1U 2.10 0.06 1.10 0.02 20332 10809 9831
5.1U 4.10 0.12 1.36 0.07 16920 4658 4466
2.1U 2.95 0.09 1.37 0.05 28198 7771 7253
3.1U 4.95 0.15 1.78 0.09 26521 4675 4482
3.2U0 4.07 0.12 1.22 0.06 11431 4246 4087
6.1U 2.85 0.09 1.19 0.05 17715 7069 6638
7.1U0 4.25 0.13 1.64 0.08 26926 5329 5080
8.1U 3.14 0.09 1.38 0.06 26263 7023 6597
9-1.1U 3.65 0.11 1.37 0.06 20472 5318 5070
9-4.1U 4.50 0.13 1.37 0.07 15182 4101 3952
3100 BP

1 3.98 0.12 1.31 0.07 15550 4945 4730
2 2.94 0.09 1.49 0.07 37119 9376 8631
3.1 3.00 0.09 1.19 0.06 16219 6873 6464
4 3.66 0.11 1.10 0.06 8354 4838 4632
5 2.92 0.09 1.51 0.07 38649 9661 8872
6 3.41 0.10 1.08 0.06 8104 5165 4931
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Table 4 (continued)

zircon grain® 28U232Th +23%U2%2Th - 2°ThA2Th +2°Th/*’Th  model age (years) model error (+ years) model error (— years)
7 3.66 0.11 1.19 0.06 12111 5016 4795

7500 BP

1 2.51 0.08 1.14 0.05 17667 8525 7905

2 4.55 0.14 1.87 0.08 33596 5349 5098

3 3.54 0.11 1.40 0.07 22773 6062 5742

4 1.90 0.06 1.15 0.03 31008 15073 13236

5 3.65 0.11 1.77 0.09 41624 8275 7689

6 3.13 0.09 1.21 0.06 16089 6250 5911

7 3.63 0.11 1.50 0.07 26727 6054 5735

#The grain labels shown here correspond to specific analysis spots which can be seen on annotated CL images in Appendix A.

®Value in parentheses indicates the initial value used for each volcano. References can be seen in Table 1.

earth elements (REE) may act as tracers of the evolution of
melts from which zircon grew and the mineral assemblage
(s) with which they equilibrated.

Th and U Thorium and U concentrations of analyzed zircon
grains (Table 5) are typically subequal and vary by more than
two orders of magnitude, from ~10 to >1000 ppm (Fig. 4).
Thorium-uranium ratios are all >0.3 and reach 2, typical for
magmatic zircon (e.g. Hoskin and Schaltegger 2003).
Uranium and Th concentrations fall within an extended but
very well-defined linear array with a slope slightly greater
than 1 (Fig. 4; Th/U <1 at low concentrations, >1 at highest
concentrations). While data from each eruption plot as part
of the same general trend, U and Th concentrations in zircon
from each eruption form distinct sub-arrays. Distinctive dark
cores in Orzfajokull and Torfajokull are enriched in U and
Th by an order of magnitude relative to the surrounding
grain, and also have higher Th/U ratios.

Ti and Hf concentrations and the Ti vs Hf relationship Haf-
nium concentrations in zircon (Table 5) are relatively low,
ranging from about 6000 to 11000 ppm, with a great
majority falling between 7000 and 10000 (cf. Grimes et al.
2007 and Discussion, this study). Measured Ti concen-
trations are relatively high, with most exceeding 10 ppm
and the highest concentrations exceeding 30 ppm (cf.
Claiborne et al. 2006, 2010a,b; Fu et al. 2008).

With the exception of Orafajokull and interesting inter-
population relationships at Torfajokull, zircon analyses
from each volcano cluster in a distinct, sub-parallel, linear
array with a negative slope on plots of Ti vs Hf
concentration (Fig. 5a). Within these sub-parallel group-
ings, Askja zircon have the highest Ti (e.g. 25 ppm at
9000 ppm Hf), followed by Torfajokull (20 ppm at
9000 ppm) and then Hekla (12 ppm at 9000 ppm).

The prehistoric 3100 BP Torfajokull dataset forms a tight
cluster at relatively high Ti (17-25 ppm) and low Hf (8000

9000 ppm), while the historic 871 AD and 1477 AD
eruptions plot in overlapping linear arrays that trend from
compositions like those of 3100 BP to lower Ti and higher
Hf (~10 ppm, 10000 ppm). The 7500 BP dataset is
displaced toward lower Hf and is overall far more scattered
and exhibits no identifiable inter-element trend.

The Oraefajokull dataset is unlike all other samples, with
data points forming a sub-horizontal array that plot that
spans a wide range of Hf concentrations (from 6000—
9000 ppm), but plots (mostly) in a narrow range of Ti
concentrations (~9-14 ppm).

Estimated growth temperatures from Ti concentrations Es-
timated zircon growth temperatures (Ferry and Watson
2007) for 158 analyses fall in the range of 730-930°C
(mean 823°C; standard deviation 39°C). Individual erup-
tions have distinctly different Ti-in-zircon temperature
distributions (Fig. 5a,b). Askja has the highest estimated
temperatures with a mean of 874°C (o=17°C), which is 60°C
higher than the calculated zircon saturation temperature for
our analyzed sample. The Hekla temperature distribution is
similar to the distribution of the entire dataset with a mean
estimated temperature of 817°C (0=39°C), 100°C lower than
the zircon saturation temperature for the Hekla sample. The
temperature range recorded in Orafajokull zircon is narrower
than those from other eruptions. The mean estimated
temperature at Orzefajokull is 802°C (6=29°C), 130°C below
the zircon saturation temperature.

The average estimated temperature for Torfajokull zircon
(prehistoric and historic) is the same as that for our total Iceland
zircon set, but the temperature distribution is skewed to slightly
lower temperatures. Zircon populations from individual erup-
tions have distinct Ti-temperature distributions. The mean
estimated temperature from the 1477 AD eruption is 831°C
(0=23°C), 60°C lower than the zircon saturation T. The 871
AD Torfajokull temperature distribution spans a far narrower
range of temperatures than the total Icelandic compilation. The
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Fig. 3 a: (P°Th/?*Th) vs (***U/**>Th) activity diagrams for analyzed
samples. Reference isochrons, drawn at 10 ka intervals, intersect equiline at
estimated initial (*°Th/***Th) from which model ages were estimated (see
Table 1). A: Orefajokull; B: Hekla; C: Torfajokull 1477 AD; D;
Torfajokull 871 AD; E: Torfajokull 3100 BP; F: Torfajokull 7500 BP. b:
Probability density curves for model ages derived using U-Th disequi-

mean estimated temperature for 871 AD is 824°C (0=20°C),
55°C below the zircon saturation T. Estimated growth temper-
atures for zircon from the 3100 BP eruption at Torfajokull
define a relatively narrow temperature range (800-900°C) with
a mean of 859°C (0=12°C), 60°C lower than the zircon
saturation T. Estimated temperatures from the 7500 BP eruption
are relatively low, with a mean of 795°C (0=39°C), 125°C
lower than the zircon saturation T for this sample.
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librium dating techniques (Lowenstern et al. 2000; Charlier et al. 2005).
A: Oraefajokull; B: Hekla; C: Torfajokull 1477 AD; D; Torfajékull 871
AD; E: Torfajkull 3100 BP; F: Torfajokull 7500 BP. Initial (**°Th/***Th)
ratios for each eruptive deposit were taken from published literature and
can be found in Table 1

Rare Earth Elements (REE) Zircon from all samples show
chondrite-normalized REE patterns that are broadly similar
to each other and to igneous zircon in general, with
concentrations increasing by about four orders of magni-
tude from light (L) to heavy (H) REE and positive Ce and
negative Eu anomalies (Table 5, Fig. 6). Torfajokull 3100
BP and 1477 AD zircon have notably lower REE
abundances than those from the 871 AD and 7500 BP
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Fig. 3 (continued)

eruptions, and Orzfajokull zircon may be divided into two
distinct groupings with patterns of similar shape but
different absolute abundances.

To emphasize the population-to-population and grain-to-
grain REE variability we also plot the ratio Yb/Nd vs Hf
(concentrations, not chondrite normalized) to show relative
enrichment of HREE relative to LREE (Fig. 7). Overall,
there is a positive correlation between Yb/Nd (HREE/
LREE) and Hf, indicating enrichment in HREE relative to

Hekla 1158 AD

0 10000 20000 30000 40000 50000 60000

Torfajékull 871 AD

0 10000 20000 30000 40000 50000 60000

Torfajékull 7500 BP

0 10000 20000 30000 40000 50000 60000

Age (years)

LREE with increasing fractionation (Fig. 7), shown most
clearly by zircon from the Torfajokull 7500 BP lava. The
trend established by Torfajokull 7500 BP seems to continue
to higher levels of fractionation (higher Hf) in Torfajokull
3100 BP and Torfajokull 1477 AD. Orzfajokull also
displays the shallow positive sloping trend at lower degrees
of fractionation (lower Hf), but at approximately 8000 ppm
there is a sudden break in slope, and the enrichment of
HREE relative to LREE becomes much more pronounced.
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Discussion
Conditions and duration of zircon growth and storage

Elemental compositions and morphology of zircon,
together with elemental compositions of host lava and
pumice, provide a valuable temporal and environmental
record of the silicic portions of the magmatic systems
that underlie and feed these four Icelandic volcanoes.
This, in turn, provides constraints on the origins of
these silicic magmas. At Askja, Orafajokull, and Hekla we
have investigated zircon from single eruptions, thus providing
a snapshot of the zircon entrained in erupting magmas and the
records that they preserve. At Torfajokull, sampling of four
eruptions that span 7000 years permits comparison of different
zircon-based snapshots of the same system at different stages
of'its history. Below, we discuss the information provided by
elemental zoning, saturation and growth temperatures, and
timing of growth relative to eruption.

Elemental zoning Simple evolution of a magma, with zircon
saturation and growth accompanying monotonic cooling, is
expected to yield individual zircon crystals with euhedral
growth zones and a core-to-rim compositional pattern of
increasing Hf solid solution and decreasing Ti and Th/U
(Claiborne et al. 2006, 2010b; Barth and Wooden 2010;
Fohey-Breting et al. 2010). Grain-to-grain consistency with
these morphological and compositional trends is expected in
a zircon population extracted from a sample with a simple
history. Deviations from these patterns—e.g. rounded,
embayed, truncated zones; “reverse” or fluctuating compo-
sitional zoning in individual grains; ill-defined compositional
patterns for the zircon population of a sample—indicate

fluctuating conditions and open-system processes, potentially
including extraction of zircon from ancient rocks (inheri-
tance) or remobilization of partially solidified magma
(antecrystic origin; e.g. Bacon and Lowenstern 2005;
Charlier et al. 2005; Claiborne et al. 2006, 2010a,b; Miller
et al. 2007; Bryan et al. 2008).

The relatively simple morphology (internal and external)
of zircon crystals in this study is consistent with relatively
simple magmatic histories. Exceptions and differences from
sample to sample reveal some complexity, however. The
well-defined contrast between dark cores and bright rims in
some Orzfajokull and Torfajokull zircon crystals suggests
sharp changes in conditions of growth, and the rounded
zones and grain boundaries that are relatively common in
the two historically erupted Torfajokull samples implies
resorption events.
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Fig. 5 a: Titanium vs Hf concentrations of spots analyzed by SHRIMP.
Hf concentration reflects zircon fractionation (Claiborne et al. 2006) and
Ti reflects temperature (Watson and Harrison, 2005; Watson et al. 2006;
Ferry and Watson 2007). Temperature estimates are shown on the
secondary y-axis (Ferry and Watson, 2007). Symbols as in Fig. 4. b:
Comparing estimated Ti-in-zircon growth temperatures (Ferry and
Watson 2007) to saturation temperatures for zircon from each eruption.
The solid line with a slope of 1 indicates conditions in which zircon
growth temperatures equal zircon saturation temperatures. Points falling
above the line represent zircon growth above saturation temperatures
and points falling below represent zircon growth at temperatures below
the saturation temperature. Symbols as in Fig. 4
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In general, elemental trends for zircon populations from
individual samples are coherent and match predictions (e.g.
negative correlation of Ti and Hf concentrations), though
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there are well-defined contrasts from sample to sample.
Although the four Torfajokull samples as a group are very
broadly coherent, the group has a wide compositional
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spread; in particular, zircon grains in the oldest eruption
sample (7500 BP) are very distinct from those in the three
younger samples. The zircon grains from the three younger
eruptions cluster tightly, whereas zircon in the 7500 BP lava
have lower Hf and a wider range of Ti and Th/U.

Compositional variability within individual grains belies
the generally simple history suggested by morphology of
crystals and zoning. Because of the small size of zircon
crystals and the even smaller size of their internal zones, we
attempted both interior and edge elemental analyses of a
relatively small number of grains. Nonetheless, 38 analysis
pairs representing all seven samples yielded inconsistent
results: about half are normally zoned and about half
reversed in terms of Hf and Ti concentrations, and this
inconsistency applies to all volcanoes (Table 6). Contrast in
concentrations within individual grains is commonly small,
but in some cases it is very substantial, and the large
discrepancies are both normal and reverse.

The absence of simple, systematic change in individual
grains (e.g. consistent normal zoning, consistent reverse
zoning) suggests that none of the eruptions examined in this
study sampled zircon grown in uniformly evolving magmas
that experienced pure, simple, monotonic fractionation.
While simple fractional crystallization may be broadly
responsible for petrogenesis of magma for particular
eruptions, it was not a process operating in isolation.
Rather, the inconsistent zoning trends imply diverse
histories for grains in individual samples, some of them
seemingly simple, others complex. This suggests that many,
and possibly all, zircon crystals were entrained and carried
to the surface in melts distinct from those in which they
initially crystallized (cf. Claiborne et al. 2010a). Entrained
zircon grains may have resided in rock or crystal mush that
was disaggregated by ascending recharge magma on its
way to eruption, or they may have been part of a resident

magma that mixed with an injection of new, hotter magma.
In either case, simple compositional signatures of evolution
preserved within some individual zircon grains could be
reversed by new growth. Importantly, the broadly coherent
and distinct compositional patterns from individual sam-
ples, and for the suite of Torfajokull samples (at least the
youngest three), suggest that each volcano’s silicic plumb-
ing system is tapping similar materials that form under
similar conditions. This consistency may in part be
responsible for generally simple and consistent zoning
morphology (absence of drastic changes in conditions or
melt chemistry limit resorption and minimize drastic
changes in zircon composition). The low 5'%0 values of
host rocks and phenocrysts at Askja and Torfajokull provide
evidence for incorporation and possible anatexis of altered
upper crust, and future in situ §'%0 analysis of zircon will
help to quantify the relative contributions of country rock
delivering older zircon into the final low §'*0 magma.

Saturation and growth temperatures Estimated zircon
saturation temperatures (855-930°C) and zircon growth
temperatures (~730-930°C, from Ti-in-zircon thermometry)
are relatively high for zircon from these volcanoes
compared to most zircon from continental settings (Miller
et al. 2003; Grimes et al. 2007; Harrison et al. 2007; Fu et
al. 2008; Claiborne et al. 2010a,b; further discussion
below), but similar to temperatures for zircon from the
Yellowstone, USA hotspot (e.g. Bindeman et al. 2008). The
high saturation temperatures reflect high concentrations of
Zr in the melts (Table 2; Watson and Harrison 1983).
Maximum estimated zircon growth temperatures are, with
the exception of the Askja sample, very close to zircon
saturation temperatures; minimum growth temperatures
(excluding Askja) range from ~80 to almost 200°C lower
than saturation temperature of the host melt. This finding
broadly supports the idea that zircon crystals were grown in
melts similar to the ones in which they were erupted, but
precludes the interpretation that their growth was primarily
from their host. Much or most of the growth of the zircon
took place in a cooler environment than that represented by
the erupting magma.

Askja zircon grains differ from the others in having
estimated growth temperatures equal to or higher than
saturation T, by up to 100°C, implying that the melt from
which the zircon grew was richer in Zr than the erupting
host magma. The temperature of the erupting magma itself
has been roughly estimated to be 990-1090°C (Sigurdsson
and Sparks 1981), higher than that of either zircon
saturation or zircon growth. This suggests a complex
history involving saturation and growth of zircon in a
cooling magma, and subsequent entrainment in a
second, compositionally distinct magma that was hot
and zircon-undersaturated.
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Table 6 Ti and Hf zoning in Individual Zircon Grains

Zircon grain  Ti interior (ppm)  Ti edge (ppm)  Ti zoning Hf interior (ppm)  Hf edge (ppm)  Hf zoning  Consistent zoning?"
Askja

1 23.2 20.7 Normal 9494 9909 Normal Yes
2 29.0 253 Normal 9260 9101 ~Unzoned  No
3 21.3 24.4 Reverse 9569 9178 Reverse Yes
4 19.8 24.2 Reverse 9684 9371 Reverse Yes
5 22.8 23.0 ~Unzoned 9715 8827 Reverse No
7 32.1 19.0 Normal 9167 9824 Normal Yes
Hekla

6 14.8 12.9 Normal 8454 9794 Normal Yes
9 13.0 17.8 Reverse 8883 8387 Reverse Yes
12 14.6 13.0 ~Unzoned 8207 9468 Normal No
14 7.4 36.5 Reverse 8502 10466 Normal No
21 11.2 10.9 ~Unzoned 9363 9329 ~Unzoned  Unzoned
22 14.8 19.7 Reverse 8666 7889 Reverse Yes
Orafajokull

3 12.0 11.6 Normal 7019 7294 Normal Yes
4 29.1 12.8 Normal 7336 8982 Normal Yes
5 20.3 12.8 Reverse 9008 8183 Reverse Yes
7 12.4 12.7 ~Unzoned 7471 7908 Normal No
14 8.9 11.6 Reverse 8133 7723 Reverse Yes
15 16.9 13.0 Normal 7744 8396 Normal Yes
17 9.2 11.7 Reverse 7339 8150 Normal No
19 10.6 12.0 Normal 8110 7627 Reverse No
Torfajokull 1477 AD

5 10.2 15.1 Reverse 8942 9541 Normal No
6 12.4 14.4 Reverse 9472 9879 Normal No
8 12.5 17.2 Reverse 9318 9003 Reverse Yes
14 19.4 16.3 Normal 8858 9535 Normal Yes
871 AD

1 17.6 12.7 Normal 8964 9151 ~Unzoned  No
2 20.6 17.8 Normal 8763 9482 Normal Yes
3 11.2 12.3 ~Unzoned 9220 9481 ~Unzoned  Unzoned
4 13.7 15.8 Reverse 9379 9096 Reverse Yes
6 18.8 13.0 Normal 8615 8854 ~Unzoned  No
9 14.7 16.0 Reverse 9194 9408 Normal No
3100 BP

1 20.8 19.5 ~Unzoned 8993 8627 Reverse No
7500 BP

2 59 10.7 Reverse 7753 11335 Normal No
7 6.3 11.1 Reverse 7550 9533 Normal No
8 11.9 9.3 Normal 7055 9008 Normal Yes
15 7.7 8.1 ~Unzoned 7666 8967 Normal No
21 14.9 8.9 Normal 7525 8253 Normal Yes
22 17.2 12.1 Normal 7442 8389 Normal Yes
24 8.1 9.8 ~Unzoned 7514 7982 Normal No

#“Consistent zoning” means that both Hf and Ti display the same of zoning pattern (both normal, or both reverse).
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Table 7 Summary of zircon features considered in silicic petrogenesis investigation

Eruption Ti zoning: Hf zoning: Ti-Hf zoning Ti-in-zircon temp. zircon saturation discrete rounded rounded range of
norm./rev./un.® norm./rev/iun.® consistency: range (°C) Temp. (°C) interiors interiors exteriors Ages (ka)

(yes/no/un.)®

Askja 1875 AD 3/2/1¢ 2/3/1 4/2/0 850-910 855 None n/a Few-to-none Unavailable

Orzfajokull 1362 AD 4/3/1 5/3/0 5/3/0 770-900 930 Many Many Few-to-none 0-20, 35

Hekla 1158 AD 1/3/2 3/2/1 3/2/1 750-930 920 Few None Few-to-none 0-30, 45

Torfajokull 1477 AD  1/3/0 3/1/0 2/2/0 780-865 890 Some  Some Many 0-20, 45

871 AD 3/2/1 2/1/3 2/3/1 790-860 880 Some Some Some 10-30

3100 BP 0/0/1 0/1/0 0/1/0 840-885 920 Some Few-to-none Few-to-none 15-40

7500 BP 3/2/2 7/0/0 3/4/0 730-910 925 Some Few-to-none Few-to-none 10-15, 35-40

*Normal = higher Ti in interior than at edge; “un” indicates that measured concentrations were very similar and we designated them as unzoned

®Normal = lower Hf in interior than at edge; “un” indicates that measured concentrations were very similar and we designated them as unzoned

By “consistency” we mean that both Ti and Hf show the same type of zoning (either both normal or both reverse).

4We conducted multiple SHRIMP trace element analyses on 6 grains from Askja (3+2+1). The same scheme applies to the other samples.

Timing of growth relative to eruptions In the simplest case,
where zircon crystals grow in host magma during storage
and heat loss prior to eruption, ages of growth would span
the time between saturation and eruption. Uranium-thorium
model disequilibria ages for the samples investigated for
this study are not consistent with such a history.

While zircon populations from each individual eruption
have variable age distributions, all display evidence for
extensive zircon growth that predates eruptions by more
than 10 k.y.: in fact, more than 70% of the ages for all
samples except Orafajokull are older than 10 ka. Model
ages range upward to 50 ka, with a majority (almost 60%)
falling in the range 10-30 ka. With the exception of
Torfajokull 871 and 7500 AD, each sample also has several
ages that are younger than 10 ka (Orzfajokull is distin-
guished by having a majority of sub-10 ka ages). The
predominance of older ages and the relatively small number
of sub-10 ka ages suggests that the zircon crystals grew and
were stored in a zone with a history separate from that of
the erupting magma. This lengthy history contrasts with
that of major phases in the 1477 and 871 AD eruptions of
Torfajokull, for which Zellmer et al. (2008) report pre-
eruptive crystallization at 0-3 ka, suggesting that crystal
inheritance played a minor role. Similar contrasts between
major phase and zircon history has been reported for other
systems, e.g. at Tarawera, New Zealand and Mount St.
Helens and South Sister, USA (Klemetti and Cooper 2007;
Claiborne et al. 2010a; Stelten and Cooper 2010), where
zircon is interpreted to be derived from long-lived storage
zones and major phase ages better reflect the ascending and
erupting magma.

Although the relatively long interval between most of
the zircon growth and eruption is critical for relating the
history of zircon growth relative to that of the host magma,
it is also noteworthy that this interval of <50 k.y. is short
compared to that which has recently been demonstrated for

many other volcanoes through in situ dating of zircon (e.g.
survey by Simon et al. 2008; Long Valley, USA, Reid et al.
1997; Taupo Zone, New Zealand, Brown and Fletcher
1999; Charlier et al. 2003, 2005; Yellowstone, USA,
Bindeman et al. 2001; Vazquez and Reid 2002; Crater
Lake, USA, Bacon and Lowenstern 2005; Mount St.
Helens, USA, Claiborne et al. 2010a).

Implications of the zircon record in young Icelandic
volcanoes Morphology, zoning patterns, compositions, and
U-Th ages of zircon from the samples we have studied from
Askja, Hekla, Torfajokull, and Oreefajokull (summarized in
Table 7) all point to growth and storage in a subvolcanic
silicic mush or recently solidified rock, at temperatures
above the solidus but lower than that of the erupting magma.
The products we sampled were likely ascending magmas that
entrained a zircon cargo that formed up to tens of thousands
of years preceding the eruptive event. The older zircon grains
in low- 5'%0 Torfajokull pumice may be inherited from
older, solid, hydrothermally-altered rocks reflecting process-
es similar to those advocated for zircon origins at Yellow-
stone (e.g. Bindeman et al. 2001; zircon from the low- §'*0
Askja pumice may have similar origins, but we have not
obtained ages that might test that hypothesis).

Relation between zircon compositions and tectonic setting

Distinctive compositional characteristics of zircon from our
samples may reflect the tectonic environments in which
their host magmas formed. Most obviously, Ti vs Hf trends
for the volcanoes are distinct and can plausibly be
correlated to tectonic setting.

The monotonically decreasing Ti vs. Hf trends are
aligned in such a way that, for a given Hf value, Askja
(on-rift) has the highest Ti (and implied temperatures),
followed by Torfajokull (on rift, near termination), followed
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by Hekla (transitional to rift), followed (mostly) by
Orafajokull, with the lowest Ti at a given Hf concentration
(off-rift; Fig. 8). To put it another way, for the same degree
of fractionation as indicated by Hf, zircon crystals growing
in magmatic systems nearest the rift grow at higher
temperatures. For a given Ti concentration, Askja (on rift)
has the highest Hf, followed by Torfajokull 3100 BP-1477
AD (on rift, near termination), followed by Hekla (transi-
tional to rift), followed (mostly) by Orzefajokull (off-rift).

The Ti vs. Hf (~temperature vs. fractionation) data for
Torfajokull 7500 BP and Orzfajokull zircon do not define
sub-parallel, linear, patterns that are evident for the other
eruptions that were sampled. Both of these samples have fairly
wide ranges of Hf, but Hf is generally lower than those for the
other eruptions, and Ti (~temperatures) is lower at a given Hf
concentration. The thermal-fractionation history recorded by
these zircon grains suggests that the off-rift Orzefajokull zircon
and the transitional-to-rift 7500 BP Torfajokull zircon were
growing in magmas that experienced a different sort of
petrogenetic history than magmas at on-rift Hekla, younger
Torfajokull and Askja.

Iceland zircon in a global context

Figure 9a, b and ¢ compare the compositions of Icelandic
zircon, as represented by our initial data set, with zircon
globally (our compilation of analyses from Vanderbilt-
Stanford/USGS SHRIMP collaborations representing a wide
range of tectonic settings; compilation of Grimes et al. 2007).

The Icelandic zircon compositions plot in a relatively
restricted field on these diagrams that most closely matches
that of Alid, a rift-related volcano in Eritrea near the Red
Sea (Lowenstern et al. 1997, 2006). They are distinguished
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clusters of data points for each volcano (excluding outliers): Askja, on-
rift; Torfajékull, propagating rift-tip; Hekla, transitional to rift; Oreefajo-
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by their low and restricted Hf, Th/U higher than those at
Mount St. Helens (arc volcano) and lower than those
extension-related granites and rhyolites in mature continen-
tal crust (Nevada-Arizona, USA). They lie near, but above,
the boundary on a U/Yb vs. Hf plot that Grimes et al.
(2007) propose distinguishes MORB from continental
zircon (on the high-U/Yb, continental side).
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<« Fig. 9 a: Comparison of Ti vs Hf for Icelandic zircon and zircon from an

active continental rift generating new oceanic lithosphere (Alid volcano,
Eritrea [granophyre enclave, rhyolite; Lowenstern et al. 1997, 2006;
Flanagan et al. 2010]); onset of continental extension (Colorado River
Extensional Corridor, USA: Highland Range [rhyolite; Colombini et al.
2011], Spirit Mountain batholith [granite-quartz monzonite; Claiborne et
al. 2006, 2010a], Peach Spring Tuff [rhyolite-trachyte; Pamukcu 2010]);
subduction-related continental arc volcano (Mount St. Helens [dacite;
Claiborne et al. 2010b]). b: U vs Hf concentrations, same populations as
in (a). ¢: U/Yb vs Hf concentrations. Comparison between zircon
populations of (a) with distinction between continental- and MORB-
type zircon proposed by Grimes et al. (2007). The “Continental Survey”
field is also from Grimes et al. (2007) and was based on >1500
SHRIMP-RG analyses of continental zircon

Based upon Hf and Y concentrations alone, Pupin
(2000) distinguished zircon from granitoid suites of
different types and environments. In particular, he noted
that Hf concentrations are low (<10000 ppm) and Y
concentrations range widely and reach high values
(>4000 ppm) in plagiogranites and other granitoids associ-
ated directly with juvenile mafic magmas. Granitoids
associated with thickened orogenic crust, in contrast, have
opposite Hf-Y relationships (low and restricted Y, wide
range of Hf up to much higher concentrations). Our data for
Iceland and the compilations presented here are consistent
with these generalizations (Fig. 9a,b,c; Table 5).

Conclusions

This study is the first to use zircon as a lens for examining
the petrogenesis of silicic magmas in Iceland. Zircon grains
from recent (primarily historical) eruptions are small and
sparse, but they record important information about the
magmas in which they grew. Uranium-thorium dating
reveals growth ages predating eruption by up to 50 ka,
with most ages falling in a range of 5-30 ka, a time
sufficiently long to permit long crystallization histories or
recycling from a crystal mush or a hydrothermally altered
rock (e.g. Bacon and Lowenstern 2005; Bindeman et al.
2008; Claiborne et al. 2010a). Recognition of these
different petrogenetic processes is best achieved by the
additional isotope fingerprinting of zircon that we plan in
the future. Although most zircon growth substantially
predated eruption, the range of ages is far less than has
been found in arc and continental interior settings, where
zircon ages commonly predate the time of eruption by
hundreds of thousands of years (e.g. Brown and Fletcher
1999, Bindeman et al. 2001; Vazquez and Reid 2002;
Claiborne et al. 2010a). The zircon have Ti concentrations
that range from ~10-30 ppm (corresponding to estimated
growth temperatures of ~750-900°C), which is relatively
high compared to most of those reported from either
intrusive or extrusive rocks (e.g. Discussion, this study;

Claiborne et al. 2006, 2010a,b; Harrison et al. 2007; Fu et
al. 2008). Ti concentrations and calculated temperatures
correlate with expected thermal conditions for the local
tectonic settings of the individual Icelandic volcanic
centers. For a given Hf concentration (representative of
degree of fractionation) the Askja (on-rift, near hotspot)
zircon grains have the highest measured Ti and estimated
temperature followed by Torfajokull (on rift, near termina-
tion), Hekla (transitional to rift) and Orzefajokull (off-axis).

Multiple lines of evidence, including U-Th ages that
substantially predate eruptions and the absence of
consistent normal zoning, suggest that the grains did
not grow from magma that experienced simple, mono-
tonic fractionation. While simple fractional crystalliza-
tion may be broadly responsible for petrogenesis of the
silicic magmas, zircon ages and compositional patterns,
together with the low 5'%0 values of some of the studied
units, demonstrate that it was not a process operating in
isolation. The results of this study indicate that zircon was
liberated from disaggregated, partially melted rock,
crystal mush, and ponded magma and then entrained in
hot, silicic magma replenishments that transported them
to eruption.
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