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Abstract
Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is a devastating immune-mediated 
disorder that has a detrimental effect on the citrus industry, with the distinguishing feature being an eruption of reactive 
oxygen species (ROS). This study explored the alterations in antioxidant enzyme activity, transcriptome, and RNA editing 
events of organelles in C. sinensis during CLas infection. Results indicated that there were fluctuations in the performance of 
antioxidant enzymes, such as ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POD), 
and superoxide dismutase (SOD), in plants affected by HLB. Transcriptome analysis revealed 3604 genes with altered 
expression patterns between CLas-infected and healthy samples, including those associated with photosynthesis, biotic 
interactions, and phytohormones. Samples infected with CLas showed a decrease in the expression of most genes associated 
with photosynthesis and gibberellin metabolism. It was discovered that RNA editing frequency and the expression level of 
various genes in the chloroplast and mitochondrion genomes were affected by CLas infection. Our findings provide insights 
into the inhibition of photosynthesis, gibberellin metabolism, and antioxidant enzymes during CLas infection in C. sinensis.
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Introduction

Cultivation of citrus plants is widespread due to their deli-
cious taste and high nutritional content (Talon et al. 2020). 
Citrus sinensis is especially noteworthy for its high com-
mercial value in subfamily Aurantioideae (Biswas et al. 
2020; Liu et al. 2022). However, they are often susceptible to 
diseases, including Huanglongbing (HLB), which was first 
identified in Asia and has since spread to South Africa and 
South America (Ferrarezi et al. 2020). The impact of Huan-
glongbing (HLB) on the citrus industry is significant, with 
an estimated 90% of affected areas experiencing damage 

(Shahzad et al. 2020). The disease is caused by the bac-
terium Candidatus Liberibacter asiaticus (CLas), which is 
transmitted by the Diaphorina citri (Hu et al. 2021; Alquézar 
et al. 2022). At the present time, there is unfortunately no 
cure available for HLB. Possible treatments include antibiot-
ics, thermotherapy, gibberellin, and the use of citrus culti-
vars that are resistant to HLB (Munir et al. 2018; Ma et al. 
2022). The interactions between citrus and CLas have been 
continuously explored, as several important secreted proteins 
in CLas have been functionally analyzed, including SDE1, 
SDE3, and SDE15 (Clark et al. 2018; Pang et al. 2020; Shi 
et al. 2023). Despite extensive research and findings, the 
pathogenesis of HLB remains unclear.

Plants are faced with environmental stress from abi-
otic and biotic factors, and the response to this is greatly 
influenced by the presence of phytohormones, which are 
responsible for the regulation of multiple functions and 
intricate biological processes (Ku et al. 2018). Research 
has shown that phytohormones are necessary for plants to 
effectively guard themselves against pathogens (Collum 
and Culver 2016). The major hormones that are function-
ally active are abscisic acid (ABA), auxin, brassinolide 
(BR), cytokinin (CK), ethylene (Eth), gibberellin (GA), 
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jasmonic acid (JA), and salicylic acid (SA) (Checker et al. 
2018). Utilizing GA can help to improve the consequences 
of Huanglongbing (HLB) infection, including reducing 
blotchy mottle and boosting plant growth (Ma et al. 2022). 
C. sinensis displayed a higher tolerance to HLB, likely due 
to the augmented levels of auxins, CKs, and JA, found in 
citrus affected by HLB (Peng et al. 2021; Suh et al. 2021). 
However, the levels of SA varied between different citrus 
varieties during CLas infection (Suh et al. 2021; Zou et al. 
2021).

Photosynthesis in plants takes place in chloroplasts, 
which are capable of converting the sun’s light energy into 
chemical energy effectively (Kruse et al. 2005). Further-
more, they are instrumental in defending against pathogen 
infection (Lu and Yao 2018). Consequently, chloroplasts 
are indispensable for both photosynthesis and independent 
immune responses when the plant is exposed to pathogen 
(Jensen and Leister 2014). Research has revealed that CLas 
infection has an impact on carbon metabolism, resulting in 
an increase of starch in leaves and the destruction of chlo-
roplasts (Etxeberria et al. 2009). Transcriptome analysis of 
Citrus spp. showed that the photosynthesis processes were 
impeded when citrus plants were infected with HLB (Zhong 
et al. 2016; Hu et al. 2017; Tang et al. 2018; Liu et al. 2019; 
Zhao et al. 2019).

RNA editing events in plant organellar were documented 
and studied in the early 2000s (Shikanai 2006). In recent 
years, the importance of RNA editing in plant develop-
ment and defense has been increasingly recognized (Hao 
et al. 2021). It has been suggested that RNA editing is a key 
mechanism for the regulation of gene expression in chloro-
plasts (Wang et al. 2022). RNA editing has been shown to be 
involved in the regulation of chloroplast-localized defense 
responses, including the expression of defense-related genes, 
the accumulation of defense-related metabolites, and the 
modulation of JA and ABA signaling pathways (Jiang and 
Dehesh 2021; Zhang et al. 2022). Moreover, it has been 
suggested that RNA editing is involved in the abiotic stress 
response in C. reticulata (Pan et al. 2021). Nevertheless, a 
few investigations have indicated correlations between RNA 
editing events and the emergence of HLB.

RNA-seq offers a swift approach to distinguishing dif-
ferentially expressed genes (DEGs) and discovering gene 
clusters that are co-expressed (Han et al. 2015; Conesa et al. 
2016). Moreover, RNA-seq data can be utilized to identify 
single nucleotide polymorphisms and can be used to detect 
RNA-editing events (Pinto and Levanon 2019). To compre-
hend the events that may be elicited by CLas and uncover 
the molecular foundation during interaction between CLas 
and C. sinensis, we conducted a study to investigate the tran-
scriptomic alterations, including the identification of DEGs, 
the enrichment of gene functions, and the detection of RNA-
editing events in mitochondria and chloroplasts during CLas 

infection in C. sinensis using RNA-seq, which provides valu-
able insight for further research.

Materials and methods

Measurement the activities of antioxidant enzymes

Leaves from CLas free and -infected two years old C. sin-
ensis cv. “Newhall” plants, grown in the citrus germplasm 
of Gannan Normal University, were collected for this study. 
To determine whether the citrus plants were CLas free or 
-infected, qPCR was employed as previously described (Li 
et al. 2023). The leaves were immediately ground in phos-
phate buffer saline solutions and centrifuged to obtain the 
supernatant for determining the activities of antioxidant 
enzymes. The activities of ascorbate peroxidase (APX), 
catalase (CAT), glutathione reductase (GR), peroxidase 
(POD), and superoxide dismutase (SOD) were measured 
using commercially available APX activity detection assay 
kits (BC0225, Solarbio), CAT activity detection assay 
kits (BC4785, Solarbio), GR activity detection assay kits 
(BC1165, Solarbio), POD activity detection assay kits 
(BC0095, Solarbio), and SOD activity detection assay kits 
(BC0175, Solarbio), respectively.

RNA extraction and sequencing

Total RNA was extracted from citrus leaves using the 
TaKaRa MiniBEST Plant RNA Extraction Kit (9769, 
TaKaRa) according to the manufacturer’s instructions. The 
concentration, purity, and integrity of the extracted total 
RNA were assessed using NanoDrop one Spectrophotometer 
(Thermo Fisher Scientific) and Agilent Bioanalyzer 2100 
system (Agilent Technologies), respectively. For library con-
struction, the TruSeq RNA Library Prep Kit v2 was used, 
and the resulting libraries were subsequently sequenced on 
an Illumina HiSeq 4000 platform.

Transcriptome analysis

Raw sequencing reads were subjected to quality control 
using trimmomatic v0.36 to remove adapter sequences and 
low-quality sequences. Subsequently, the clean reads were 
aligned to the reference genome of C. sinensis (version 3.0) 
obtained from the CPBD database using Hisat2 with default 
parameters (Kim et al. 2019; Liu et al. 2022). To estimate the 
Fragments Per Kilobase of exon model per million mapped 
fragments (FPKM) value for each gene, a count matrix 
was generated using StringTie (Pertea et al. 2015). For the 
analysis of gene expression patterns in the chloroplast and 
mitochondrion genomes, the reference genomes of chloro-
plast (NC_008334.1) and mitochondrion (NC_037463.1) 
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were downloaded from the NCBI genome database since 
this information was not available in the CPBD database 
(Bausher et al. 2006; Yu et al. 2018). Differential expressed 
genes (DEGs) were identified using DESeq2 with a signifi-
cance threshold of |log2(fold change, FC)|≥ 1 and false dis-
covery rate (FDR) < 0.05 (Love et al. 2014). The gene trend 
cluster was performed using R package “Mfuzz” (Kumar 
and Futschik 2007).

Functional and pathway analysis of DEGs

The Gene Ontology (GO) enrichment analysis of DEGs was 
performed using the “GO enrichment” modules in TBtools, 
with a significance threshold of a p value < 0.05 (Chen et al. 
2020). Similarly, the KEGG enrichment analysis of DEGs 
was conducted using the “KEGG enrichment analysis” mod-
ules in TBtools, also with a significance threshold of a p 
value < 0.05 (Chen et al. 2020). Additionally, MapMan was 
utilized to display the DEGs on diagrams representing spe-
cific metabolic pathways (Thimm et al. 2004).

RNA editing event identification

REDO was used to detect the RNA editing events in chlo-
roplast and mitochondrion (Wu et  al. 2018). BWA was 
employed for RNA-seq mapping (Li and Durbin 2009), 
while GATK and SAMtools were employed for genome 
variant calling (Li et al. 2009; McKenna et al. 2010). The 
output variant call format files and the sequence and gene 
annotation file of the reference genome were then used as 
input files for REDO. The output files generated by REDO 
were manually settled.

RT‑qPCR analysis

Total RNA of the C. sinensis leaves was extracted using M5 
HiPer Plant RNeasy Complex Mini Kit (Mei5bio, China). 
Then, first strand cDNA was reverse translated by Easy-
Script® First-Strand cDNA Synthesis SuperMix (Transgen, 
China). The qPCR experiments were conducted on ABI 
StepOne PLUS Real-Time PCR System (ABI, USA) with 
2X M5 HiPer UltraSYBR Mixture (Low ROX) (Mei5bio, 
China). All primers were listed in Table S1. The relative 
expression profiles of candidate genes were calculated using 
 2−ΔΔCT method with CsGAPDH as internal gene (Livak and 
Schmittgen 2001).

Statistical analysis

The statistical significance of experimental data was import 
into SPSS 25.0 and analyzed by one-way ANOVA using 
Tukey’s (HSD) test or by Student’s unpaired two-sided t-test.

Results

CLas infection caused alterations in physiological 
indices of C. sinensis

To assess the changes in physiological indices of C. sinen-
sis during CLas infection, the levels of chlorophyll and the 
activities of APX, CAT, GR, POD, and SOD were evalu-
ated (Fig. 1). Results showed that the chlorophyll content 
of leaves of citrus plants affected by HLB was significantly 
reduced (Fig. 1A). Upon CLas infection, the activities of 
APX and GR were diminished (Fig. 1A, D), whereas CAT, 
POD, and SOD activities were enhanced (Fig. 1C, E, F).

Analysis of transcriptome data obtained 
from RNA‑seq

In this study, the amount of filtered clean reads of sequenced 
samples for transcriptome analysis varied from 35,920,788 
to 51,884,560. The correlation and PCA analysis revealed 
that biological repeatability is of a good quality (Fig. 2A, B). 
The DEGs were identified based on a significance thresh-
old of |log2(fold change, FC)|≥ 1 and a false discovery rate 
(FDR) of < 0.05 (Fig. 2C). A total of 3604 DEGs were iden-
tified between CLas free and -infected citrus plants, with 
1371 downregulated and 2233 upregulated (Fig. 2D and 
Table S2).

Clustering and GO enrichment analysis of DEGs

The R package “Mfuzz” was used to analyze the expression 
tendency of DEGs, and the tendency was discernible. Analy-
sis revealed that DEGs were mainly divided into two dis-
tinct categories, with either down- or upregulation, although 
there were genes with sample specificity (Fig. 3A). The GO 
enrichment analysis revealed that the majority of the top 20 
enriched GO terms were associated with either “chloroplast” 
or “photosynthesis,” suggesting a significant effect on pho-
tosynthesis (Fig. 3B and Table S3). The enriched GO terms 
included “GO:0009535, chloroplast thylakoid membrane,” 
“GO:0055035, plastid thylakoid membrane,” “GO:0019684, 
photosynthesis, light reaction,” and “GO:0015979, photo-
synthesis,” (Fig. 3B).

KEGG enrichment analysis of DEGs

To investigate the particular pathway of the downregulated 
and upregulated DEGs, KEGG enrichment analysis was con-
ducted (Fig. 4). The top 25 KEGG enrichment pathways of 
downregulated DEGs, including “photosynthesis,” “Fructose 
and mannose metabolism,” “Carotenoid biosynthesis,” and 
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“Nitrogen metabolism,” suggest that these pathways were 
inhibited during CLas infection (Fig. 4A and Table S4). 
Conversely, the top 25 KEGG enrichment pathways of 
upregulated DEGs encompass “Amino sugar and nucleotide 
sugar metabolism,” “Phenylpropanoid biosynthesis,” “Oxi-
dative phosphorylation,” and “Starch and sucrose metabo-
lism,” signifying that these pathways were augmented during 
CLas infection (Fig. 4B and Table S5).

DEGs associated with biotic stress in C. sinensis 
during CLas infection

Analysis of C. sinensis during CLas infection uncovered 
a range of DEGs associated with biotic stress, including 
those involved in hormone signaling, cell wall, proteolysis, 
redox state, transcription factors, and secondary metabolites 
(Fig. 5A and Table S6). Specifically, analysis of differen-
tially expressed genes (DEGs) involved in gibberellin sign-
aling (Fig. 5A and Table S6) revealed that two ent-kaurene 
oxidase genes were upregulated, while the third showed 
downregulation. Additionally, two gibberellin 20-oxidase 
genes were downregulated, while two gibberellin receptor 
GID1 genes were upregulated and one gibberellin 2-oxidase 

gene demonstrated downregulation. Furthermore, the iso-
chorismate synthase gene was downregulated, while two sal-
icylic acid 3-hydroxylase genes were upregulated in relation 
to salicylic acid metabolism. Lastly, the majority of DEGs 
connected to cell wall metabolism and redox state, such as 
expansin, peroxidases, and glutathione S-transferase genes, 
showed an upregulation (Fig. 5A and Table S6).

DEGs associated with photosynthesis in C. sinensis 
during CLas infection

In order to evaluate the influence of photosynthesis on 
CLas infection, MapMan software was used to analyze 
the expression levels of DEGs in photosynthesis (Fig. 5B 
and Table S7). Results indicated a decrease in expression 
of DEGs associated with Photosystem I and II, such as 
LHCa1/2/3/4, PsaK, PsaL, PsaN, LHCb1/2/3, LHCb4/5/6, 
PsbTn, PsbW, and PsbQ (Fig. 5B and Table S7). Most of 
the DEGs that form part of the Calvin cycle also showed 
a decrease in expression, apart from a gene encoding the 
RuBisCo heterodimer small subunit and a gene encoding 
fructose 1,6-bisphosphate aldolase (Fig. 5B and Table S7). 

Fig. 1  Determination analysis of chlorophyll content and oxidation–
reduction enzyme activity of CLas free and -infected citrus plants. 
A Content of chlorophyll, B activity of ascorbate peroxidase (APX), 
C activity of catalase (CAT), D activity of glutathione reductase 

(GR), E activity of peroxidase (POD), E activity of superoxide dis-
mutase (SOD). Statistical analysis revealed significant differences (p 
value < 0.05) between the groups, as indicated by different letters



503Transcriptome analysis of Citrus sinensis reveals potential responsive events triggered…

1 3

Moreover, four out of five DEGs associated with ATP syn-
thase had decreased expression.

Examination of RNA editing events 
and their frequency alteration in chloroplast 
and mitochondrion of C. sinensis during CLas 
infection

A systematic analysis of DEGs encoded by the genome of 
chloroplast and mitochondrion were conducted, and 13 and 
9 DEGs were identified respectively (Fig. 6 and Figure S1). 
The DEGs in the chloroplast were associated with photosys-
tem I and II, including psbK, ndhB, petA, and psaJ genes, all 
of which were downregulated (Fig. 6C). In contrast, the only 
DEG in the mitochondrion, nad6, which is involved in oxida-
tive phosphorylation, was upregulated (Figure S1C). To gen-
erate reliable RNA editing events, the common RNA edit-
ing events from MOCK and HLB samples were utilized for 
further study (Fig. 7A and S2A). Most of the common RNA 
editing events were cytimidine mutant to uracil, which was 
marked as thymine (Table S8, S9, and S10). Significantly 
decreased RNA editing frequencies were observed for some 

RNA editing events, such as the rps14 gene in chloroplast 
and the cob gene in mitochondrion, during CLas infection 
(Fig. 7B and S2B). Bioinformatic analysis generated RNA 
editing events, which were verified by PCR amplification 
and Sanger sequencing. The peaks of the sequencing results 
indicated the presence of the editing events (Fig. 8).

RT‑qPCR verification of transcriptome data

To validate the accuracy of the transcriptome results, we 
conducted RT-qPCR analysis and compared the expression 
tendency of nine candidate genes using their RT-qPCR and 
RNA-seq data. Results showed that eight of the nine genes 
were upregulated and one gene, Cs_ont_6g016140, was 
downregulated (Fig. 9). The expression patterns of these 
genes were consistent with the FPKM value of RNA-seq 
analysis. For instance, Cs_ont_5g006680, a WRKY tran-
scription factor, was induced about 3.50-fold during CLas 
infection as determined by RT-qPCR analysis (Fig. 9). Simi-
larly, the log2FC of Cs_ont_5g006680 was 3.79-fold accord-
ing to the RNA-seq analysis. This suggests that the RNA-seq 
data is highly reliable.

Fig. 2  Comparison transcrip-
tome analysis of CLas free and 
-infected citrus plants. A Cluster 
analysis, B principal component 
analysis, C volcano map analy-
sis, D number of differentially 
expressed genes. “MOCK” 
referred to CLas free Citrus 
sinensis samples and “HLB” 
referred to CLas infected sam-
ples. the number after MOCK 
or HLB indicated the number of 
biological replicates
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Fig. 3  Gene expression tendency and GO enrichment analysis of dif-
ferentially expressed genes between CLas free and -infected citrus 
plants. A Gene expression tendency analysis and B GO enrichment 

analysis. The size of each circle was proportional to the gene numbers 
of the related GO term
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Discussion

The utilization of high-throughput sequencing technology 
has enabled researchers to analyze the interactions between 
pathogens and plants, providing an effective means of ana-
lyzing HLB (Wang et al. 2016; Naidoo et al. 2018). Studies 
on this subject have revealed that photosynthesis, phytohor-
mone metabolism, and signaling pathways are significantly 
altered due to HLB, with marked responses observed in 
biotic stress related differentially expressed genes (DEGs) 

(Balan et al. 2018; Arce-Leal et al. 2020; Weber et al. 2022; 
Liu et al. 2023).

CLas infection caused a significant decrease 
in photosynthesis process of C. sinensis

The starch accumulation in citrus plants infected with HLB 
is abnormally high, resulting in the destruction of chloro-
plasts and degradation of chlorophyll (Etxeberria et al. 2009). 
Accordingly, CLas infection in citrus plants caused a blockage 

Fig. 4  KEGG enrichment 
analysis of differentially 
expressed genes between CLas 
free and -infected citrus plants. 
A Downregulated genes and B 
upregulated genes
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Fig. 5  MapMan analysis of differentially expressed genes between HLB-uninfected and -infected citrus plants. A Biotic stress-related genes and 
B photosynthesis-related genes. PEX referred to peroxisome and MTC referred to mitochondria
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in photosynthesis processes. The expression profiles of pho-
tosynthesis related genes were dramatically influenced. The 
photosynthesis processes enriched by DEGs in MapMan were 
downregulated in HLB-diseased fruits (Zhao et al. 2019). 
Remarkably, the DEGs associated with the light reactions of 
photosynthesis displayed a decrease in susceptible C. sinensis, 
while not showing any alteration in tolerant C. hystrix under 
CLas infection (Hu et al. 2017). Most DEGs related to pho-
tosynthesis were downregulated in CLas infected periwinkle 
(Liu et al. 2019). Through our study, we identified 125 DEGs 
that are related to photosynthesis (Table S6). Out of these, only 
nine were upregulated, while the rest associated with photosys-
tem I and II were downregulated, suggesting that photosynthe-
sis in the leaves of C. sinensis “Newhall” has been significantly 
suppressed.

CLas infection caused a significant dynamic change 
in hormone signaling of C. sinensis

Plant hormones are essential for plants, as they are involved 
in the responses to a variety of pathogenic infections, insect 
infestations, and abiotic stresses (Bari and Jones 2009). Our 
study revealed a great number of DEGs related to hormone 
signaling were observed during CLas infection (Table S7). 
Auxin functions as a balancing agent between JA and SA, 
connecting the defense response and development of plants 
when they interact with pathogens (Kazan and Manners 
2009). The Aux/IAA genes act as transcriptional repres-
sors, controlling the auxin signaling transduction process 
(Reed 2001). The PIN proteins facilitate the movement 
of auxin (Adamowski and Friml 2015). We identified 22 

Fig. 6  Analysis of differentially expressed genes in the chloroplast genome between CLas free and -infected citrus plants. A Volcano map analy-
sis, B heatmap analysis, and C MapMan analysis
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Fig. 7  RNA editing events 
observed in genes coded in the 
chloroplast genome. A Venn 
diagram analysis and B example 
genes with RNA editing events. 
“MOCK” referred to CLas 
free Citrus sinensis samples 
and “HLB” referred to CLas 
infected samples. The percent-
age number that followed each 
bar graph was representative of 
the frequency of RNA editing 
events

Fig. 8  PCR verification of RNA editing events in the chloroplast 
genome. A ndhD, B rpoA, C atpA, and D ropB. Labels indicating 
the genome location of RNA editing events were placed beneath 
the sequencing peak diagrams. “MOCK” referred to PCR products 

amplified from the cDNA of CLas free Citrus sinensis samples while 
“HLB” referred to CLas infected samples. “Reference” referred to 
PCR products amplified from the genomic DNA of CLas free C. sin-
ensis samples
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auxin-related DEGs (Table S7), 8 of which were down-
regulated, including YUCCA , Aux/IAA, MES17, and PIN. 
The other 14 upregulated DEGs also contained these genes, 
demonstrating a divergence in gene function during CLas 

infection in auxin signaling metabolism. Five SA-related 
DEGs were identified, including one ICS, two NPR3/4, and 
two DLO, as well as ten JA-related DEGs with seven upregu-
lated, such as LOX, AOC, JAT, and ACS (Table S7). There 

Fig. 9  RT-qPCR verification analysis of differentially expressed 
genes between CLas free and -infected citrus plants. A Cs_
ont_1g026400, B Cs_ont_1g029550, C Cs_ont_2g012750, D Cs_
ont_3g016900, E Cs_ont_3g016840, F Cs_ont_5g006060, G Cs_
ont_5g006680, H Cs_ont_6g016140, and I Cs_ont_8g025430. The 
heatmaps above the histograms displayed the average FPKM value of 

both “MOCK” and “HLB” samples. “MOCK” referred to PCR prod-
ucts amplified from the cDNA of CLas free Citrus sinensis samples 
while “HLB” referred to CLas infected samples. Statistical analysis 
revealed significant differences (p value < 0.05) between the groups, 
as indicated by asterisks
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were 14 DEGs related to GA, 6 of which were downregu-
lated, and 14 DEGs related to ABA, 8 of which were down-
regulated. Additionally, 15 DEGs related to CK were identi-
fied, 10 of which were downregulated, including IPT, LOG, 
AHP, and IPT. Plant hormones play an important role in 
balancing the development and defense responses of plants 
when they encounter pathogens (Kazan and Manners 2009). 
Generally, SA and JA related DEGs were both affected due 
to the close relationship between these two plant hormones 
and plant immunity (Hou and Tsuda 2022); however, in our 
study, we found that the majority of DEGs were related to 
auxin, followed by CK, GA, and ABA. It is possible that 
HLB is caused by an immune response that has been pro-
voked by a pathogen (Ma et al. 2022).

CLas infection caused activation in ROS‑related 
genes of C. sinensis

ROS are highly toxic and play a key role in various processes 
related to plant growth, development, and defense (Shetty 
et al. 2008). ROS are also responsible for systemic reac-
tions during plant-pathogen interactions (Bolwell and Daudi 
2009). In C. sinensis, ROS were elicited in response to CLas 
infection (Ma et al. 2022). A previous study documented that 
the expression of RbohB, RbohC, RbohD, and RbohF was 
increased, while SOD, APX, CAT , and GR were decreased 
in both Valencia and SB mandarin (Ribeiro et al. 2023). 
Results of our study demonstrated a significant increase 
in the activity of CAT, POD, and SOD and a decrease in 
the activity of APX and GR in response to CLas infection 
(Fig. 1). According to a recent study, CLas infection stimu-
lated the activity of CAT, POD, and SOD in C. maxima 
and C. reticulata (Wu et al. 2023). However, another study 
revealed that CAT and SOD activities decreased, with no 
change in POD activity in C. junos (Chen et al. 2022). It 
appears that various Citrus species reacted differently to 
CLas infection. Correspondingly, the expression of Rboh, 
APX, MDAR, Trxh, and multiple GST genes was upregulated 
in the presence of HLB (Fig. 5A and Table S6).

RNA‑editing events were influenced during CLas 
infection in the plant organellar of C. sinensis

RNA-editing events were ubiquitous in cells and participated 
in a lot of biological processes. Studies conducted by Yang 
et al. (2020) found that NbMORF8 reduces plant immunity 
to Phytophthora via RNA editing, whereas AtSLO2 improves 
plant resistance to Botrytis cinerea through the same mecha-
nism (Zhu et al. 2014). In our research, we identified a sub-
stantial amount of RNA editing events in the chloroplast 
and mitochondrion and observed that the editing frequencies 
of some of these events were impacted by CLas infection. 
Pentatricopeptide repeat (PPR) proteins were responsible for 

plant organellar RNA editing (Small et al. 2020). However, 
few PPR proteins were identified and functional analyzed 
in C. sinensis. We hypothesized that CLas infection could 
disrupt the functioning of PPR proteins during RNA editing. 
Nevertheless, the correlation between these RNA-editing 
events and the pathogenesis of CLas is yet to be determined, 
and further experiments must be conducted to gain a better 
understanding of this relationship.

Conclusions

Our research has revealed that citrus plants affected by HLB 
experience considerable physiological changes, including 
chlorophyll content and the activity of APX, CAT, GR, 
POD, and SOD. In addition, HLB affects the expression of 
genes related with the metabolism of phytohormone such 
as Auxin, CK, GA, and JA and inhibited most of the genes 
participated in the photosynthesis pathway. Furthermore, the 
RNA editing events were disturbed as the editing frequency 
of specific nucleotide sites was changed by CLas infection. 
Our discovery provides a new perspective on revealing the 
pathogenic mechanism of HLB.
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