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Abstract
Exine, this complex sporopollenin-containing and highly variable among taxa envelope of the male gametophyte, consists 
of two layers, ectexine and endexine. We traced in detail the pollen wall development in Lysimachia vulgaris (Primulaceae), 
with emphasis on driving forces and critical ontogenetic time. By observation on the sequence of the emergent patterns and 
by analysis of their substructure with TEM, we intended to clarify the obvious and not-obvious ways of exine construction and 
to find out the common features in pattern development in other representatives in living nature. The ectexine and endexine 
ontogeny follows the main stages observed in many other species: first, the appearance of microspore plasma membrane 
invaginations with isotropic contents within, changed later to anisotropic state; then successive appearance of spherical, 
rod-like, and lamellate units in the periplasmic space. The lamellate endexine appears unusually early in the exine develop-
ment. All these elements and their aggregations are manifestation of well-known physical phenomena: phase separation and 
micellar self-assembly. A consideration of similar surface patterns in very remote taxa suggests the participation in their 
development of some general nature phenomena as the lows of space-filling operations.

Keywords Underlying mechanisms of morphogenesis · Pollen wall development · Substructure · Phase separation · Self-
assembly · Lysimachia vulgaris

Introduction

Pollen wall, this complex male gametophyte envelope, 
gives us a rare possibility to study pattern formation 
and the key for the pollen morphological diversity in the 
frames of a single cell. Heslop-Harrison (1972) astutely 
called pollen ontogeny “morphogenesis in miniature.” 
Exine, sporopollenin-containing outer part of the enve-
lope, develops in the periplasmic space, between the 
microspore plasma membrane and callose envelope. The 
periplasmic space is still absent at the early tetrad stage, 
gradually increasing in the course of exine development, 
as the constructive substances appear beyond the plasma 
membrane. The precise chemical composition of sub-
stances, located inside the microspore periplasmic space, 
is species-specific and difficult to be determined, but the 
classes of chemical substances—complex polysaccharides, 

most probably glycoproteins and lipopolysaccharides—
were tested histochemically (Rowley 1973; Pettitt and 
Jermy 1974; Rowley and Dahl 1977; Pettitt 1979). These 
substances, their concentrations, and sporopollenin pre-
cursors, monomers and regulatory mechanisms, are deter-
mined by genome (Herminghaus et al. 1988; Gubatz and 
Wiermann 1992; Wiermann and Gubatz 1992; Collinson 
et al. 1993; Wilmesmeier and Wiermann 1997; Van Ber-
gen et al. 2004; Hemsley et al. 1996a; Wilmesmeier and 
Wiermann 1997; Grienenberger et al. 2010; Wang et al. 
2013; Quilichini et al. 2015; Li et al. 2019; Hou et al. 
2023) which are delivered into the periplasmic space at the 
definite ontogenetic time. All these substances are surface 
active (surfactants) and are capable to form colloidal solu-
tions in the periplasmic space.

Many works and some reviews have shown many genes 
playing a role in the establishment of the exine (e.g., Arii-
zumi and Toriyama (2011); Dobritsa et al. (2011); Shi 
et al. (2015); Wang and Dobritsa (2018); Xiong et al. 
(2020); Liu and Wang (2021); Xu et al. (2022); Zhou and 
Dobritsa (2023); Suh et al. (2024)). But in which way all 
these constructive substances are arranged into different 
intricate patterns of pollen and spore envelopes? Mixtures 
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of components should undergo some transformations to 
be integrated and to form finally 3D heterogeneous pat-
terns such as pollen walls.

Here, we find ourselves in the physical–chemical field 
of space-filling operations. Wodehouse (1935) was the 
first palynologist who understood this. But even earlier, 
Thompson (1917), a physicist, mathematician, and biolo-
gist, pointed out that different microarchitecture patterns 
in nature (e.g., Foraminifera and Heliozoa skeletons, 
diatomeae frustules, beetle elytrons, surfaces of seeds, 
spores and pollen walls) are formed by physical forces, 
such as structure-forming mechanisms, e.g., self-assem-
bly. This idea was picked up and developed by biologists, 
physicists, and mathematicians (Heslop-Harrison 1972; 
Mandelbrot 1982; Dickinson and Sheldon 1986; Newman 
and Comper 1990; Newman and Forgacs 2009; Kauffman 
1993; Ingber 1993; Scott 1994; Kurakin 2005; Black-
more et al. 2007, 2010; Benítez 2013; Lintilhac 2014; 
Stillman and Mayor 2023). Heslop-Harrison (1972) 
mentioned that genomic control must work at strategic 
points in development, then physical processes similar to 
crystallization must do the rest of work to complete the 
space-filling operation. Physicists and mathematicians 
occurred to be more inquisitive than biologists, looked 
to the neighboring discipline (biology, palynology) and 
concluded that there was no sense for nature to overload 
genetic code with huge information where simple physi-
cal mechanisms, working in tandem with genome, were 
capable to do the constructive work (Mandelbrot 1982; 
Kauffman 1993).

In the case of pollen wall development, colloidal systems 
of the surface-active exine constructive substances in the 
microspore periplasmic space are capable to micellar self-
assembly where hydrophobic interactions play the main 
role. The importance of looking through colloidal chemis-
try “window” was suggested in some papers (Hemsley et al. 
1992; Collinson et al. 1993; Gabarayeva 1993; Gabarayeva 
and Hemsley 2006; Hemsley and Gabarayeva 2007).

Primexine, a blue-print stage, bearing all the main 
features of the future mature exine, is far not being an 
ephemeral structure, existing only for a short period of 
time. It was shown in a series of destruction experiments 
with exines in several species that after sporopollenin 
precursor accumulation, the primexine matrix (glycoca-
lyx) occurred embedded and gradually sealed into sporo-
pollenin, preserved in mature pollen/spore walls, and its 
proteins and polysaccharides can be revealed again after 
severe oxidation of sporopollenin (Rowley and Prijanto 
1977). Such experimental destruction of exines with 
severe damaging properties—chemical and physical—
has shown unexpectedly that secondary sporopollenin, 

accumulated in the free microspore period, is more vul-
nerable to oxidation and physical destruction than initial 
constructive substances of primexine (complex polysac-
charides, probably glycoproteins and lipopolysaccha-
rides), sealed into primary sporopollenin, accumulated in 
the end of the tetrad period (Rowley and Prijanto 1977).

All the microstructures observed in mature sporoderm 
(granules, rod-like columellae, hexagonally packed into 
layers, and lamellae with central “white lines”) represent 
the history of their formation as the micellar progressing 
sequence (spherical micelles, their columns, arranged into 
cylindrical micelles, bilayers with central gap), immortal-
ized by sporopollenin as “stiffened history” (Gabarayeva 
et al. 2020). The idea about micellar self-assembly as the 
driving force of exine emergence came from the obser-
vation on the coincidence of exine developmental stages 
with micellar self-assembling stages (mesophases) in 
colloidal systems, subject to increasing concentrations of 
ingredients (Gabarayeva and Hemsley 2006; Hemsley and 
Gabarayeva 2007; see also English abstract in Gabarayeva 
and Hemsley (2010)).

Lavrentovich et al. (2016) suggested that the diversity 
of exine patterns could be explained by phase transitions 
to spatially modulated phases. These authors proposed a 
general theory for surface patterning in many different bio-
logical systems, including mite and insect cuticles, pollen 
grains, fungal spores, and insect eggs. This theory extends 
Brazovskii’s (1975) ideas on such transitions on a flat, infi-
nite sheet to transitions on spheres (including most of pol-
len grains). Lavrentovich et al. (2016) also showed that the 
membrane undulations (the common feature of the micro-
spore plasma membrane at the tetrad stage in any species) 
are a function of physical parameters. Further development 
of these ideas was carried out in the next theory of this 
group (Radja et al. 2019).

The confirmation of these ideas came from modelling 
artificial exines in vitro, first simulated by the floccu-
lation of polystyrene particles (Hemsley et al. 1996b, 
1998, 2003; Hemsley and Griffiths 2000; Griffiths and 
Hemsley 2002; Moore et al. 2009), then via mixed col-
loidal systems with anther-like medium components 
(Gabarayeva and Grigorjeva 2016, 2017; Gabarayeva 
et  al. 2019) and by computer modelling (Radja et  al. 
2019). The final joint conclusion was that both physi-
cal–chemical processes—phase separation and micelle 
self-assembly—dominate in the course of the exine 
development and carry out the ultimate 3D microarchitec-
tural pattern of exines, following genomic control under 
chemical composition of the exines’ building substances 
(Gabarayeva et al. 2020).



Mechanisms of pollen wall development in Lysimachia vulgaris  

Thus, this is exactly the primexine template at the middle 
tetrad stage that defines the final structure of mature exines. 
The key role of the tetrad stage in exine development was 
emphasized many times earlier, e.g., in numerous studies of 
Rowley (see his full list of papers in Blackmore and Skvarla 
2012), followed by other investigations (Taylor and Osborn 
2006; Blackmore et al. 2007, 2010; Galati et al. 2012; Taylor 
et al. 2013, 2015; 2018; Zini et al. 2017) and in recent stud-
ies (Wang and Dobritsa 2018; Wang et al. 2021).

Pollen grains in Lysimachia vulgaris is 3-colporate, 
with reticulate sculpture. There are some works on Lysi-
machia pollen morphology (Nowicke and Skvarla 1977; 
Wrońska-Pilarek and Morozowska 2009; Yang et al. 2012; 
Odabaşi 2021). However, we have not found any studies 
on pollen wall development of the representatives of the 
genus Lysimachia; besides, some our previous tests on 
the species have shown the unusually early start of the 
endexine development, what was the reasons for choosing 
this species for this study.

Our goal in this work is to clarify the underlying devel-
opmental mechanisms of L. vulgaris pollen wall develop-
ment. We are going to reveal the complete sequence of 
processes leading to the appearance of exine pattern in 
this species with TEM and SEM methods. We also want 
to determine the most critical time in Lysimachia exine 
development and to compare our findings with those of 
earlier ontogenetic studies in other taxa, and also to deter-
mine whether our hypothesis on the role of physical pro-
cesses in spore and pollen wall development also applies 
in Lysimachia vulgaris.

Material and methods

Flower buds at different developmental stages of Lysi-
machia vulgaris L. (Primulaceae) were obtained from 
the Botanical Gargen of Komarov Botanical Institute, 
St. Petersburg, during the seasons of 2022–2023 years, 
40 buds every year—to catch most of the developmental 
stages. Fragments of stamens were placed in 2.5% glu-
taraldehyde in 0.1 M cacodylate buffer, pH 7.2, de-aer-
ated and fixed overnight at 4 °C. The samples were then 
rinsed in cacodylate buffer, postfixed with 1% OsO4 for 
2 h at room temperature, rinsed in distilled water, and 
dehydrated through a graded ethanol series, embedded 
in Epon-acetone mixture overnight and put in pure Epon 
(Epon-medium, DDSA, MNA, DMP-30 mixture). The 
material was kept in Epon for a day at room temperature 
and then for 2 days at 62 °C. Sectioning was carried out 
using an LKB instrument. Ultrathin sections were con-
trasted with 1% aquatic solution of uranyl acetate and 
0.2% lead citrate and examined with a Libra 120 plus 
TEM instrument.

For scanning electron microscopy (SEM), pollen 
samples of L. vulgaris from opened flowers were col-
lected and air dried. Dry specimens were attached to a 
SEM stub by double-sided stick tape, then were coated 
with gold/palladium fusion at vacuum. Specimens were 
observed with a JEOL JSM-6390 instrument in the Core 
Facility ‘Cellular and Molecular Technologies in Plant 
Science’ of the Komarov Botanical Institute of RAS 
(Saint Petersburg).

Results

Meiosis

Well-pronounced synaptonemal complexes with central ele-
ments are observed in the nuclei of microspore mother cells 
at the pachytene stage of prophase I (Fig. 1a, b, arrows). 
The nuclei envelopes are still preserved. Meiocytes are sur-
rounded with a thick callose envelope.

After the completion of meiosis, two types of cytokine-
sis are evident. Simultaneous cytokinesis is initiated with 
the appearance of the rows of small vacuoles (Fig. 1c, 
asterisks), their membranes fuse later with each other, 
forming the plasma membrane of the tetrad’s microspores. 

Fig. 1  Prophase I of meiosis (pachytene stage) and two types of 
cytokinesis in Lysimachia vulgaris L. a, b Microspore mother cells 
(MMC) with synaptonemal complexes (arrows). c Initiation of simul-
taneous cytokinesis by the appearance and further fusion of small 
vacuoles (asterisks). d Successive types of cytokinesis, which is 
carried out by furrowing (arrowhead). Ca callose, Dy dyad, MMC 
microspore mother cell, N nucleus, Nu nucleolus. Scale bars: a, c 
2 µm; b 5 µm, d 1 µm
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However, successive cytokinesis is also observed, bringing 
about the appearance of dyads (Fig. 1d), the latter form 
tetrads by furrowing (Figs. 1c and 2a, arrowheads).

Tetrad stages

Young tetrad stage

A young tetrad (Fig. 2b) is surrounded with a thick callose 
envelope. Initially even, the plasma membrane starts to 
form small invaginations (Fig. 2c, arrowheads). A bit later, 
first signs of phase separation are observed as anisotropic 
distribution of substances in the medium inside the plasma 
membrane invaginations and the callose envelope (Fig. 2d, 
asterisks). Somewhat later phase separation is more promi-
nent (Fig. 2e, f, arrowheads).

Further changes have place in the aperture sites: in the 
periplasmic space, inside plasma membrane invagina-
tions (Fig. 2g, arrows), thin lamella-like formations appear 
(Fig. 2h, arrowhead), simultaneously with some other mem-
brane-like structures (Fig. 2h, asterisk). These structures are 
nothing but initial steps of the endexine formation.

Middle tetrad stage

This stage is a key one in the rest of pollen wall develop-
ment. The intensive process of plasma membrane invagi-
nation continues alongside the whole microspore surface 
(Fig. 3a, arrowheads). Spherical units—micelles—are seen 
separately (Fig. 3b, arrowheads), in groups, and in strings 
(Fig. 3c, arrowheads) in the microspore periplasmic space. 
Somewhat later, columella-like pattern is observed, consist-
ing of string-like thin pro-columellae (Fig. 3d, e, arrow-
heads). Higher magnification shows more details of these 
pro-columellae (Fig. 3f, arrowheads) and initial tectum 
(PT); some pro-columellae show clear spiral substructure 
(Fig. 3f, double arrowheads).

Late tetrad stage

After initial sporopollenin accumulation on the primex-
ine, the structure of the future exine is defined (Fig. 4a). 
Young tectum, columellae, and the foot layer are evident. 
The spiral substructure of columellae is well-pronounced 
(Fig. 4a, arrowheads). Note distinct signs of phase separa-
tion inside plasma membrane invaginations (Fig. 4a, aster-
isks – condensed subvolume, stars – depleted subvolume). 
These sites correspond to lacunae of the reticulate exine 
pattern.

The inner, locular sides of the tapetal cells, being cov-
ered with pro-orbicules at the previous middle tetrad stage 
(Fig. 4b, arrows), bear actually mature orbicules at the late 
tetrad stage (Fig. 4c, arrows).

Disintegrating tetrads and early free microspores

At the early free microspore stage, orbicules keep their loca-
tion around the tapetal cells (Fig. 4d, arrowheads). Some-
what later, the tapetal cells start to degenerate, but orbicules 
appear intact, probably saved by the peritapetal membrane 
(Fig. 4e, arrowheads).

The overviews (Fig. 5a, b) show the tetrad on the point 
of disintegration (Fig. 5a) and the tetrads with remnants of 
callose envelope (Fig. 5b).

Young free microspores have well-developed lamellae of 
the endexine in the aperture sites (Fig. 5c, arrows), which 
were initiated as early as at the young tetrad stage. At this 
stage, the endexine is observed in the aperture sites only, 
whereas later, at the beginning of the vacuolation stage, 
the endexine is present over the whole microspore surface 
(Fig. 5d, asterisks). In further development, the central vacu-
ole increases in size (Fig. 6a, b), displacing the cytoplasm 
with all its organelles apart.

Mature pollen grains

After microspore mitosis two-celled pollen grains appear, 
with vegetative and generative cells (Fig. 6c, d). The intine 
develops at the aperture sites (Fig.  6e). Note (increas-
ing magnification in Fig. 6e) that lamellae of the endex-
ine are intermixed with intine in aperture sites. Multiple 
starch grains crowd in the cytoplasm of the vegetative cell 
(Fig. 6c–f). No orbicules are seen around pollen grains; 
they evidently persist in the forming peritapetal membrane. 
Instead, portions of pollenkitt are observed sticking to the 
surface of pollen grains (Fig. 6f, asterisks).

Fig. 2  Successive cytokinesis and young tetrad stage in Lysimachia 
vulgaris. a Formation of dyads by furrowing (arrowheads). b Early 
tetrads, surrounded by thick callose envelope. c Slightly later stage, 
the microspore plasma membrane is invaginated. d Invaginations 
are more pronounced (asterisks), note anisotropic contents inside 
invaginations. e, f Well-pronounced phase separation of the contents 
inside invaginations (arrowheads). g Aperture sites in the tetrad 
microspores. Note the initial endexine lamellae (laminate micelles—
arrows). h Higher magnification shows initial endexine lamella 
(arrowhead) and other different microstructures inside invaginations 
(asterisk). Ca callose, MC microspore cytoplasm, N nucleus, Tet tet-
rad. Scale bars: a, g 1 µm; b 5 µm, c–f, h 0.5 µm

◂
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Fig. 3  Middle tetrad stage in Lysimachia vulgaris. a Overview of a 
tetrad. Small invaginations are evident alongside the microspore 
surface (arrowheads); thin endexine lamellae is seen in the aperture 
site (asterisk). b, c Nanostructures as spherical micelles (b) and their 
arrangement into columns and strings (c) are observed in the peri-
plasmic space (arrowheads). d, e Pro-columellae, based on columns 
of spherical micelles, show clearly their string-like form (arrow-

heads). f Higher magnification reveals more distinctly the substruc-
ture of pro-columellae (arrowheads). Note that some pro-columellae 
have clearly spiral substructure (double arrowheads). Ca callose, MC 
microspore cytoplasm, N nucleus, Nu nucleolus, PM plasma mem-
brane, PT protectum, PS periplasmic space, Tet tetrad. Scale bars: a 
2 µm; b, c, d, f: 0.2 µm, e 0.5 µm
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SEM images in Fig. 7 show pollen grains in polar view 
(Fig. 7a) and in equatorial view, where intermixed intine 
protrudes through apertures (Fig. 7b). The surface view 
shows the character reticulate sculpture with heads of atec-
tate columellae on the bottoms of lacunae (Fig. 7c).

Discussion

It is clear from our results that the exine formation in Lysi-
machia vulgaris proceeds according to already well-known 
way: after genomic control under synthesis and delivery of 
the species-specific building substances to the microspore 
periplasmic space at the tetrad period, the constructive 
processes of the exine are triggered off by physical forces 
(Gabarayeva et al. 2009a, b, 2023, 2024; Gabarayeva 2023): 
first, phase separation acts, changing isotropic contents in 
the microspore periplasmic space to anisotropic (condensed 
and dilute regions appear inside plasma membrane invagi-
nations), then the sequence of self-assembling micellar 
structures unfolds, starting with spherical micelles and their 
strings. Later at the middle tetrad stage, distinct columellate 
pattern is seen which still bears clear signs of columns of 
spherical micelles. First signs of the apertures appear at the 
young tetrad stage.

The probable mechanism of apertures’ localization 
was shown with the model plant Arabidopsis (Dobritsa 
and Coerper 2012; Dobritsa et al. 2018; see also a review 
(Albert et al. 2022)). However, an unusual feature in Lysi-
machia is the ontogenetic time of the endexine forma-
tion: first signs of the endexine appear in the aperture 
sites strikingly early in exine ontogeny, when the aperture 
sites start to be evident at the young tetrad stage. Inside 
plasma membrane invaginations, building blocks as short 
membranous fragments, circles and strings, with one large 
lamina appear, corresponding to laminate micella (and 
its precursors). This laminate micella is the base for the 
future first lamella of the endexine. Later in development, 
the number of lamellae increases, and up to the end of 
the tetrad period the lamellate endexine is well-developed 
and consists of 5–6 lamellae, separated in aperture sites 
but fused between the apertures. The usual ontogenetic 
time of the endexine appearance for most angiosperms is 
the young post-tetrad period. But exclusions always exist: 
for example, such near-basal angiosperms as Magnolia 
species, where the endexine lamellae form at the transi-
tion from the late tetrad stage to early free microspore 
(Gabarayeva and Grigorjeva 2012, Fig. 9) or one of the 
basal (or next to basal) angiosperms, Victoria (Nymphae-
ales), where the endexine lamellae appear at the late tetrad 
stage (Taylor et al. 2013). In gymnosperms, the endexine 

develops also at the late tetrad stage (Juniperus and Larix: 
Gabarayeva et al. 2014; Gabarayeva and Grigorjeva 2017).

New wave of phase separation evidently proceeds in 
the periplasmic space at the late tetrad stage, followed by 
the appearance of the order-interval pattern of the concen-
trated-diluted regions. This pattern was called “Golden 
Gates” (Wang et al. 2021) because of similarity with the 
eponymous bridge. In 3D projection, this pattern deter-
mines the future reticulate sculpture of the pollen grains, 
where diluted areas correspond to lacunae of the reticu-
lum. Figure 4a is expressive of many substructural spiral 
elements, described first by Rowley as fundamental exine 
units—tufts (Rowley 1990) and later considered being 
tightly packed cylindrical micelles, arranged to bundles/
tufts (Gabarayeva and Hemsley 2006).

Another unusual feature of L. vulgaris is the early for-
mation of orbicules (Ubish bodies) in the tetrad period. 
Pro-orbicules appear alongside the tapetal cells at the mid-
dle tetrad stage and are seen mature at the late tetrad stage. 
However, orbicules are not observed around mature pollen 
grains; they most probably remain incrusted into the peri-
tapetal membrane.

There are many well-known examples of self-assem-
bling processes in living and non-living nature. One of 
such examples is a striking similarity between the sur-
face patterns of pollen exines and spores of myxomycete 
(Eukaryota, phylum Amoebozoa). These ancient organ-
isms, slime molds, are classified as Protista—neither 
plants, animals, nor fungi normally take the form of 
amoeba but also develop fruit bodies that release spores. It 
is enough to look at pictures from the papers on myxomy-
cete spore wall development (Mims 1972; Aldrich 1974) 
and ornamentation (García-Cunchillos et al. 2021) to be 
puzzled by similarity between spore/pollen sculpture of 
these very remote taxa. It is difficult to suspect these two 
taxa in genomic similarity; however, every palynologist 
would immediately recognize a certain pollen taxon, the 
pattern of which is similar to the pattern of some myxomy-
cete spores (compare, e.g., ridged hexagonal spore surface 
pattern in Fig. 56 from García-Cunchillos et al. 2021 with 
that of pollen in Scorzonera hispanica – see Blackmore 
and Claugher (1987)). This phenomenon is, in essence, 
not surprising; it is in accordance with the laws of nature, 
with general rules of space-filling operation. Moreover, 
the plasma membrane undulations are observed in myxo-
mycete spore wall development (Fig. 17 in Aldrich 1974) 
as it is in microspore wall development.

It is highly probable that another physical mechanism—
tensegrity—participates to the formation of plasma mem-
brane undulations, producing compression membrane wrin-
kles and spontaneously contracting malleable extra-cellular 
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gel—glycocalyx (Ingber 1993, 2003). In the case of micro-
spore development, tensegrity mechanism could produce a 
deeply, periodically invaginated cell surface, with periodi-
cally contracted, wrinkled glycocalyx.

Refrains (iterations) are characteristic for most features in 
biological variety and have the universal character in nature 
(Meyen 1984; Pozhidaev 1993, 1995, 1998, 2000, 2002; 
Chaikovsky 2018; Pozhidaev and Petrova 2023).

The data on other species have shown that the underlying 
mechanisms of exine development are general (Gabarayeva 
et al. 2024).

Two types of cytokinesis

Though the type of post-meiotic cytokinesis is accepted as 
a marker for a species and more higher taxa (see, e.g., a 
review (Albert et al. 2022)), the simultaneous presence of 
two types of meiotic cytokinesis—successive and simul-
taneous—in Lysimachia vulgaris is not a single case: the 
same phenomenon is observed, for instance, in Cymbalaria 
muralis (Polevova et al. 2023). In general, many variations 
are observed in the course of cytokinesis in a wide range of 

Fig. 4  Late tetrad stage in Lysimachia vulgaris pollen wall and tape-
tum development. a Proximal side of two adjacent microspores of a 
tetrad. After initial sporopollenin accumulation tectum, columellae 
and foot layer of exine are evident. The substructure of the develop-
ing exine reveals spiral nature of young columellae, based on twisted 
cylindrical micelles (arrowheads). Signs of phase separation—con-
centrated (asterisks) and depleted (stars) areas in places of the for-
mer plasma membrane invaginations—are distinct. b Tapetal cells 
at the middle tetrad stage. Note pro-orbicules (arrows) alongside the 
cells’ surface. c Tapetal cells at the late tetrad stage. Mature orbicules 
(arrows) alongside the tapetal cells. d A border of tapetum and of a 
free microspore. Orbicules (arrowheads) alongside the tapetal cell. e 
Degenerating tapetum in the vicinity of free microspores. Orbicules 
are preserved (arrowheads). AL anther loculus, Ap aperture, Ca cal-
lose, DTa degenerating tapetum, LG lipid globule, MC microspore, 
Co columella, Ex exine, FL foot layer, T tectum, Ta tapetum. Scale 
bars: a 0.5 µm; b–d 1 µm; e 2 µm

◂

Fig. 5  Disintegrating tetrad stage and early free microspores in Lysi-
machia vulgaris. a Late tetrad on the point of disintegration. b Disin-
tegrating tetrad, callose envelope is in remnants. c Free microspores. 
Well-pronounced endexine lamellae in the aperture sites (arrows) 
started to develop at the middle tetrad stage on the base of laminate 
micelles. d Initiation of the stage of vacuolization. Note that the 
endexine is present not only in the aperture sites (arrow), but also in 
inter-aperture regions (white asterisks). AL anther loculus, Ca cal-
lose, MC microspore cytoplasm, N nucleus, Nu nucleola. Scale bars: 
a, d 2 µm; b 5 µm, c 1 µm

Fig. 6  The stage of vacuolization (a, b) and two-celled pollen grains 
(c–f) in Lysimachia vulgaris. a, b Gradual enlargement of the vacu-
ole, the latter displaces the cytoplasm to the periphery. c, d Two-
celled pollen grains after completion of the microspore mitosis. 
Note distinct envelope between generative and vegetative cells. e 
Pollen grain with well-pronounced intine disposed under apertures 
and numerous starch grains in the cytoplasm of the vegetative cell. f 
Two-celled pollen grain, note fragments of pollenkitt (asterisks). Ap 
aperture site, Ect ectexine, End endexine, Ex exine, DV developing 
vacuole, GC generative cell, GN generative nucleus, Int intine, MC 
microspore cytoplasm, N nucleus, SG starch grains, V vacuole, VC 
vegetative cell, VN vegetative nucleus, WGC wall of generative cell. 
Scale bars: a, c, e, f 5 µm; b, d 1 µm
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species. Microsporogenesis is highly labile in basal angio-
sperms (see Gabarayeva and Grigorjeva (2014) and refer-
ences in). For example, the resulting tetrads may range from 
tetragonal to symmetric or asymmetric tetrahedral, with 
occasional rhomboidal tetrads (Nadot et al. 2006). Numerous 
intraspecific variations in aperture pattern and location were 
shown for many species and regarded as nature regularities 
(Pozhidaev 1998, 2000, 2002). In Juniperus communis, the 
type of simultaneous cytokinesis is also unusual: semi-fur-
rows appear at telophase-I, and the final centripetal cleavage 
proceeds gradually at telophase-II (Gabarayeva et al. 2014). 
Simultaneous cytokinesis is a very primitive mode, known 
as Magnolia type.

Conclusions

The most critical ontogenetic time in Lysimachia vulgaris 
exine development is the tetrad period.

The underline mechanisms of pollen wall development 
are physical forces—phase separation and micellar self-
assembly—which act in colloidal mixture of the periplasmic 
space after genomic control under precise chemical com-
position and increasing concentrations of exine building 
substances. These mechanisms are evidently universal for 
exine development in other species and many other patterns 
in living nature.

The unusual features in exine development in L. vulgaris 
are very early start of the endexine development. Orbicules 
which are produced by the tapetum in the tetrad period, are 
not associated with pollen grains.
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