
Mineralogy and Petrology (2005) 84: 69–106
DOI 10.1007/s00710-004-0072-2

A petrological and geochemical
reappraisal of the Mesoproterozoic
diamondiferous Majhgawan pipe
of central India: evidence for transitional
kimberlite – orangeite (group II
kimberlite) – lamproite rock type

N. V. Chalapathi Rao

EPMA Laboratory, Mineralogy Section, Ore-Dressing Division,
Indian Bureau of Mines, Nagpur, India

Received November 13, 2003; revised version accepted November 7, 2004
Published online February 7, 2005; # Springer-Verlag 2005
Editorial handling: L. G. Gwalani

Summary

The Mesoproterozoic diamondiferous Majhgawan pipe of central India is re-examined
in the light of new and recently published petrological, geochemical and isotope data.
This investigation reveals that its tectonic setting is similar to that of lamproites and
orangeites (Group II kimberlite of southern Africa) and not that of a typical kimberlite.
The petrography and mineralogy are comparable to lamproite and to some extent to
orangeite, whereas the major element geochemistry is more akin to that of kimberlite.
Trace element geochemistry is closer to that of lamproite but Nd isotope systematics are
atypical of lamproite or orangeite. The inferred petrogenesis of the Majhgawan pipe is
also similar to that of other such potassic ‘metasomatised mantle magmas’ without any
strong affinity to a particular clan=group.

It is demonstrated in this study that the Majhgawan pipe shares the petrological,
geochemical and isotope characteristics of all three rock types. It is therefore suggested
to constitute a transitional kimberlite–orangeite (Group II kimberlite)–lamproite rock.
The existence of such transitional magmas in space and time in other cratons, outside
India, is also highlighted. The name majhgawanite is proposed for this rock – keeping
in mind the antiquity of the Majhgawan pipe, its intriguing petrological and geochem-
ical characteristics and also on the basis of India’s legacy for introducing diamond to
the world – to designate such mafic potassic-ultrapotassic transitional rock types so as
to distinguish them from the classical kimberlite, lamproite or orangeite.



It is concluded that the correlations between kimberlite petrography, geochemistry
and isotopic types (viz., Group I and II), as established for kimberlites in southern
Africa, need not be necessarily valid elsewhere. Hence, the recommendations of
I.U.G.S. on classification of kimberlite, orangeite and lamproite are clearly inadequate
when dealing with the transitional mafic potassic ultrapotassic rocks. It is further
stressed that mineralogical, geochemical and isotopic aspects of mafic potassic-ultra-
potassic rocks need to be considered in unison before assigning any name as the
nomenclature of such exotic and rare alkaline rock types invariably implies economic
and tectono-magmatic (regional) significance.

Introduction

Diamond was first introduced to the world by India about 2500 years ago and it
remained the sole producer and supplier of diamonds till the discovery of diamond
fields of Brazil in 1725 and South Africa in 1880’s (Janse, 1995). The dia-
mondiferous Majhgawan pipe (24�3803000 N: 80�020 E) in the Panna area of central
India, which contributes nearly 99% of India’s diamond production, was reported
by Captain J. Franklin as early as in 1827 (see Halder and Ghosh, 1978, p. 2).
This was some 60 years prior to the time when the word ‘kimberlite’ was coined
by Henry Carvill Lewis (1887) to the primary source rock for diamond in South
Africa.

Much of the earlier work on the Majhgawan pipe mainly concerned its eco-
nomic aspects and preliminary petrography (e.g. Medlicott, 1859; Dubey and Merh,
1949; Merh, 1952; Mathur, 1953, 1958; Mathur and Singh, 1963). Sinor (1930)
referred to it as ‘agglomeritic tuff’ whereas Dasgupta and Phukan (1971) preferred
to term it ‘serpentine rock’. However, it was recognised to be a kimberlite or
‘micaceous kimberlite’ (cf Wagner, 1914) only in the 1970’s (e.g. Mathur and
Singh, 1971; Paul et al., 1975a,b; Halder and Ghosh, 1978, 1981) and was con-
tinued to be referred to by that name for more than a decade until Scott-Smith
(1989) assigned a lamproitic status to it based on petrography and mineral chem-
istry. Kharikov et al. (1991) and Chatterjee and Rao (1995), however, opined that
the geologic, petrographic and geochemical features of Majhgawan pipe rock are
intermediate in several aspects between typical kimberlite and lamproite. Recently,
Ravi Shankar et al. (2001, 2002), based on petrological and geochemical grounds,
re-classified the Majhgawan pipe rock (and its satellite body at Hinota 24�390 N:
80�020 E,which is about 3 km from Majhgawan, also in the Panna area of central
India) as orangeite (Group II kimberlite of South Africa). However, the latters’
work was criticized by Madhavan (2002) for their failure to consider the landmark
paper by Scott-Smith (1989) and also for ignoring the essential geochemical criteria
such as per-alkaline and per-potassic indices as required by the typical orangeite.

These intense (and at times even passionate) debates have prompted this author
to re-examine the Majhgawan pipe in light of the recently published data and in
conjunction with the new geochemical data generated by him during the course of
the detailed investigations on Indian kimberlites and lamproites (Chalapathi Rao
et al., 2004). Much impetus for the present paper was, however, provided by the
recent Nd isotopic work of Lehmann et al. (2002) which, according to the present
author’s opinion, is conclusive in disproving the suggestions that the Majhgawan
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pipe could be a lamproite (Scott-Smith, 1989) or a typical orangeite (Ravi Shankar
et al., 2001, 2002).

Based on the petrological, geochemical and isotopic comparisons of the
Majhgawan pipe with kimberlites, lamproites and orangeites from South Africa,
southern India and elsewhere and also by taking into consideration the guide lines
set by I.U.G.S Sub-commission on Igneous rock systematics for classification of kim-
berlites, lamproites and orangeites (Woolley et al., 1996), I show in this paper that
the Majhgawan pipe cannot be uniequivocally characterized as a kimberlite or or-
angeite or lamproite. This pipe, in fact, inherits the traits of all these above three
rocks and hence is suggested to constitute a transitional kimberlite–orangeite–
lamproite rock type. The significance of this recognition is also highlighted.

Geological and tectonic aspects of Majhgawan pipe

The Majhgawan pipe intrudes the Baghan Quartzite formation of the Kaimur
Group which is part of the Vindhyan Super Group (Fig. 1). The latter includes
Meso- to mid Neo-Proterozoic rocks with an age range from 1631� 8 Ma (Ray
et al., 2003) to �550 Ma (Crawford and Compston, 1970). The Vindhyan sedi-
ments are believed to overlie the Archaean basement of the Bundelkhand craton
comprising primarily granites and gneisses along with small enclaves of older
metamorphic rocks and basic and ultrabasic intrusive rocks (Naqvi and Rogers,
1987). The southern margin of the Vindhyan basin is flanked by a major tectonic
lineament of the Indian sub-continent, the Narmada-Son lineament, which is con-
sidered to have been formed along the Archaean structural trends and remained
active throughout the geological history till the present day (Naqvi and Rogers,
1987; Chakraborty and Bhattacharya, 1996). Seismic investigations have revealed
the existence of several E-W oriented deep fractures underlying the Vindhyans,
some of which extend down to the Moho (Kaila et al., 1989). These fractures have
been interpreted to be of Archaean age and vertical movements along them have
been inferred to have occurred at different times during the deposition of the
Vindhyan sediments (Kaila et al., 1989). The Majhgawan pipe occurs on the
western limit of the Panna diamond belt (80�50 km) and is localized in a
NE-SW to ENE-WSW trending crestal zone of the upwarped eastern margin of
the Bundelkhand craton (Halder and Ghosh, 1978). According to Janse (1992) the
Majhgawan pipe is located at the margin of the Aravalli Archon (Bundelkhand
craton).

The Majhgawan pipe is pear-shaped on the surface with dimensions of
500 m�330 m with its western end showing a slight pointed bulge (Halder and
Ghosh, 1978). Payable body is elliptical in shape, 320 m�280 m in size and has a
surface area of 6.5 ha (Indian Bureau of Mines, 1996). This pipe has been drilled to
a depth of about 250 m and it has the shape of a cone and the contact with the host
rock dips at fairly constant angle of 70� to 80� inwards (Halder and Ghosh, 1978;
Chatterjee and Rao, 1995). Eventhough the shape of the Majhgawan pipe is
dissimilar to that of many known lamproite occurrences (Mitchell and Bergman,
1991), it should be mentioned here that the highly diamondiferous Argyle lam-
proite (also of Meso-Proterozoic age) in Western Australia also has steep contacts
with the host rocks (Jaques et al., 1989). Thus, the Majhgawan pipe is more similar
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in shape and form to kimberlites than lamproites, as the former in all cases have
diatremes sloping at an average 82� – the shape of all deep explosive vents.

Sinor (1930) termed the Majhgawan pipe rock to be an ‘agglomeritic tuff’.
Subsequently, different varieties of pipe rock have been recognized i.e., yellow
green volcanic rock, dark coloured volcanic rock and weathered tuffaceous mate-
rial (Mathur and Singh, 1971). Scott-Smith (1989) suggests that the Majhgawan
pipe is an example of lamproitic crater composed predominantly of volcaniclastic
rocks and marked by absence of typical infilling of kimberlite pipes and intrusive
tuffisitic kimberlite breccias.

From an extensive study of about 450 kimberlites, lamproites and lampro-
phyres in Australia, Jaques and Milligan (2003) have recently concluded that
typical kimberlites occur within and at the margin of the Archaean cratons,
lamproites at the cratonic margins and near mobile belts and lamprophyres at
margins of cratons only. Likewise Skinner et al. (1992), from the distribution of

Fig. 1. Location of the Majhgawan pipe in the Vindhyan basin of central India (adopted
from Chatterjee and Rao, 1995)
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229 orangeites and 580 archetypal kimberlites in the Kaapvaal craton of southern
Africa have shown that orangeite (Group II kimberlite) occurrences are found
predominantly at the edge of the Kaapvaal craton whereas those of kimberlites
are characterisitically confined to on-cratonic settings.

Thus, it can be inferred that the disposition of the Majhgawan pipe at the
cratonic margin of the Bundelkhand craton has more similarities to the tectonic
setting of a lamproite or orangeite than a kimberlite.

Geochronological aspects

Radiometric age determinations of Majhgawan pipe carried out by different work-
ers are summarised in Table 1. Considering that the whole rock ages are likely to be
less reliable than the age determinations made on the groundmass phlogopite
mineral separates, the age of the pipe can be accepted to be close to 1060 Ma
thereby implying its emplacement in the Mesoproterozoic.

The Group I kimberlites (kimberlite sensu stricto) of similar age are those of
Premier (1202� 72 Ma; Kramers and Smith, 1983) and National (1180� 30 Ma;
Allsopp et al., 1989) in the Kaapvaal craton of South Africa and also those at
Wajrakarur, Lattavaram, Muligiripalle, Mudalabad and Kotakonda in the Dharwar
craton of southern India whose ages range from 940–1150 Ma (Paul et al., 1975a;
Basu and Tatsumoto, 1979; Anil Kumar et al., 1993, 2001a; Chalapathi Rao et al.,
1996, 1999). Likewise, the lamproites of Argyle (1126� 9 Ma; Skinner et al.,
1985), Western Australia and Zangamarajupalle (1070� 22 Ma; Anil Kumar
et al., 2001a), southern India, are of comparable age to the Majhgawan pipe. Or-
angeites (Group II kimberlite), on the other hand, have so far known to be confined
only to southern Africa and are much younger with an age range of 110 Ma to
200 Ma (Skinner, 1989; Mitchell, 1995a).

Even though, Kent et al. (1998a, b) tentatively term the ultramafic intrusions
(113–116 Ma) in the Damodar Valley of Eastern India to be orangeites, this infer-
ence appears to be drawn more from the similarities in the mineralogical and
radiometric age data rather than on chemical and isotopic grounds (Madhavan,
2002). The Damodar Valley rocks indeed appear to be transitional rocks which
cannot be uniequivocally assigned to the orangeite, kimberlite and lamproite clans

Table 1. Radiometric age determinations of the Majhgawan pipe

Radiometric method Age in Ma Reference

K–Ar (Phl) 1056 McDougall in Crawford and
Compston (1970)

Rb–Sr (Phl) 1140 � 20� Crawford and Compston (1970)
K–Ar (W.R.) 974–1170 Paul et al. (1975a)
Rb–Sr (W.R.) 1630 � 353 Paul (1979)
Rb–Sr (Phl) 1044 � 22 C. B. Smith in Anil Kumar et al. (1993)
Rb–Sr (Phl) 1067 � 31 Anil Kumar et al. (1993)

Phl Phlogopite; W.R. Whole rock; � recalculated using 87Rb decay constant of 1.42�
10�11 yr1 (Steiger and J€aager, 1977)
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(Middlemost et al., 1988; Rock and Paul, 1989; Basu et al., 1997). The available
radiometric dates of similar transitional kimberlites rocks, elsewhere (see Table 7
for details and references) suggests that they range in age from 1732� 82 Ma
(Guaniamo; Venezuela) to 85 Ma (Tres Ranchos; Brazil).

Thus, the emplacement age of the Majhgawan pipe is indistinguishable from
that of an archetypal kimberlite, lamproite and transitional kimberlite but dissim-
ilar to that of an orangeite.

Petrography and mineralogical aspects

Detailed petrological studies on the Majhgawan pipe carried out by a number of
previous workers (e.g. Mathur and Singh, 1971; Dasgupta and Phukan, 1971; Paul
et al., 1975a; Kresten and Paul, 1976; Halder and Ghosh, 1978, 1981; Middlemost
and Paul, 1984; Gupta et al., 1986; Scott-Smith, 1989; Ravi Shankar et al., 2001,
2002) have revealed that, all the rock material so far obtained from Majhgawan
pipe represents different varieties of magmaclastic agglomeritic tuff. The tuffs
contain juvenile lapilli or magmaclasts which could be described as being of mag-
matic derivation. These magmaclasts are macrocrystic as they contain two genera-
tions of altered olivine, viz., large, anhedral and corroded macrocrysts (which
could be xenocrysts) as well as subhedral to euhedral phenocrysts (representing
primary olivines crystallised from the magma). Both these altered olivine types are
set in a fine to cryptocrystalline, brownish and turbid groundmass predominantly
consisting of serpentine group minerals, iddingsite, phlogopite, glass, apatite, car-
bonate minerals (calcite and dolomite), illite, vermiculite, montmorillonite, poly-
garskite, perovskite, rutile, chlorite, spinel group minerals, barite and diamond.
The groundmass occasionally contains vesicles and juvenile lapilli tuffs. The pipe
rock is also traversed by numerous veinlets of calcite, especially in the uppermost
portion.

It should be emphasized here that much of the earlier work has been carried out
by employing the conventional transmitted and reflected light microscopy. Hence,
only those minerals identified by different workers by employing various electron
beam and X-ray methods are summarized in Table 2 and compared and contrasted
with the mineralogy of the archetypal kimberlite, lamproite and orangeite. The
representative compositions of various mineral phases are summarized in Table 3.
The salient petrographic details of selected minerals and their chemistry, where
data are available, are provided below.

Olivine

Olivine has been completely altered and no chemical analyses for fresh olivine are
available (Dasgupta and Phukan, 1971; Paul, 1991). Serpentine is the major altera-
tion phase but iddingsite also forms an important alteration phase (Mathur and
Singh, 1971). The olivine macrocrystals (mostly <5 mm, but rarely up to 10 mm)
are predominantly anhedral and occasionally subhedral. The smaller phenocrysts
(<0.5 mm) are euhedral. A few of the megacrysts have also been replaced by
carbonates (Middlemost and Paul, 1984). Some of the olivine macrocrysts exhibit
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complex shapes (probably imposed morphology) whereas certain phenocrysts
occur as crystal aggregates. Scott-Smith (1989) considers such olivines to be atyp-
ical of kimberlites but similar to those of olivine lamproites at Ellendale and
Argyle of Western Australia (Jaques et al., 1986), Prairie Creek in Arkansas
(Scott-Smith and Skinner, 1984a) and Kapamba in Zambia (Scott-Smith et al.,
1989).

Serpentine

Serpentine occurs predominantly as an alteration product pseudomorphous after
olivine. Its chemical composition is more or less constant (Table 3) with high FeOT

contents (6.30 to 9.26 wt%) and corresponds to that of a lizardite. Middlemost and
Paul (1984) remark that such high-Fe serpentines are unique to kimberlites (cf
Emeleus and Andrews, 1975).

Phlogopite

Distribution of phlogopite in the pipe is erratic but it constitutes an important phase
(Paul et al., 1975a). Phlogopites of the Majhgawan pipe are generally pleochroic
ranging from pale brown to orange colour. Phlogopites of three parageneses have
been recorded- (i) macrocrysts (up to 4 mm), which are anhedral to subhedral and
erratically distributed in the pipe, (ii) phenocrysts (up to 1.5 mm) which are most

Fig. 2. TiO2 versus Al2O3 for micas from the Majhgawan pipe compared to those from
other areas. Fields for selected Group I and II kimberlites, lamproites, and the MARID
(Mica–amphibole–rutile–ilmenite–diopside) suite of xenoliths are from: Dawson and Smith
(1977); Smith et al. (1978); Scott-Smith et al. (1989); Mitchell and Bergman (1991). The
data for the Anantapur and Mahbubnagar kimberlites and the Cuddapah lamproites (India)
are from Chalapathi Rao et al. (2004)
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abundant and occur as slender laths, the majority of them displaying polysynthetic
twinning and (iii) groundmass microphenocrysts (0.04 mm) present as lath-like
equant crystals (Middlemost and Paul, 1984; Scott-Smith, 1989). There is little
difference in the composition of macrocrysts and phenocrysts (Table 3) except
for relatively high TiO2 and FeOT contents in the phenocrysts. Their mg# is
>80. The phlogopites are clearly titanium-enriched in contrast to the titanium-poor
micas of archetypal kimberlites (Mitchell, 1995a).

In the TiO2 versus Al2O3 (wt%) bivariate plot (Fig. 2) the phlogopites of the
Majhgawan pipe compositionally vary similar to the lamproite micas (Scott-Smith,
1989); they differ from kimberlites, orangeites and MARID-suite of xenoliths.

Glass

Devitrified glass constitutes an important phase in the groundmass (Mathur and
Singh, 1971; Scott-Smith, 1989) and its composition is given in Table 3. The low
totals for glass are probably due to high water content. The occurrence of glass is
uncommon in archetypal kimberlites and orangeites (Kent et al., 1998a) but is well
known from lamproites (Scott-Smith and Skinner, 1984b; Dawson, 1987).

Other accessory phases

Monazite and barite are present in the Majhgawan pipe. Monazite is also known to
occur in orangeites of Southern Africa but is atypical of archetypal kimberlites and
lamproites (Table 2). Even though barite is uncommon in lamproites, many of the
Australian lamproites do contain a relatively high proportion of it (E. M. W. Skinner,
pers. comm. 2003). Magnetite, magnesio-chromite and titano-magnetite constitute
the spinel group minerals (Ravi Shankar et al., 2002). Hematite, leucoxene, ilmen-
ite, rutile, anatase and perovskite are the other various identified opaque mineral
phases (Mathur and Singh, 1971). A number of heavy minerals such as ilmenite,
kyanite, epidote, clinozoisite, spinel, zircon, garnet and tourmaline have been
reported from the pipe (Venkataraman, 1960; Grantham, 1964). Pyrite, chalco-
pyrite, sphalerite and pentlandite constitute the reported sulphide phases (Ravi
Shankar et al., 2002).

The petrographical and mineralogical aspects of the Majhgawan pipe reveal
that their utility in the nomenclature of the pipe rock is not straight-forward. It is
also pertinent to note here that even though Ravi Shankar et al. (2001) remark that
‘‘there was hardly any attempt at investigating the chemistry of mineral constitu-
ents’’ by previous workers, such data are indeed available in the literature (e.g.
Middlemost and Paul, 1984; Gupta et al., 1986 and Scott-Smith, 1989). The com-
plex morphology of olivine macrocrysts, presence of glass and scoracious juvenile
lapilli and titanium-rich phenocrysts of phlogopite are indeed characterisitic fea-
tures of lamproites, as first suggested by Scott-Smith (1989). To date, vesicles and
glass are common only in Forte a la Corne type kimberlites in Canada (E. M. W.
Skinner, pers. comm. 2003) and are not found in kimberlites of South Africa.
However, primary carbonate (see Table 2) is atypical of the lamproites (Dawson,
1987; Hammond and Mitchell, 2002). On the other hand, monazite and barite are
reported from orangeites but uncommon in archetypal kimberlite or lamproite
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(Table 2; see also Ravi Shankar et al., 2001). Thus, it can be inferred that the
petrography and mineralogy of the Majhgawan pipe is more similar to that of
a lamproite and to some extent that of an orangeite than that of an archetypal
kimberlite.

Geochemical aspects

During this investigation, it has become increasingly clear that even though a lot of
geochemical data has been built up over the years on the Majhgawan pipe, it
predominantly concerns the major oxides (e.g. Paul et al., 1975a; Halder and
Ghosh, 1981; Paul and Rock, 1989; Paul, 1991). Major oxide and trace element
(including REE) data analysed for the same samples of the Majhgawan pipe are
extremely few and even those available (e.g. Gupta et al., 1986; Paul et al., 1975b)
do not include concentrations of all the trace elements of petrological interest. The
major oxide and trace element data of the Majhgawan pipe are provided in Tables 4
and 5 respectively. Some of the critical major and trace element ratios are given in
Table 6 and are compared and contrasted with those from elsewhere.

Table 4. Major element (oxide wt%) data of the Majhgawan pipe

Oxide
(wt%)

MJW M MG6 MG50 UG11a UG191 7 H & G

SiO2 37.94 34.82 36.29 34.82 34.90 36.50 33.69 34.39
TiO2 4.79 5.7 5.11 4.62 5.51 3.76 6.04 6.00
Al2O3 2.90 2.88 2.63 3.93 2.79 6.07 3.28 2.53
Fe2O3

� 8.94 10.49 6.39 4.42 6.62 3.87 – 6.53
FeO – – 2.32 3.06 3.22 3.85 10.98 3.08
MnO 0.14 0.19 0.14 0.19 0.16 0.14 0.11 0.11
MgO 29.85 25.73 26.29 27.28 23.73 25.45 24.4 24.72
CaO 2.58 3.63 3.10 3.67 3.58 3.40 3.78 5.37
Na2O 0.02 0.26 0.05 0.06 0.21 0.18 0.11 0.15
K2O 0.77 0.81 0.55 0.73 0.89 1.21 0.86 0.68
P2O5 1.82 2.47 1.89 2.28 2.45 1.87 2.65 2.34
H2Oþ – – 9.62 9.79 9.67 9.33 – –
H2O� – – 5.15 4.22 4.99 3.37 – –
H2OT – – – – – – – 12.45
CO2 – – 0.24 0.39 0.45 0.74 – 0.76
SO3 – – – – – – 1.66 –
BaO – – – – – – 3.05 –
Cr2O3 – – – – – – 0.17 –
LOI�� 10.32 11.84 – – – – 8.12 –

Total 99.96 98.82 99.77 99.46 99.26 99.74 98.90 99.11

C.I.��� 1.33 1.39 1.45 1.39 1.42 1.60 1.47 1.46
Ilm. I���� 0.44 0.59 0.50 0.42 0.60 0.41 0.60 0.60

Data source: MJW this work; M Lehmann et al. (2002); MG6, MG50, UG11a and UG191
Paul et al. (1975b); 7 Gupta et al. (1986); H & G average of ten analyses from Halder and
Ghosh (1981); � total iron; �� Loss on Ignition; ��� Contamination Index (Clement, 1982);
���� Ilmenite Index (Taylor et al., 1994)
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Whole-rock XRF (X-Ray fluorescence) analyses for major and some trace
elements (Sr, Rb, Zn, Cu, Ni, Cr, V and Sc) of MJW sample (Tables 4 and 5) were
carried out at the Grant Institute of Geology and Geophysics, University of
Edinburgh, using a Philips PW 1480 automatic XRF spectrometer. The procedure
described by Norrish and Hutton (1969) was adopted. Major element data quality
was assessed by several repetitions as well as by employing internal standards.
Typical uncertainties for major oxides are <5% and <10% for trace elements.

Table 5. Trace elements, including REE, (in ppm) chemistry of Majhgawan pipe

Trace
elements
(ppm)

MJW M MG6 MG50 UG11a UG191 7

Ba 1884 1734 7760 1640 7260 2400 –
Cr 1456 996 – – – – –
Cs 3.39 – – – – – –
Cu 44 52 – – – – 42
Hf 20.3 5.1 19.3 24.5 23.8 16.7 –
Nb 177.3 228 – – – – 214
Ni 1455.9 1071 – – – – 1059
Pb 20.2 23.5 – – – – 41
Rb 39.4 56.3 – – – – 76
Sc 17.1 19 – – – – 21
Sr 1043.7 1694 – – – – 1835
Ta 11.67 16 13 15.5 16.8 10.1 –
Th 12.8 16.2 12.8 16.8 16.1 17.6 15
U 3.06 3.5 – – – – –
V 52.8 33 – – – – 55
Y 15.57 26.5 – – – – 35
Zn 62 85 – – – – 80
Zr 754.7 973 – – – – 1079
REE
La 186 239 156 188 179 161 410
Ce 423.7 525 371.8 508.8 472.7 332.3 826
Pr 50.73 66.6 – – – – –
Nd 185.3 230 159 241.9 225.9 140.5 361
Sm 24.9 29.3 22.5 31.9 33.3 22.2 –
Eu 6.26 7.08 5 6.5 6.5 5.2 –
Gd 20.23 16.4 8 16.8 17.8 9.8 –
Tb 1.68 1.74 1.32 1.85 2.07 1.81 –
Dy 5.09 7.41 – – – – –
Ho 0.73 1.09 – – – – –
Er 1.32 2.24 – – – – –
Tm 0.16 0.24 – – – – –
Yb 1 1.31 0.98 1.3 1.33 1.98 –
Lu 0.1 0.21 0.11 0.12 0.13 0.29 –

Data source: MJW This work; M Lehmann et al. (2002); MG6, MG50, UG11a and UG 191
Paul et al. (1975b); 7 Gupta et al. (1986)
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Rare Earth Elements (REE) and trace elements (Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb,
Th and U) of MJW sample (Table 5) were analysed using a VG Plasma Quad PQ2
STE machine at the NERC ICP-MS facility at Silwood Park, Ascot, London.
Samples were prepared following the open digestion method of Jarvis (1988,
1990). Overall, the difference in concentration for individual LREE and MREE
in replicate samples is in general <10%.

Major elements

Kimberlites and lamproites incorporate varying proportions of crustal and mantle
xenoliths during their rapid ascent from the mantle to the Earth’s surface. As a
result, the bulk composition of the magma seldom approximates to primary
magma. The contamination index (C.I.) of Clement (1982) is widely used in kim-
berlite=lamproite petrology (Mitchell, 1986; Taylor et al., 1994; Beard et al., 2000)
to assess the role of crustal assimilation on the bulk chemistry of samples where
C.I.¼ (SiO2þAl2O3þNa2O)=(MgOþK2O). In altered and highly contaminated
rocks, this index is of little use in assessing the role of crustal contamination.
Kimberlites with a C.I.<1.4 are generally regarded as uncontaminated or fresh.
The C.I. values for the majority of the samples (Table 4) of Majhgawan pipe are
low and vary from 1.3 to 1.4.

The Ilmenite Index (Ilm. I) of Taylor et al. (1994) is also used to identify
kimberlites and lamproites that may have accumulated ilmenite megacrysts and
xenocrysts. This index is defined as: Ilm. I¼ (FeOTþTiO2)=(2K2OþMgO). Sam-
ples with Ilm. I<0.52 are regarded as uncontaminated. The Ilm. I for majority of
the Majhgawan pipe samples is either <0.52 or close to it (Table 4). The Ilm. I vs
C.I. plot (Fig. 3) clearly depicts the Majhgawan samples predominantly plotting in
the archetypal kimberlite (Group I) field or in its overlap with the lamproites.

Fig. 3. Contamination Index (Clement, 1982) versus Ilmenite Index (Taylor et al., 1994). The
fields of worldwide lamproites, Group I and II kimberlites are shown for comparison. Data
sources are as follows: Fraser (1987); Greenwood et al. (1999); Gurney and Ebrahim (1973);
Spriggs (1988); Scott (1979); Smith et al. (1985); Tainton (1992); Taylor et al. (1994)
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The Majhagwan pipe is silica-undersaturated (SiO2 contents: 33.69 wt%–
37.94 wt%) similar to those of kimberlites, and orangeites (Fig. 4). However, its
CaO contents are remarkably low (predominantly 2.58–3.78 wt%; see Table 4)
compared to kimberlites and orangeites and are similar to those of olivine lam-
proites (Fig. 4). On the other hand, the MgO (23–29 wt%) and Fe2O3

� (�10 wt%)
contents are high. The Mg numbers (Mg=Mgþ Fe) of the available data are
>0.70 and highlight the mafic-ultramafic nature. The K2O contents are low
(0.55–1.21 wt%), due to low phlogopite contents, but the K2O=Na2O ratios are
high (>3) thereby displaying the potassic-ultrapotassic nature of these rocks (Foley
et al., 1987). The TiO2 contents are very high (3.76–6.04 wt%) relative to those of
Group II kimberlites (orangeites) or leucite lamproites but are similar to those of
archetypal kimberlites (Fig. 5). P2O5 contents range from 1.82 to 2.65 wt% and are
primarily contributed by apatite and to a very limited extent by monazite. The
peralkaline [molar (Na2OþK2O)=Al2O3] and perpotassic (molar K2O=Al2O3)
indices of Majhagwan pipe are essentially <1. These ratios are similar to those
of archetypal kimberlites (�1) but are very different from those (>1) of orangeites
(Mitchell, 1995a) and lamproites (Bergman, 1987).

The overall major element data of Majhgawan pipe are more similar to that of
an archetypal kimberlite than those of orangeite and lamproite.

Trace elements (including REE)

The variability of compatible element abundances in kimberlites is shown not to be
representative of the liquids from which they form, but is due to widely varying

Fig. 4. Compositional range of SiO2 and CaO for the Majhgawan pipe. Data sources are as
follows: West Kimberley olivine lamproites and Leucite Hills lamproites – Fraser (1987);
Group I and II kimberlites – Greenwood et al. (1998), Gurney and Ebrahim (1973), Spriggs
(1988), Scott (1979), Smith et al. (1985), Tainton (1992), Taylor et al. (1994); Anantapur
kimberlites, Mahbubnagar kimberlites and Cuddapah lamproites, India – Chalapathi Rao
et al. (2004); Aries kimberlite (Australia)- Edwards et al. (1992); West African kimberlites –
Taylor et al. (1994)
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macrocryst=phenocryst – matrix ratios (Mitchell, 1986). In kimberlites, Sc is pri-
marily hosted by phlogopite whereas in lamproites by K-richterite (Mitchell,
1995a). The Sc contents in the Majhgawan pipe (�20 ppm) overlap with those
from the southern Indian kimberlites (13–27 ppm) and lamproites (�20 ppm)
(Chalapathi Rao et al., 2004). Vanadium in kimberlites and lamproites is hosted
primarily by phlogopite and spinel. The Majhgawan pipe has relatively low V
abundances (33–55 ppm), compared to the kimberlites (75–355 ppm) and lam-
proites (72–160 ppm) from southern India (Chalapathi Rao et al., 2004). Nickel
in kimberlites and lamproites is principally hosted by olivine and hence its abun-
dance is directly proportional to the of olivine macrocrysts content. The high
Ni=MgO ratios (41.84) of the Majhgawan pipe are very similar (Table 6) to those
of the Group I kimberlites of South Africa (40) and Koidu kimberlites of Western
Africa (42). Chromium (996–1456 ppm) contents of Majhgawan pipe are within
the range for those of orangeites (315–2865 ppm), kimberlite (430–2554 ppm) as
well as olivine lamproites (379–1703 ppm) (source data: Mitchell, 1995a).

The Ba contents of the Majhgawan pipe are extremely high (1640–7760 ppm)
compared to those from other occurrences (Tables 5 and 6) and reflect the high
barite content. Scott-Smith and Skinner (1984a) have used Zr versus Nb plots
to distinguish between kimberlites and lamproites. These elements have been also
shown to be least mobile amongst incompatible elements whilst alteration (Taylor
et al., 1994). The Nb and Zr contents of the Majhgawan pipe plot very well within
the olivine lamproite field (Fig. 6). The P2O5 content of the Majhgawan pipe ex-
hibits very good positive correlation with Ce content (Fig. 7) thereby demonstrat-
ing that phosphatic phase (e.g. apatite) to be the main host of LREE. Also, Fig. 7
displays that Ce contents of Majhgawan pipe are substantially higher than those of
the kimberlites and orangeites but are similar to those of the olivine lamproites.

The Majhgawan pipe is strongly enriched in LREE with La abundances
being 700–800�chondrite. Abundances of HREE are low, 5–7�chondrite.

Fig. 5. TiO2 versus K2O for the Majhgawan pipe. Data sources are as follows: Fraser et al.
(1987); Greenwood et al. (1998); Gurney and Ebrahim (1973); Spriggs (1988); Scott
(1979); Smith et al. (1985); Tainton (1992); Taylor et al. (1994)
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Consequently, La=Yb ratios are high and range from 80–186. The Majhgawan pipe
appears to be enriched in LREE (Fig. 8) compared to the archetypal kimberlite and
orangeite but resembles those of the Chelima lamproite. Eventhough REE patterns
cannot be used to distinguish kimberlites from orangeites (Mitchell, 1995a) the
REE pattern of Majhgawan pipe nevertheless parallels those of others (Fig. 8)
thereby demonstrating that similar processes were involved in the generation of
these magmas. The REE patterns (Fig. 8) do not show any apparent depletion of
MREE (Eu to Ho) and lack a downward concave shape which is a characteristic
feature of some of the other Gondwanaland kimberlites e.g. Aries kimberlite of
Western Australia (Edwards et al., 1992) and Koidu kimberlite of West Africa
(Taylor et al., 1994).

On normalized multi-element plots (Fig. 9) the Majhgawan pipe exhibits
negative troughs at K and also at Rb. Such negative anomalies either reflect

Fig. 6. Zr versus Nb diagram for the Majhgawan pipe. Data sources for the shown fields
are from Edwards et al. (1992) and Taylor et al. (1994)

Fig. 7. P2O5 (Oxide weight %)
versus Ce (ppm) plot for the
Majhgawan pipe. Data sources
for the displayed fields: Mitchell
(1995a) and Chalapathi Rao
et al. (2004)
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Fig. 8. Chondrite-normalized (Haskin et al., 1968) Rare Earth Element patterns for the
Majhgawan pipe compared with those from elsewhere. Data for Indian kimberlites from
Chalapathi Rao et al. (2004); Orangeite from Mitchell (1995a)

Fig. 9. Trace element abundance patterns normalized against chondrite (except Rb, K and
P, which are normalized to primitive mantle; Thompson et al., 1984) of the Majhgawan pipe
compared with those from elsewhere. Data sources are from Mitchell (1995a); Edwards
et al. (1992); Taylor et al. (1994); Chalapathi Rao et al. (2004)
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hydrothermal alteration or the presence of residual phases in the melt source
regions. The LOI contents, which are similar to those from unaltered potassic-
ultrapotassic rocks from elsewhere (Mitchell, 1986), and low contamination indices
(Table 4) suggest that these negative anomalies are likely to be source related. The
possibility of phlogopite fractionation being responsible for the negative troughs at
K and Rb is negated by the lack of evidence for phlogopite accumulation (Fig. 3;
see vector for phlogopite). Negative Rb and K anomalies were recorded in kim-
berlites and orangeites from southern Africa and an almost ubiquitous trough at K
is seen in many mafic potassic rocks from Alto Paranaiba Province, Brazil (Gibson
et al., 1995). Depletions of P and Sr are also apparent in Fig. 9. Negative troughs at
P can be accounted by the presence of apatite in the source. Depletions in Sr can be
attributed either to the presence of residual phases such as clinopyroxene (Smith
et al., 1985) or phosphate (Mitchell, 1995a) or due to the depletion of the mantle
source in Sr during a previous phase of melt extraction (Tainton and McKenzie,
1994). The troughs at Sr were, in fact, considered by Foley et al. (1987) to be a
fairly common feature of mafic-ultramafic strongly alkaline rocks.

The Nb=Zr (0.23) ratios of the Majhagwan pipe (Table 6) are strikingly similar
to those of olivine lamproites (0.20) and Cuddapah lamproites (0.28) than those of
kimberlites (1.1) and orangeites (0.48). On the other hand, the Nb=La ratios (Table
6) of olivine lamproites (0.8), Cuddapah lamproites (0.74), Koidu kimberlites (1.4)
and orangeites (0.7) are closest to those of the Majhagwan pipe (1.09).

The trace element contents and ratios strongly suggests that Majhgawan pipe
has more affinities to lamproites than archetypal kimberlites and orangeites.

Isotopic aspects

The initial 87Sr=86Sr and 143Nd=144Nd ratios for the Majhgawan pipe are compiled
in Table 7 along with those for selected Group I and II kimberlites, lamproites and
‘transitional kimberlites’. The initial Sr ratios for the Majhgawan pipe range from
0.7030–0.7064 (Paul, 1979) whereas the initial Nd ratio determined on a single
sample gives a value of 0.511742� 10 (Lehmann et al., 2002).

The southern African kimberlites were recognized to be Group I and II primar-
ily based on isotopes (Smith, 1983a) and subsequently on the basis of trace element
data (Fraser et al., 1985; Smith et al., 1985). The Group I kimberlites have
significantly lower 87Sr=86Sr and Rb=Sr ratios and higher 143Nd=144Nd and
206Pb=204Pb ratios than Group II kimberlites (orangeites). In the Nd–Sr isotope
plot (Fig. 10) the southern Africa Group I kimberlites are characterized by possess-
ing a Bulk-Silicate Earth (BSE)-like Sr isotopic composition and predominantly
positive "Nd values ranging from þ0.3 to þ6.9 (Table 7) that they plot in the
‘depleted’ quadrant of the conventional "Nd–Sri diagram. The slightly depleted
source region of Group I kimberlites, relative to BSE, was suggested as an evi-
dence for their asthenospheric origin as their isotopic signatures are similar to those
of most Ocean Island Basalts (e.g. Smith, 1983a; Mitchell, 1995a). However, an
alternate view favours a lithospheric origin of Group I kimberlites and proposes
that the source enrichment of kimberlites and orangeites to have had occurred
at different times, but not by different processes (Tainton and McKenzie, 1994;
Chalapathi Rao et al., 2004).
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The long term incompatible element enrichments relative to that of Bulk-
Silicate Earth of Group II kimberlites (orangeites) make their field distinct from
those of Group I kimberlites (Fig. 10). Group II kimberlites have unradiogenic Nd
("Nd �6.2 to �13.5) and radiogenic Sr isotope composition (0.70713 to 0.70983)
so that they plot in the ‘‘enriched’’ quadrant of the Nd–Sr isotope diagram. There
is general agreement that their source regions are an ancient and highly metaso-
matised sub-continental lithospheric mantle (e.g. Smith, 1983a; Fraser and
Hawkesworth, 1992; Mitchell, 1995a).

The term ‘transitional kimberlite’ was first introduced by Skinner et al. (1994)
on the basis of the intermediate Sr–Nd isotopic characteristics of some of the
kimberlites of the Prieska district of South Africa (Clarke et al., 1991). Subse-
quently, such ‘kimberlites’ have been recognized from the other cratons as well
such as those at Arkhangelsk, Russia (e.g. Mahotkin et al., 2000; Beard et al.,
2000), Alto Paranaiba, Brazil (e.g. Bizzi et al., 1994; Gibson et al., 1995),
Guaniamo, Venezuela (Kaminsky et al., 2003) and from the North West Territories
of Canada (Dowall et al., 2000) (Table 7 and Fig. 10). These magmas have been
variously explained as having been derived by some mixing or contamination
between Group I-like and other, much more enriched, sources which might reside
in the sub-continental lithospheric mantle (Clarke et al., 1991) or at greater depths
(Taylor et al., 1994).

In one of the first isotopic studies on lamproites, McCulloch et al. (1983)
have shown that the diamondiferous lamproites from the Fitzroy Trough of
Western Australia have low "Nd (�7.4 to �15.4; see Table 7) and high 87Sr=86Sri

0.7104 to 0.7187 indicating their derivation from ancient (>1 Ga), enriched (high
Rb=Sr, Nd=Sm) mantle sources. Thus, the Western Australian lamproites show a
closer similarity to Group II kimberlites (orangeites) than archetypal kimberlites
(e.g. Dawson, 1987). Both of them plot in the bottom right quadrant of the

Fig. 10. Initial 87Sr=86Sr versus epsilon Nd for kimberlites, lamproites and orangeites.
Data sources are Table 7 and those given by Gibson et al. (1995), Mahotkin et al. (2000)
and Chalapathi Rao et al. (2004). The asterisk shows the position of the Majhgawan pipe
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conventional "Nd versus 87Sr=86Sri plot (see Fig. 10). However, the Western
Australian lamproites have greater source enrichment ages (>1.2 Ga) than the
orangeites (<1.2 Ga; Smith et al., 1985; Tainton, 1992). Whereas orangeites of
southern Africa and lamproites of Western Australia form a continuum (Fig. 10),
lamproites from Smoky Butte (Montana) and Leucite Hills (Wyoming) show a
wide range in their "Nd values of �21.6 to �25.9 and �10.5 to �17.9 (Vollmer
et al., 1984; Fraser et al., 1985; Fig. 10). Most of the models on lamproite
genesis propose that the unusual isotopic characteristics of lamproites require
their sources evolved in isolation from the convecting mantle for long periods
of time and, therefore, subcontinental lithospheric metasomatised mantle is com-
monly suggested to be the most obvious source where such distinct isotopic
signatures evolve (e.g. Nelson et al., 1986; Mitchell and Bergman, 1991; Foley
et al., 1996). However, Murphy et al. (2002) have suggested that lamproites of
Gaussberg, Antarctica to be possible transition zone melts of Archaean subducted
sediments.

The initial "Nd value of zero ("Nd¼ 0.0) for the Majhgawan pipe can be
interpreted as resulting from a relatively undifferentiated chondritic mantle source
(Lehmann et al., 2002; Basu and Tatsumoto, 1979, 1980) or a source with slight
time integrated depletion of light rare earth elements (e.g. Kramers et al., 1981;
Smith, 1983a; le Roux, 1986). Thus, the initial 87Sr=86Sr and 143Nd=144Nd isotopic
compositions of the Majhgawan pipe (Table 7 and Fig. 10) have been inferred to be
similar do those of archetypal kimberlites (and some of the ‘transitional kimber-
lites’) but are clearly atypical of lamproites or orangeites.

Xenoliths and indicator minerals

The pipe consists of cognate (juveline lapilli or magmaclasts) as well as crustal
xenoliths (Mathur and Singh, 1971). Broken inclusions of Vindhyan rocks are
prevalent throughout they pipe and they include argillaceous limestone, black cherty
and greenish grey shale and quartz-arenite (Halder and Ghosh, 1978). Garnets are
typical wine red coloured pyropes and have high Cr2O3 contents of up to 13 wt%
with most of them ranging between 6 wt% to 7 wt% (Chatterjee and Rao, 1995).
Garnets also have high CaO contents varying from 3 wt% to 7 wt%. Sub-calcic
garnets are present in minor quantity (Scott-Smith, 1992). Based on Q-cluster
analysis of garnets recovered from tailings, G1, G2, G9, G10 and G11 varities
have been recognized (Mukherjee et al., 1997b). Mantle xenoliths are extremely
rare. Their rarity has been explained with the long residence time in the upper
mantle and slow travel time on the basis of resorption phenomenon observed in the
phlogopite and olivine megacrysts (Mukherjee et al., 1997b). Geothermometry and
oxygen barometry of the co-existing magnetite-ilmenite pair, based on Spencer and
Lindsley (1981) method, indicates a temperature of 1150 �C. The values of fO2,
temperature and pressure fall in the equilibrium field defined by iron-w€uustite and
w€uustite-magnetite and indicate a depth of sampling of about 155 km and corre-
sponding pressure of 46 kbar (Mukherjee et al., 1997a).

The paucity of mantle xenoliths in the Majhgawan pipe precludes direct infor-
mation about the petrological nature of the sub-continental mantle beneath the
Bundelkhand craton.
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Economic aspects

Majhgawan is the only diamondiferous pipe presently mined on a commercial
scale in India with an annual production of about 40 000 carats. The diamond
incidence in the Majhgawan pipe varies between 3 to 25 carats=100 tonnes with
an average of 10 to 12 carats=100 tonnes (Ghosh, 2002). It has been firmly estab-
lished that the average grade diamond yield is highest in the center (13 to 14 carats
pht) and lower in the periphery of the pipe (6 to 7 carats pht). The variation of
micro-diamond incidence is also consistent with the diamond grade (Chatterjee
and Rao, 1995). The largest yet recovered stone is 29.25 ct but above 10 ct stones
are seldom found. Majhgawan diamonds are of very high quality with 42% being
of gem quality, which is one of the highest in the world for rough diamonds. The
form of the Majhgawan diamonds is mostly a combination of octahedron and
dodecahedron; a large variety of them are predominantly curve-faced modified
forms indicating signs of resorption (Chatterjee and Rao, 1995).

The diamond content of the Majhgawan pipe is indistinguishable from that
of diamondiferous archetypal kimberlites, orangeites, lamproites and transitional
kimberlites.

Petrogenetic aspects

It is now well established that the geochemistry of the mafic potassic-ultrapotassic
magmas can be utilised to investigate the relative contribution of lithosphere,
upper- and deeper-mantle (convective) components in their genesis and also to
probe compositional variations in the sub-continental lithospheric mantle (e.g.
Gibson et al., 1995; Mahotkin et al., 2000; Beard et al., 1998, 2000). However, it
is important to assess the role of crustal contamination in order to constrain the
genesis of the Majhgawan pipe.

Role of crustal contamination

Evidence against crustal contamination and for a mantle derivation of the
Majhgawan pipe comes from the high abundances of incompatible trace elements
such as Sr (1043–1835 ppm), Nb (177–228 ppm) and Zr (755–1075 ppm), which
are much greater than in the continental crust. All the analysed rocks have
Mg=(MgþFe) ratios >0.70 and high Ni contents (1055–1455 ppm), which are
indicative of the ‘‘primitive’’ nature of the magma. Moreover, the major oxide
composition of the pipe rock shows low abundances of Al2O3 (2.53–6.07 wt%)
and Na2O (0.02–0.26 wt%) that cannot be accounted by crustal contamination. The
presence of diamond and xenocrysts also support its mantle derivation.

Geochemical data on the Vindhyan sediments is meagre but those available for
the Lower Vindhyan shales (Raza et al., 2002) suggest that they are much lower in
Zr (60–406 ppm), Nb (11–63 ppm), Sr (9–163 ppm) and Ni (10–138 ppm); they
therefore cannot account for the much higher values for these elements in the pipe.
The strongly LREE-enriched REE patterns (700–800�chondrites), absence of pos-
itive Eu anomalies and the low HREE and Y contents of the pipe rock pro-
vide further additional evidence against crustal contamination. Thus, it can be
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concluded that the major oxide, trace element and isotopic signatures of the
Majhgawan pipe are not affected significantly by crustal contamination but reflect
that of the melt source regions.

Nature of the mantle source and its metasomatic enrichment

Mantle xenoliths are either very rare or not reported from the Majhgawan pipe.
Hence, little information is available as to the nature of the mantle beneath this part
of the Vindhyan basin and the Bundelkhand craton. Nevertheless, the following
inferences can be drawn from the present study so as to constrain the petrogenesis
of the Majhgawan pipe:

1. As Majhgawan pipe is richly diamondiferous, the Proterozoic geothermal gradi-
ent beneath Bundelkhand craton must have passed through the diamond stability
field. Therefore, the source magma should have originated at a depth of at least
150 km.

2. The high TiO2 contents of the phenocrystal and macrocrystal phlogopites
could reflect the high titanium content of the parent magmas (e.g. Bachinskii
and Simpson, 1984) implying a Ti-enriched mantle source.

3. High Ba contents (i.e. presence of barite) also indicate that the source was
significantly enriched in barium. This barium was possibly contributed either
by Ba-rich phlogopite occurring as a stock-work within the mantle source
(Foley, 1992) or by a complex K–Ba phosphatic metasomatic mineral phase,
recognized in the 7 GPa near-solidus experimental studies of lamproites
(Mitchell, 1995c).

4. From the normalized multi-element plots (Fig. 9) it can be inferred (see above)
that phlogopite, apatite and clinopyroxene are the residual phases in the melt
sources.

5. The pipe rock is strongly LREE enriched and significantly depleted in HREE
(Fig. 8). It is now well established that such melts with high La=Yb ratios
(60–180) can be produced by very small (<1%) degrees of partial melting of a
phlogopite-garnet lherzolite (e.g. Mitchell and Brunfelt, 1975; Mitchell and
Bergman, 1991).

6. Furthermore, to generate such melts with high incompatible trace element and
LREE abundances it is also well known that such a mantle source must have
been previously metasomatically enriched (e.g. Menzies and Wass, 1983;
Vollmer and Norry, 1983).

7. Multi-element plots (Fig. 9) do not show any subduction-related characteristics,
such as large negative anomalies at Ta and Nb (e.g. Ellam et al., 1989; Peacock,
1990; Maury et al., 1992), and therefore, the source enrichment is attributed to
volatile and K-rich, extremely low-viscosity melts that leak continuously to
semi-continuously from the asthenosphere and accumulate in the overlying
lithosphere (e.g. McKenzie, 1989; Gibson et al., 1995; Wilson et al., 1995) rather
than by subduction-derived melts (e.g. Murphy et al., 2002).

8. There is no evidence from the available data to decide whether the composi-
tion of the metasomatising melt could be strictly silicic (e.g. McKenzie, 1985;
Watson et al., 1990) or carbonate (e.g. Eggler, 1987; Rudnick et al., 1993;
Dobson et al., 1996) in nature or both.
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9. The "Ndi values for the Majhgawan pipe can be interpreted as resulting from a
relatively undifferentiated chondritic mantle source (Lehmann et al., 2002) or a
source with very slight time-integrated depletion of light rare earth elements
(e.g. Kramers et al., 1981; Smith, 1983a; Le Roex, 1986).

10. Although the incompatible trace element contents (Zr, Nb etc.) of the
Majhgawan pipe are highly enriched, the initial "Ndi values are nearer to the
Bulk Earth values (Fig. 10) suggesting that the source metasomatism was
relatively recent prior to melting. The Sr and Nd systematics of Majhgawan
pipe also reveal that it has archetypal kimberlite-like isotope signature and that
its source region has not experienced ancient enrichment event(s) that are
characteristic of orangeite or lamproite mantle sources.

Depth of melting: lithosphere versus asthenosphere

Despite a great deal of research, the role of the convecting mantle in kimberlite
genesis is a highly contentious issue. The slightly depleted source region of Group
I kimberlites, relative to Bulk Silicate Earth, was widely suggested as an evidence
for their asthenospheric origin as their isotopic signatures are similar to those of
most ocean island basalts (e.g. Smith, 1983a; le Roux, 1986; Mitchell, 1995a). The
presence of syngenetic inclusions of majoritic garnets within diamonds (Moore
et al., 1991) and ultra-deep (>400 km) xenoliths in some southern African kimber-
lites with ocean-island basalt (OIB)-like isotopic signature, i.e., Group I kimber-
lites, led some workers to suggest that they were derived from a ‘transition zone’
source (e.g. Ringwood et al., 1992) or even from the core-mantle boundary (e.g.
Haggerty, 1994, 1999). Broad similarities in major elemental compositions and
trace element abundance patterns between Group I and II kimberlites (orangeites)
led Skinner (1989) to suggest that both of them may have been generated from
different domains of the sub-continental lithospheric mantle with volatile input
from the asthenosphere.

Tainton and McKenzie (1994) have proposed that the REE patterns of the Group
I and II kimberlites and lamproites require a three stage melting model involving (i)
a lithospheric peridotite source depleted by melt extraction of �20% in the garnet
stability field, (ii) metasomatic enrichment with a MORB type melt and (iii) small
fraction melting of this depleted harzburgitic source. Thus, the REE modelling of
Tainton and McKenzie (1994) deduced that the kimberlite component derived from a
convecting mantle (the precursor small fraction highly metasomatised melts) were
extracted from a depleted continental lithospheric mantle. Similar results were
obtained from the REE modelling studies on Proterozoic archetypal kimberlites
and lamproites of southern India (Chalapathi Rao et al., 2004).

However, Nowell et al. (2004), based on the Hf isotope systematics of Group I
kimberlites and orangeites of southern Africa, prefer that sources for both are sub-
lithospheric. The likely reservoir is an ancient, deeply subducted oceanic basalt
that became incorporated into the kimberlite=orangeite source region to varying
degrees.

The role of (i) depleted lithospheric peridotite (e.g. high Mg number, high Ni,
low HREE), (ii) enrichment (e.g. high LREE, high incompatible trace elemental
abundances) of this already depleted source by metasomatising fluids from
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sub-lithospheric source region and (iii) subsequent small-fraction melting are
undoubtedly evident in the genesis of the Majhgawan pipe, as concluded by
many workers for potassic-ultrapotassic rock types elsewhere (e.g. Tainton and
McKenzie, 1994; Le Roex et al., 2003; Chalapathi Rao et al., 2004). The lack of any
perceptible igneous activity in the Vindhyan sediments (see Anil Kumar et al.,
2001b and the references therein), apart from the Majhgawan and Hinota pipes
and some minor volcanics plugs at Angor (Nane, 1971) and Banda (Hukku,
1971), negates extensive mantle melting and do not favour a plume to be the
causative factor for the genesis of the Majhgawan pipe. Moreover, comprehensive
sedimentalogical studies carried out over the years strongly favour the formation of
the Vindhyan basin largely through rift-controlled subsidence under extensional
regime (Bhattacharya, 1996 and the references therein). Therefore, it appears that
extension, rather than decompression melting induced by a plume, seems to have
been responsible for the melting of the Majhgawan pipe source region. The avail-
able evidence is insufficient to speculate about a more unifying petrogenetic model
for the genesis of Majhgawan pipe. It can, therefore, be concluded that the petro-
genesis of the Majhjgawan pipe is indistinguishable from that of other similar
potassic ‘metasomatised mantle magmas’ viz., kimberlite, orangeite and lamproite
without having any strong affinity to a particular clan=group amongst them.

Discussion

It has been inferred in this study that the Majhgawan pipe is not a typical (sensu
stricto) kimberlite or lamproite or orangeite, as suggested elsewhere (e.g. Paul,
1991; Scott-Smith, 1989; Ravi Shankar et al., 2001, 2002), but constitutes a transi-
tional mafic potassic-ultrapotassic rock type which shares common characteristics
of all three rock types. Hence, the Majhgawan pipe is suggested to represent a
transitional kimberlite-orangeite (Group II kimberlite)-lamproite rock type.

Such transitional rocks, as already discussed before, are not unique but have
also been recorded elsewhere e.g. from the Kaapvaal craton in southern Africa
(Clarke et al., 1991; Skinner et al., 1994), the Koidu province in West Africa
(Taylor et al., 1994), the Arkhangelsk region on the Kola-Kuloi craton in Russia
(Parasdanyan et al., 1996; Beard et al., 2000; Mahotkin et al., 2000), the Sao
Fransisco craton in Brazil (Bizzi et al., 1994; Gibson et al., 1995), the Kimberley
craton in N.W. Australia (Edwards et al., 1992), the Singhbum craton in NE India
(e.g. Middlemost et al., 1988; Kent et al., 1998a, b), the NW Territories in Canada
(Dowall et al., 2000) and the Guyana craton in Venezuela (Nixon et al., 1992;
Kaminksy et al., 2003). However, the most striking aspect is their occurrence in
almost every craton with their emplacement age ranging from the Proterozoic to
the Mesozoic thereby implying their universal occurrence in space as well as time.

The current understanding of kimberlites and orangeites has been strongly
influenced by studies on similar rocks from South Africa. Most of these studies
on these exotic rock types, as available in the literature, invariably tend to fit them
in the Southern African model of Group I and II kimberlites. However, as pointed
out by Edwards et al. (1992) it appears that the correlations between kimberlite
petrography (micaceous vs non-micaceous) and isotope types (Group I vs Group
II), as shown by Smith (1983a), indeed, may not always be valid outside southern
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Africa. In fact, Mitchell (1995a) argued that orangeite (Group II kimberlite) mag-
matism is unique to the Kaapvaal craton of southern Africa and it was initiated by
thermal events related to the mantle plumes associated with the rifting of the South
Atlantic and formation of the Karroo basalts.

This study supports the main conclusion of Mitchell (1995a) that the archetypal
orangeites are confined only to southern Africa and that they are the products of
unique metasomatism affecting the Kaapvaal craton. Nevertheless, it is also increas-
ingly becoming clear that there is undoubted convergence in the mineralogical and
geochemical traits of kimberlite, orangeite and lamproite in various cratons, as
demonstrated above, in the form of transitional potassic-ultrapotassic rock types.

The recognition of such convergence amongst these exotic rock types is not
new, but was voiced by many a worker in the past decade or more. For example,
based on the similarities in geochemistry and mineralogy between orangeites and
olivine lamproites, Dawson (1987) suggested that both could be members of the
same clan (see also Nixon, 1996). Likewise, the Nd–Sr–Pb isotopic similarity
between orangeites and olivine lamproites from Prairie Creek (Kansas, U.S.A.)
and West Kimberley (Western Australia) prompted Smith (1983b) to opine that
they are one and the same. A similar conclusion was drawn by Tainton (1992)
from his detailed work on the Barkley West district orangeites and lamproites of
South Africa. Rock (1991) placed kimberlites, orangeites, lamproites and lampro-
phyres in his ‘lamprophyre clan’. In fact, Scott-Smith (1995) went on to suggest
that all potassic magmas might be considered as a broad group termed ‘Metaso-
matised Mantle Magmas (MMM)’.

On the other hand, the I.U.G.S. sub-commission on the systematics of igneous
rock classification (Woolley et al., 1996) has endorsed the view, mainly on the basis
of petrological grounds, that kimberlite, lamproite and orangeite constitute separate
rock types. However the recommendations of the I.U.G.S. are clearly inadequate,
as shown in this work, when dealing with the nomenclature of transitional mafic
potassic ultrapotassic rock types.

It is well established that the nomenclature of mafic potassic-ultrapotassic rocks
is an extremely important aspect as it dictates the diamond exploration=exploita-
tion models (Mitchell, 1991, 1994, 1995b) and also as it imparts regional
(tectonic) significance by revealing ancient enrichment and depletion event(s)
experienced by the underlying sub-continental lithospheric mantle. In view of this
significance, the name majhgawanite is proposed – taking into consideration the
antiquity of the Majhgawan pipe, its intriguing petrological, geochemical and iso-
tope characteristics and also on the basis of the legacy of India for introducing
diamond to the world-to designate all such transitional mafic potassic-ultrapotassic
rock types. This also would serve to distinguish them from typical kimberlite or
lamproite or orangeite. It may be recalled that in case of alkaline rocks even though
most of the modern researchers are defiant to nomenclature of new rock types ‘the
introduction of new names is entirely legitimate if a clan or suite of rocks is
demonstrably genetically different to rocks belonging to other clans’ (Mitchell,
1995a, p. 379). The arguments presented in this paper, certainly present a strong
support for such a proposal.

As a primary source, Majhgawan pipe (and its satellite body at Hinota) is
grossly inadequate to account for the incidence of diamonds in the Panna area.
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However, no other primary sources were discovered in the area so far by the
Geological Survey of India despite extensive geophysical and geochemical surveys
performed since decades (Mitra, 1996). The possibility of the presence of ‘‘transi-
tional’’ hitherto undiscovered pipe rocks in the Panna area (within the Vindhyan
basin) could be responsible for the previously unsuccessful geophysical=
geochemical exploration. As rightly remarked by Haggerty (2003) ‘‘nontraditional
rocks need nontraditional exploration techniques, a lamproite lesson well learned’’.
Therefore, future exploration models for diamond should contemplate these
aspects in the successful search for their primary host rocks.

Conclusions

1. The Mesoproterozoic diamondiferous Majhgawan pipe of central India shares
petrological, geochemical and isotope characteristics of kimberlite, orangeite
(Group II kimberlite) and lamproite. Its Nd isotope signature is atypical of
lamproite and orangeite; mineralogical aspects are similar to those of lamproite
and orangeite and geochemically it is akin to that of kimberlite as well as
lamproite. Hence, it is suggested that the Majhgawan pipe represents a transi-
tional kimberlite-orangeite (Group II kimberlite)-lamproite rock type.

2. This study demonstrates the existence of such transitional varieties of mafic
potassic-ultrapotassic rocks, recorded elsewhere, even in this part of Gondwana.
The name majhgawanite is proposed to encompass all such transitional rock
types to distinguish them from archetypal kimberlite, lamproite and orangeite
(Group II kimberlite).

3. Since most of the transitional varities of mafic potassic-ultrapotassic rocks are
highly diamondiferous, majhgawanite constitutes yet another known primary
source for diamonds besides kimberlite, lamproite and orangeite.

4. The recommendations of the I.U.G.S. sub-committee on kimberlite, orangeite
and lamproite rock nomenclature (Woolley et al., 1996) are clearly inadequate,
as shown in this work, when dealing with the petrological and geochemical
aspects of transitional mafic potassic-ultrapotassic rocks.

5. The correlation between kimberlite petrography, chemistry and isotope charac-
teristics (viz., Group I and II), as established in southern Africa, may not be
necessarily valid elsewhere and therefore any attempt to characterize the mafic
potassic-ultrapotassic alkaline rocks on this basis alone would not be successful.

6. Detailed petrological, geochemical and isotopic aspects of mafic potassic-ultra-
potassic alkaline rocks need to be considered in unison before assigning any
name, as the nomenclature of such exotic and rare rock types assumes economic
and tectono-magmatic significance.
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