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Abstract
Domains of unknown function (DUFs), which are deposited in the protein family database (Pfam), are protein domains 
with conserved amino acid sequences and uncharacterized functions. Proteins with the same DUF were classified as DUF 
families. Although DUF families are generally not essential for the survival of plants, they play roles in plant development 
and adaptation. Characterizing the functions of DUFs is important for deciphering biological puzzles. DUFs were generally 
studied through forward and reverse genetics. Some novelty approaches, especially the determination of crystal structures 
and interaction partners of the DUFs, should attract more attention. This review described the identification of DUF genes 
by genome-wide and transcriptome-wide analyses, summarized the function of DUF-containing proteins, and addressed the 
prospects for future studies in DUFs in plants.
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Introduction

The advance in sequencing technology has led to an expo-
nential increase of data on genomics, transcriptomics, prot-
eomics, and metabolomics in the postgenomic era. Although 
a majority of such data from various studies are deposited in 
data repositories and shared among researchers, for the most 
part, they are not fully explored (Nabi et al. 2020). For exam-
ple, uncharacterized functional proteins (UPFs) and proteins 
containing the domains of unknown function (DUFs), which 
are collectively termed DUF families (Mistry et al. 2021), 
present 24% (4795/19,632) of the protein families currently 
stored in the Protein Family (Pfam) database (version 35.0) 
(Mistry et al. 2021). DUFs are protein domains with rela-
tively conserved amino acid sequences and uncharacterized 
functions (Bateman et al. 2010). They were temporarily 
named with the prefix DUF followed by a number, such 

as DUF1 and DUF2. Once their functional properties are 
characterized, they will be appropriately renamed or merged 
with other well-known domains (Bateman et al. 2010). For 
example, DUF1 and DUF2, frequently presented in the bac-
terial signaling proteins, were renamed as GGDEF and EAL 
domains, respectively, after their functions were elucidated 
(Simm et al. 2004). As of 2021, the functions of 1132 DUF 
or UPF families were identified, and their identifiers in the 
Pfam database were changed (Mistry et al. 2021).

Initially, DUFs were often overlooked because they were 
generally not essential in standard mutant screens and were 
only discovered in a limited number of genomes (Jarosze-
wski et al. 2009). However, studies have shown that many of 
the most prevalent DUFs found in bacteria were also present 
in animals and plants (Goodacre et al. 2013). For instance, 
the DUF143-containing protein RsfA from bacteria can 
interact with ribosomal protein L14 to block the synthesis 
of protein. This interaction was verified using the homologs 
of RsfA/L14 in other bacteria, as well as the mitochondria 
of yeast and human and the chloroplasts of maize in vitro 
(Haüser et al. 2012). The homologs of RsfA, ATP25 from 
yeast, and DG238 from Arabidopsis were localized in mito-
chondria and chloroplasts, respectively, and function in the 
development of mitochondrial and chloroplast (Zeng et al. 
2008; Wang et al. 2017). Therefore, eukaryotic DUF143 
may be the evolutionary product of bacteria RsfA and are 
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functionally conservative in organelles. Evolutionary history 
analyses of prevalent DUFs, such as DUF143, could help to 
elucidate their functions and roles in plant adaptation.

Studies have shown that DUFs play essential roles in 
physiological processes, including the growth, develop-
ment, and responses to biotic and abiotic stresses in plants 
(Table 1). This aspect has been addressed in a previous 
review (Lv et al. 2023). In the present review, we systemi-
cally summarized the identification of DUF genes and the 
roles of DUF-containing proteins as transferases, pleiotropic 
factors, ABA-responsive factors, and interaction partners 
and pointed out the potential future directions.

Identification and characterization of DUF 
genes

Phenotype‑driven approaches

Phenotype-driven approaches begin with genetic screening 
for mutants of interest and then proceed with the identi-
fication of genes causing the observed phenotypes. Some 
genes encoding proteins with DUF domains were identified 
by this approach. For example, the Young Leaf Chlorosis 1 
(YLC1) gene encoding a protein with DUF3353 domain was 
isolated by map-based cloning from a rice mutant with a 
chlorosis phenotype and decreased level of chlorophyll and 
lutein contents at the early plant development stage. Then, 
the function of YLC1 in chlorophyll and lutein biosynthe-
sis was verified using complementary analysis and RNA 
inference technology. In addition, the expression levels of 
genes related to chlorophyll biosynthesis and photosynthe-
sis were significantly altered in the ylc1 mutant, implying a 
potential role of YLC1 in regulating chlorophyll biosynthesis 
and photosynthesis (Zhou et al. 2013). Similarly, the Young 
Seedling Stripe1 (YSS1), encoding a protein belonging to the 
DUF3727 superfamily, was identified through map-based 
cloning as the responsible gene for the striated leaves at 
the seedling stage of a rice mutant. Further investigation 
revealed abnormal chloroplast structure of the yss1 mutant, 
which is completely rescued in YSS1-overexpressed trans-
genic plants (Zhou et al. 2017). In addition, a floral mutant 
with wrinkled petals and exposed stigma was screened in 
mungbean (Vigna radiata). The Stigma Exposed 1 (SE1), 
a DUF1005-encoding gene, was identified through map-
based cloning. Histological observation revealed irregular 
cell shape in petals and increased cell length in stigma of the 
se1 mutant, indicating a role of SE1 in cell shape and size 
regulation. This was further confirmed by the hetero-expres-
sion of SE1 in Arabidopsis (Lin et al. 2020). With advances 
in mutant creation, sequencing technologies, bioinformatics, 
and phenotype screening, it will be much easier and faster to 

identify and characterize DUF genes by phenotype-driven 
approaches.

Knowledge‑ and data‑driven approaches

The advent of next-generation sequencing and sophisticated 
computational algorithms enabled the fast identification and 
functional prediction of genes. Studying DUF genes through 
knowledge- and data-driven approaches generally involves 
some intelligent guesswork by searching for sequence and 
structural homologs and determining expression profiles. 
These predictions provide a starting point for further genetic 
and biochemical studies.

The function of a gene can be predicted by identifying 
homologous genes with known functions. For example, 
two DUF288-containing proteins, STELLO1 (STL1) and 
STELLO2 (STL2), were validated to regulate cellulose syn-
thesis by aiding in the assembly of cellulose synthase com-
plexes in Arabidopsis (Zhang et al. 2016). Their homologous 
genes in cotton, namely GhSTL1-GhSTL4, were identified by 
blasting the DUF288 domain in the upland cotton genome 
database. The role of GhSTLs in cellulose synthesis was val-
idated by generating GhSTLs-silenced plants. The cellulose 
content and length of fibers were reduced in the GhSTLs-
silenced plants compared to wild-type plants, indicating that 
GhSTLs are involved in cellulose synthesis in cotton (Guo 
et al. 2022). Besides sequence similarity, identifying struc-
tural homologies of a protein to other well-characterized 
proteins could also provide insights into its function and 
roles within the biological system. With structural genomics, 
the structures of hundreds of DUF proteins were examined, 
and two thirds of them may belong to functionally well-char-
acterized protein families, which offers the first hypothesis 
about their functions (Bateman et al. 2010; Goodacre et al. 
2013; Mudgal et al. 2015).

The expression profile of a gene under various conditions 
in the cell or in the whole organism can also give clues to 
gene function. DUF4228 genes responded to various abiotic 
stresses in Arabidopsis (Yang et al. 2020), soybean (Leng 
et al. 2021), and cotton (Lv et al. 2022) at the transcrip-
tional level, indicating their functions in plant tolerance 
to abiotic stresses. This implication was validated later by 
several experiments. For example, the hetero-expression of 
MsDUF4228 in tobacco negatively impacted the responses 
of seedlings to osmotic stress (Wang et al. 2018). Over-
expression of GmDUF4228-70 increased the resistance 
of soybeans to salt and drought stress (Leng et al. 2021). 
Silencing of GhDUF4228-67 reduced the salt tolerance in 
cotton (Lv et al. 2022). Some of the OsDUF668 genes were 
triggered by Avr9/Cf-9 recognition and strongly expressed 
in response to rice blast disease and mechanical wounding, 
indicating that these Avr9/Cf-9-triggered OsDUF668 genes 
may confer resistance to biotic stresses in rice (Zhong et al. 
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2019). Similarly, a total of 28 DUF966 genes were iden-
tified in wheat, and some of them were strongly induced 
by salt stresses, implying a role of TaDUF966 in salt toler-
ance. This was experimentally confirmed by the fact that 
TaDUF966-9B knockout plants showed increased sensitivity 
to salt stress (Zhou et al. 2020). The expression of GhR-
DUF4D, a DUF1117 gene, was increased upon Verticillium 
dahliae infection in upland cotton, indicating its role against 
V. dahliae infection in cotton (Zhao et al. 2021). Consistent 
with the suggestion from expression data, the V. dahliae 
resistance was significantly enhanced in GhRDUF4D trans-
genic Arabidopsis and weakened in GhRDUF4D silenced 
cotton plants (Zhao et al. 2021). A total of 12 DUF221 
domain-containing proteins (DDP) genes were identified in 
the genome of tomato. Among them, SlDDP6, SlDDP11, 
and SlDDP12 were downregulated under salt stress, whereas 
SlDDP1, SlDDP2, SlDDP3, SlDDP4, SlDDP7, SlDDP8, and 
SlDDP10 were upregulated, suggesting the involvement of 
these DUF221 genes in responses to abiotic stress (Waseem 
et al. 2021), although further investigations are required.

Instead of monitoring a single gene, RNA-seq can inves-
tigate the expressions of tens of thousands of genes at once. 
By identifying differently expressed genes under various 
conditions, researchers were able to associate genes with 
physiological processes and provide insight into gene func-
tions. For example, from the available RNA-Seq datasets 
of Arabidopsis leaves exposed to S-nitroso-L-cysteine, 231 
upregulated and 206 downregulated DUF genes were iden-
tified, indicating the roles of these genes in nitro-oxidative 
stress responses (Nabi et al. 2020). Among these genes, 
the involvement of AtDUF569 in nitro-oxidative stress 
responses was validated experimentally (Nabi et al. 2020). 
Clustering genes by expression pattern can provide an addi-
tional layer of information for gene function prediction. For 
example, an Oryza sativa stress-responsive DUF740 protein 
(OsSRDP) was characterized for its role in rice resistance 
to abiotic and biotic stresses (Jayaraman et al. 2023). Fur-
ther investigation of the expression data showed that two 
genes (LOC_Os05g09640 and LOC_Os06g50370) were co-
expressed with OsSRDP under abiotic and biotic stresses, 
indicating that these two genes are candidate interaction 
partners of OsSRDP and may be coordinately regulated 
(Jayaraman et al. 2023).

DUF‑containing proteins function 
as transferases in plant cell wall formation

The cell wall is an intricate and crucial component of plant 
cells (Fig. 1a). It needs to be strong to resist internal and 
external pressures while remaining flexible to allow cell 
growth (Temple et al. 2022). Polysaccharides are funda-
mental for the proper structure and function of cell walls Ta
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(Fig. 1b). Many DUF genes have been shown to partici-
pate in the synthesis and modification of polysaccharides 
as transferases.

Synthesis of plant cell wall components

Cellulose is the major component in both the primary and 
secondary cell walls. Two DUF266-containing proteins 
participated in cellulose biosynthesis, probably as glycosyl-
transferases (GTs) (Fig. 1c). The loss-of-function mutation 
in a DUF266 gene, brittle culm 10 (BC10), reduced the cel-
lulose content in rice (Zhou et al. 2009). Overexpression 
of PdDUF266A significantly increased cellulose content in 
Populus (Yang et al. 2017).

Pectin is a major constituent of the primary cell wall and 
along with hemicelluloses form a matrix into which cellu-
lose is embedded. Rhamnogalacturonan-I (RG-I), a pectic 
polysaccharide, is likely present in the primary cell walls of 
all vascular plants (Cankar et al. 2014). The Pectic Arabi-
noGalactan synthesis-Related Protein (PAGR), containing a 
highly conserved DUF246 domain, may function in the bio-
synthesis of pectic RG-I arabinogalactans as glycosyltrans-
ferases in Arabidopsis (Stonebloom et al. 2016) (Fig. 1c).

Modification of plant cell wall components

Xylans, as a major component of hemicellulose, can be 
O-acetylated at multiple positions of its backbone residu-
als. Some members in the DUF231 family were proven to 
modify xylan as O-acetyltransferases (Fig. 1c). For exam-
ple, the eskimo1/trichome birefringence-like 29 (esk1/tbl29) 
mutant had significantly decreased xylan acetyltransferase 
activity and xylan 2-O- and 3-O-monoacetylation (Xiong 
et al. 2013; Yuan et al. 2013). Eight closely related genes to 

TBL29 from the DUF231 family, namely TBL3, TBL28, and 
TBL30-TBL35, were investigated for their functions in xylan 
acetylation. Double mutants (tbl3 tbl31, tbl32 tbl33, tbl34 
tbl35) had a significantly lower level of xylan acetylation 
than the tbl29 mutant (Yuan et al. 2016a, b, c). Moreover, 
triple mutants (tbl29 tbl3 tbl31, tbl29 tbl32 tbl33, tbl29 tbl34 
tbl35) showed a much more dramatic decrease in xylan acet-
ylation than double mutants, indicating functional redun-
dancy of these genes in xylan acetylation (Yuan et al. 2016a, 
b, c). The xylan acetyltransferase activity of TBL29 and its 
homologs (TBL3, TBL28, and TBL30-TBL35) has been bio-
chemically demonstrated in Arabidopsis (Urbanowicz et al. 
2014; Zhong et al. 2017).

Besides xylan acetylation, several members in the 
DUF231 family were also shown to catalyze the acetylation 
of xyloglucan (Fig. 1c). Arabidopsis ALTERED XYLO-
GLUCAN 4 (AXY4) acetylated xyloglucan in tissues 
except seeds, and its paralog AXY4L acetylated xyloglucan 
in seeds (Gille et al. 2011). Another Xyloglucan Backbone 
6-O-Acetyltransferase 1 (XyBAT1) can acetylate xyloglu-
can in rice, tomato, and Brachypodium distachyon (Liu et al. 
2016; Zhong et al. 2020). Specifically, AXY4 and AXY4L 
may acetylate the side-chain of xyloglucan, while BdXy-
BAT1 acetylated the glucan backbone of xyloglucan (Liu 
et al. 2016). In addition, mannan and pectin are generally 
acetylated by acetyltransferase, including mannan O-acetyl-
transferase1 (MOAT1), MOAT2, MOAT3, MOAT4, and 
TBL10 (Stranne et al. 2018; Zhong et al. 2018). The above 
results indicate the conserved function of the DUF231 fam-
ily in the acetylation of polysaccharides.

Besides acetylation, cell wall polysaccharides can be 
methylated, which may be critical for cell expansion (Lev-
esque-Tremblay et al. 2015) and signal responses (Mizukami 
et al. 2016). Members in the DUF579 family may methylate 

Fig. 1   The roles of DUF-containing proteins in regulating the synthe-
sis and modification of plant cell wall components. a Model of the 
plant cell. The cell wall is shown as the closed brown circle. b The 
main polysaccharides in the plant cell wall are cellulose and hemicel-
lulose, which are polymerized forms of β-glucan and galactomannan. 

c Various DUF-containing proteins function as transferases in the 
synthesis and modification of polysaccharides. The DUF domains are 
indicated as blue boxes, and the transmembrane domains (TMD) are 
indicated as the gray boxes
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polysaccharides as methyltransferases. Five proteins of 
the DUF579 family, GLUCURONOXYLAN METHYL-
TRANSFERASE1 (GXM1), GXM2, GXM3 (Lee et  al. 
2012), ArabinoGalactan Methyltransferase1 (AGM1), and 
AGM2 (Temple et al. 2019), aided the 4-O-methylation of 
xylan in Arabidopsis (Fig. 1c).

It would be interesting to investigate the functions of 
uncharacterized proteins in the DUF231 and DUF579 fami-
lies in the acetylation and methylation of polysaccharides, 
considering the conserved functions of characterized pro-
teins in these families.

The pleiotropy of DUF genes as regulatory 
factors

Some DUF genes have pleiotropic effects on the growth, 
development, and stress tolerance of plants. A DUF538 
gene, SMALLER TRICHOMES with VARIABLE BRANCHES 
(SVB), was significantly highly expressed in an Arabidop-
sis mutant with defective trichomes, compared to the wild-
type plant. T-DNA insertion in SVB resulted in smaller tri-
chomes with variable branches (Marks et al. 2009). Besides 
trichome development, SVB also modulates plant growth 
with SVB-like (SVBL) through the transcriptional regula-
tion of GLABRA1, a hub gene for trichome development 
(Yu et al. 2021). In addition, SVB may also involve in the 
endoplasmic reticulum (ER) stress tolerance through signal 
transduction as a putative phosphoinositide-binding protein 
(Yu and Kanehara 2020). BYPASS1-LIKE (B1L) protein 
from the DUF793 family is also a multifunctional regulator. 
B1L interacts with 14-3-3λ and TRANSTHYRETIN-LIKE 
(TTL) to co-regulate seedling growth and freezing tolerance 
by the C-REPEAT BINDING FACTOR (CBF) pathway 
(Chen et al. 2019, 2020a). Moreover, B1L modulates lateral 
root initiation via exocytic vesicular trafficking-mediated 

PIN-FORMED (PIN) recycling in Arabidopsis (Yang et al. 
2022) (Fig. 2b). The Stress Induced DUF1644 Protein 301 
(OsSIDP301) is a negative regulator for both salt stress and 
grain size in rice (Ge et al. 2022). OsSIDP301 regulates 
the tolerance of rice to salt stress through the abscisic acid 
(ABA) signaling pathway and affects grain size by influenc-
ing cell expansion in spikelet hulls (Ge et al. 2022). The Sc 
from the DUF1618 family functions as a pollen-essential 
factor. In Sc-j/Sc-i (japonica allele/indica allele) hybrids, 
the high expression of Sc-i in sporophytic cells suppressed 
the expression of Sc-j in pollen, leading to transmission 
ratio distortion. Knocking out one or two of the three Sc-i 
copies by CRISPR/Cas9 rescues Sc-j expression and pollen 
fertility (Shen et al. 2017) (Fig. 2d). In addition, Sc (#51, 
Os03g0247300) also responded to salt, drought, and cold 
stress in rice, suggesting a role of Sc in abiotic stress toler-
ance (Wang et al. 2014).

The importance of Stress tolerance and Grain Length 
(OsSGL), a DUF1645-containing protein, has been revealed 
by several studies. The OsSGL was upregulated by a wide 
spectrum of abiotic stress. The overexpression and hetero-
expression of OsSGL increased the expressions of antioxida-
tive and stress-responsive genes and enhanced the drought 
tolerance in rice and Arabidopsis (Cui et al. 2016). Moreo-
ver, the overexpression of OsGSL also altered an array of 
other traits, including increased grain length, grain weight, 
grain number per panicle, and extensive root systems 
(Fig. 2c), probably via a cytokinin signaling pathway (Cui 
et al. 2016; Wang et al. 2016). In addition, overexpression 
or silencing of OsGSL both reduced the starch content of 
grain (Liu et al. 2022). OsSGL was shown to inhibit the 
expression of starch-biosynthesis-related genes as a regula-
tory suppressor. Further, the interaction of OsSUS1 with 
OsSGL alleviated the transcriptional repression of OsSGL. 
Therefore, OsGSL functions as a regulator in controlling 
grain yield and quality (Liu et al. 2022).

Fig. 2   The roles of several 
DUF-containing proteins in 
controlling plant growth and 
development. a SVB is involved 
in regulating the formation of 
leaf trichomes in Arabidopsis. b 
B1L and c OsSGL are involved 
in regulating roots development, 
respectively, in Arabidopsis and 
rice. d Sc is involved in regulat-
ing pollen fertility in rice. The 
SVB, B1L, OsSGL, and Sc 
proteins contain conserved 
DUF538, DUF793, DUF1645, 
and DUF1618 domains, respec-
tively
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The responses of plants to biotic and abiotic stresses are 
deployed at the expense of growth (Huot et al. 2014). There-
fore, balancing the tradeoff between defense and growth is 
crucial. Some DUF genes represent potential roles in the 
trade-off by reallocating resources through phytohormonal 
crosstalk (Ning et al. 2017). For example, Zea mays Auxin-
Regulated Protein 1 (ZmAuxRP1) from the DUF966 family 
can increase the biosynthesis of auxin (IAA) and inhibit the 
biosynthesis of benzoxazinoid, which is a potent secondary 
metabolite that contributes to allelopathy and defense (Ye 
et al. 2019). Upon pathogen infection, the expression of the 
resistant ZmAuxRP1 allele was transiently decreased so that 
plants were able to allocate more resources for benzoxazi-
noid biosynthesis and less for IAA biosynthesis. This led to 
arrested root growth but enhanced the resistance of maize 
to pathogens. When the pathogen attacks were averted, the 
expression of ZmAuxRP1 increased back to the level that is 
required for normal growth (Ye et al. 2019). Similarly, over-
expression of AtAuxRP3, another DUF966 gene, increased 
the endogenous IAA level in Arabidopsis and reduced the 
NaCl and osmotic stress tolerance. Transcriptomic analysis 
showed increased expressions of a variety of development-
related genes and decreased expressions of many stress-
responsive genes in the AtAuxRP3 overexpression lines 
(Shen et al. 2019).

The functions of DUF genes mediated 
by the ABA signaling pathway

ABA is recognized as a “stress hormone” because of its 
critical role in mediating adaptive responses to various 
stresses, especially drought and salinity (Nambara and 
Marion-Poll 2005). Many DUF genes contribute to stress 
resistance through ABA-dependent pathways. For example, 
two RING-DUF1117 E3 ubiquitin ligase genes, AtRDUF1 
and AtRDUF2, were upregulated by both ABA and drought 
stresses. Single- and double-deletion mutants of these two 
genes exhibited reduced ABA-dependent drought resistance 
in Arabidopsis (Kim et al. 2012). Arabidopsis thaliana mpo1 
homolog in plants (AtMHP1) encodes a protein from the 
DUF962 family. The mhp1 mutant was hypersensitive to salt 
stress and ABA, indicating that MHP1 may be involved in 
the ABA-dependent salt stress response pathway in Arabi-
dopsis (Zheng et al. 2021). A homolog of AtMHP1 in Poplar, 
Metabolism of PHS to Odd-numbered FA 1 (PtoMPO1), also 
encodes a protein containing the DUF962 domain. The het-
ero-expression of PtoMPO1 in Arabidopsis greatly reduced 
the sensitivity of the mhp1 mutant to salt stress and ABA 
(Zheng et al. 2022). The Bifunctional nucleases in Basal 
Defense response 1 (AtBBD1) from DUF151 family and a 
cytoplasmic S40 protein (AtS40-1) from DUF584 family 
were upregulated by ABA and respectively enhanced the 

drought and salt tolerance by ABA signaling in Arabidopsis 
(Huque et al. 2021; Wang et al. 2022). The DUF966-stress 
repressive gene 2 (OsDSR2) negatively regulated ABA-
dependent salt and simulated drought stresses by down-
regulating the expression of ABA- and stress-responsive 
genes (Luo et al. 2014, 2023). Similarly, OsSIDP301 from 
the DUF1644 family negatively regulated the tolerance of 
rice to salt stress through the ABA signaling pathway (Ge 
et al. 2022).

ABA can suppress seed germination by preventing cell 
wall loosening of the embryo and inhibiting water uptake 
(Xi et al. 2010). Overexpression of MsDUF, a DUF4228 
gene in Medicago sativa, induced the expression levels of 
ABA synthesis genes, increased the accumulation of ABA, 
and caused a reduction in seed germination (Wang et al. 
2018). Similarly, AtS40.4 encoding a DUF584-containing 
protein negatively regulated seed germination and seedling 
growth by the ABA signaling pathway in Arabidopsis (Shi 
et al. 2021). F-box/DUF295 Brassiceae specific 2 (FDB2), 
belonging to the DUF295 family, conferred ABA insensitiv-
ity during seed germination and post-germination growth 
in Arabidopsis (Gong et al. 2022). In the presence of ABA, 
overexpression of FDB2 increased seed germination and 
seedling growth, while fdb2 mutants showed opposite phe-
notypes (Gong et al. 2022).

Interactions of DUF‑containing proteins 
with other proteins

Instead of being static, proteins often change their config-
uration over time and frequently interact with other mol-
ecules to perform biological roles. Some DUFs perform 
their biological roles through protein interactions (Table 2). 
For instance, the DUF593 domain at the C-terminus of Zea 
mays floury1 (ZmFL1) binds to the 22-kD α-zein to facilitate 
its localization, which is critical for the formation of vitre-
ous endosperm (Holding et al. 2007). The DUF724 domain 
at the C-terminal regions of DUF724-containing proteins 
(AtDuf3, AtDuf5, AtDuf7) engages with microtubules or 
actin filaments, which may play a role in RNA transport in 
the plant cell (Cao et al. 2010). The DUF827 domains in two 
coiled-coil proteins, weak chloroplast movement under blue 
light 1 (WEB1) and plastid movement impaired 2 (PMI2), 
provide a protein-protein interaction surface for forming the 
WEB1–PMI2 complex, which is essential for chloroplast 
movement response (Kodama et al. 2011). The DUF581 
domain interacts with SUCROSE-NON-FERMENTING1-
RELATED KINASE 1 (SnRK1) and serves as a bridge 
between SnRK1 and the DUF581-containing proteins while 
regulating stress signaling in Arabidopsis (Nietzsche et al. 
2014). The DUF1620 domain and the WD40 repeat motif 
at the C-terminus and the N-terminus of the restoration of 
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fertility complex 3 (RFC3) can interact with RF5 and Gly-
cine-Rich Protein 162 (GRP162), respectively, to form the 
RFC complex, which is required for the restoration of fertil-
ity in Hong-Lian (HL) rice (Qin et al. 2016). The C-termi-
nal DUF3755 domain of DIVARICATA AND RADIALIS 
INTERACTING FACTOR 1 (PtrDRIF1) is necessary and 
sufficient for the interactions of PtrDRIF1 with the homeo-
domain (HD) proteins (PtrWOX13c and PtrKNAT7). The 
formed heterotrimer may affect wood formation by mediat-
ing vascular cambium cell division and lignocellulose depo-
sition in Populus trichocarpa (Petzold et al. 2018).

Conclusions and perspectives

Over the past 20 years, the number of DUF genes discov-
ered in the plant kingdom has considerably increased. This 
number will further increase with the sequencing of new 
species and resequencing of other species. Exploring this 
treasure trove will provide a wealth of data for solving bio-
logical puzzles.

Model plants Arabidopsis and rice have been the focus of 
most studies on the biological characterization of numerous 
DUF genes. Since orthologs in the same DUF family often 
have biological functions that are identical among species 
(Leng et al. 2021; Lv et al. 2022), findings from rice and 
Arabidopsis may be transferable to other species. The phylo-
genetic analysis of well-characterized genes in model plants 
among species may provide insights into their biological 
functions in non-model plants.

Previous genome-wide identification of DUF genes 
showed that each DUF family normally has multiple dupli-
cated gene members in one genome. Single mutants of 
any of these DUF genes exhibited no dramatic variation in 
the phenotype, whereas double, triple, or even quadruple 
mutants of these DUF genes exhibited distinct phenotypic 
variation compared to the wild-type plants. This suggested 
that genes containing the same DUF domain may be func-
tional redundancy (Cao et al. 2010; Kim et al. 2012; Mewalal 
et al. 2016). On the one hand, this makes it particularly dif-
ficult to study the function of DUF genes. On the other hand, 

characterizing the function of one DUF gene can give clues 
to the functions of other genes in the same DUF family.

DUF genes can perform various molecular functions, 
such as transferases, ABA-responsive factors, and regulatory 
factors, in plant growth and stress responses. The architec-
ture of cell wall is important in plant morphogenesis and the 
tolerance of plant to external stresses. For example, a DUF-
246 family glycosyltransferase-like gene, PAGR​, involves 
in biosynthesis of pectic arabinogalactans and affects male 
fertility in Arabidopsis (Stonebloom et al. 2016). In addition, 
AhDGR2, a DUF642 gene, affects the structure and compo-
sition of cell walls and causes salt and ABA hyper-sensibil-
ity in Arabidopsis. Similar to PAGR​ and AhDGR2, whether 
other cell wall formation-related DUF genes affect plant 
morphogenesis and stress resistance will also be interesting 
to explore. Studies have shown several DUF genes may func-
tion as ABA-responsive factors in abiotic stress tolerances 
(Zheng et al. 2021; Wang et al. 2022). ZmAuxRP1, a stalk 
rot disease resistance related gene from the DUF966 fam-
ily, regulates plant growth by influencing IAA biosynthesis 
(Ye et al. 2019), indicating it may involve in IAA signaling 
pathway. Because of the importance of signaling pathway 
in plant growth and stress responses, whether DUF genes 
encoding transferases and regulatory factors (e.g., OsSGL, 
SVB) may act through signaling (ABA, IAA, JA, SA etc.) 
pathways or hormone crosstalk (Fig. 3) deserves further 
investigation.

Currently, at the genetic level, the functions of DUF 
genes in controlling plant growth, development, and stress 
responses were mainly investigated by phylogenetic analysis, 
chromosomal locations, gene structures, motif compositions, 
gene duplications, cis-elements prediction, and expression 
profiling analysis, as well as through phenotypic, physi-
ological, and transcriptional differences between wild-type 
and transgenic plants. At the protein level, it is commonly 
thought that the functional units of proteins are represented 
by domains, which often have unique structures and roles. 
It is also the respective DUF domain that defines the DUF 
protein family. Therefore, the functions of specific DUF 
domains deserve more investigation. Such studies could 
begin with mining the core motifs of the DUF domains 

Table 2   DUF-containing proteins and their interacting proteins in plants

DUF domain DUF-containing protein Its interacting protein Species Reference

DUF581 DUF581-1, DUF581-9 SnRK1 Arabidopsis (Nietzsche et al. 2014)
DUF593 ZmFL1 α-zein Maize (Holding et al. 2007)
DUF724 AtDuf3, AtDuf5, AtDuf7 Interact with one another Arabidopsis (Cao et al. 2010)
DUF827 WEB1, PMI2 Interact with one another Arabidopsis (Kodama et al. 2011)
DUF1620 RFC3 RF5 Rice (Qin et al. 2016)
DUF1645 OsSGL OsSUS1 Rice (Wang et al. 2016; Liu et al. 2022)
DUF3755 PtrDRIF1 PtrWOX13c, PtrKNAT7 Populus trichocarpa (Petzold et al. 2018)
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through amino acid substitutions and deletions (Wang et al. 
2017) and then dissecting their functions using gene edit-
ing (Fig. 3). It was also suggested that individual DUF 
domains may have unique functions determined by their 
structure (Bateman et al. 2010). To the best of our knowl-
edge, the crystal structure was solved for only a few DUF 
domains (PatG-DUFsp, DUF1110) in plants (Mann et al. 
2014; Harada et al. 2016). In the future, the functions and 
structures of specific DUF domains need to be solved to fuel 
the characterization of proteins with these domains. In addi-
tion, most biological processes are mediated through protein 
interactions. Therefore, to systemically study the function of 
DUFs as well as their involved biological networks, diverse 
approaches at the protein level should be applied (Harada 
et al. 2016; Liu et al. 2022).

The continuous innovation in algorithms and computa-
tional frameworks will enable the integration of likely rel-
evant multi-omics data, including phenomics, genomics, 
epigenomics, transcriptomics, proteomics, proteogenom-
ics, interactomics, ionomics, metabolomics, et al., across 
experiments to boost the insights, broaden the horizon, and 
generate new hypotheses for DUFs studies. The computa-
tionally generated hypotheses can then be tested efficiently 

with advanced technologies in functional genomics. The 
high-quality experimental data will in turn improve algo-
rithms to generate new hypotheses. Though the future is 
bright, there is a gap between computing and biology. To 
build the bridge and harness the power of biotechnologies 
and information techniques (e.g., machine learning) in DUFs 
studies, multidisciplinary research collaboration among 
geneticists, biologists, data analysts, computer scientists, as 
well as researchers of other related disciplines is required 
(Fig. 3). With more and more DUFs being deciphered, our 
understanding of the intricate mechanisms underlying the 
biological processes in the plant kingdom will be enhanced.
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