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Abstract
Tetradesmus is a microalgal genus with biotechnological potential due to its rapid production of biomass, which is plenty 
in proteins, carbohydrates, lipids, and bioactives. However, its morphology and physiology need to be determined to guide 
better research to optimize the species cultivation and biocompounds processing. Thus, this study describes the biochemistry 
and morphology of the strain Tetradesmus obliquus BR003, isolated from a sample of freshwater reservoirs in a Brazilian 
municipality. In the T. obliquus BR003 dry biomass, we identified 61.6% unsaturated fatty acids, and 3.4% saturated fatty 
acids. Regarding other compounds, 28.50 ± 1.47 g soluble proteins/100 g, 0.14 ± 0.009 g carotenoids/100 g, 0.76 ± 0.013 g 
chlorophyll a/100 g, and 0.42 ± 0.015 g chlorophyll b/100 g with a chlorophyll a/b ratio of 1.8 were detected. The main 
chemical elements found were S, Mg, and P. The cells of BR003 were elliptically curved at the ends and without appendages. 
Histochemical tests showed carbohydrates distributed in the cytoplasm and pyrenoids, some lipid droplets, and proteins. The 
cytoplasm is rich in vacuoles, rough endoplasmic reticulum, mitochondria, and chloroplasts. The nucleus has a predominance 
of decondensed chromatin, and the cell wall has three layers. Chloroplasts have many starch granules and may be associ-
ated with a spherical central pyrenoid. To the best of our knowledge, this was the first biochemical description combined 
with ultrastructural morphological characterization of the strain T. obliquus BR003, grown under standard conditions, to 
demonstrate specific characteristics of the species.

Keywords  Scenedesmus obliquus · Green algae · Microscopy · Histochemistry

Introduction

Microalgae use inorganic and organic components to pro-
duce and accumulate biocompounds that can be used in vari-
ous agro-industrial segments (Rizwan et al. 2018). They are 
promising for agriculture since it is possible to produce them 
using anthropogenic emissions such as carbon dioxide, agro-
industrial effluents, and wastewater for agriculture (Falconí 
et al. 2021; Rocha et al. 2019). Microalgae have been used 
in animal and human food (Amorim et al. 2020a; Hossain 
et al. 2017and in the production of bread (Uribe-Wandurraga 
et al. 2019; García-Segovia et al. 2017), yogurt (Barkallah 
et al. 2017), and pasta (Fradique et al. 2010).

Microalgae can accumulate high levels of essential fatty 
acids that are relevant to nutrition, like polyunsaturated 
fatty acids ω-3 (eicosapentaenoic and docosahexaenoic 
acids), ω-6 (arachidonic and linoleic acids), and ω-9 (oleic 
and nervonic acids) (Guedes et al. 2011; Rubio-Rodríguez 
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et al. 2010). Additionally, microalgae have high levels of 
pigments, including chlorophylls, xanthophylls, and caro-
tenes used as natural food dyes (Bermejo et al. 2007). Some 
microalgae can also accumulate high levels of reserve car-
bohydrates and lipids (Takeshita et al. 2014).

Detailed knowledge of the accumulation phenomena of 
biochemical components in specific strains or genera of 
microalgae is scarce, mainly due to the diversity of these 
photosynthesizing microorganisms. Knowledge of a micro-
algae strain’s cellular structure can help develop methods for 
monitoring productivity in commercial farms and more effi-
cient biomass biorefining processes (Bensalem et al. 2020).

Among the various genera of microalgae, Tetradesmus 
(Chlorophyceae) (Wynne and Hallan, 2015), formerly 
Scenedesmus, present commercial use potential (Breuer 
et al. 2014; Dahlin et al. 2018). Tetradesmus are character-
ized by a high degree of phenotypic plasticity, with great 
differentiation between strains (Lürling 2003). It can with-
stand adverse conditions such as temperature variations, 
nutritional stress, and predation (Lürling 2003; Rocha et al. 
2019; Covell et al. 2019).

Tetradesmus obliquus BR003, a Chlorophyte green algae 
of tropical origin (Rocha et al. 2017), has been broadly char-
acterized by its metabolic diversity under different grow-
ing conditions. Amorin et al. (2020) cultivated BR003 in 
a pond with an adductor canal for 15 days to optimize the 
extraction of proteins and lipids and obtained biomass with 
just over 33% and 5% of soluble proteins and lipids, respec-
tively. Vieira et al. (2020), under similar conditions, obtained 
approximately 32% of proteins, a little more than 10% of 
lipids, 0.6% of total chlorophyll, and 0.16% of carotenoids. 
Covell et al. (2020) evaluated alternative growth media for 
BR003 indoors and outdoors. After 10 days of culture, they 
found approximately 16% of lipids, 45% of proteins, 35 µg/
mg of total chlorophyll, and 9 µg/mg of carotenoids. Silva 
et al. (2020) studied the food safety of T. obliquus biomass 
in an animal model. The biomass cultivated for 12 days con-
tained a significant amount of protein (40.42%), insoluble 
fiber (16.23%), soluble fiber (3.14%), phenolic compounds 
(1.96%), carotenoids (1.10%), oleic C18:1 (1.38%), linoleic 
C18:2 (0.95%), and linolenic acids C18:3 (0.28%). Rocha 
et al. (2019) described the greater accumulation of esterifi-
able neutral lipids (mono-, di-, and tri-glycerols) and free 
fatty acids for BR003 under specific cultivation condi-
tions. Rocha et al. (2017) reported higher productivity for 
BR003 compared to other strains. Despite the suitability of 
T. obliquus BR003 for biotechnological use (Amorim et al. 
2021; Vieira et al. 2021), its morphology has not yet been 
characterized. The species identification was performed 
only by the molecular phylogeny of the 18S ribosomal RNA 
sequences and the ITS2 internal transcribed spacer region 
(Rocha et al. 2017). These authors found 18% of lipids, 
with C16, C18:1, and C18:2 being the most expressive fatty 

acids. Therefore, the present study describes the biochemi-
cal composition of reserve compounds (lipids, chlorophyll, 
carotenoids, and proteins) in combination with the cytol-
ogy and morphology of T. obliquus BR003. These types of 
information can contribute to research lines that optimize 
pre-treatment techniques to obtain algal biocompounds.

Material and methods

Production and cultivation of Tetradesmus obliquus 
BR003

The strain T. obliquus BR003 was previously isolated from 
a sample of freshwater reservoirs on the campus of the Uni-
versidade Federal de Viçosa (UFV) (Rocha et al. 2017) and 
kept in the Collection of Cyanobacteria and Microalgae 
(CCM-UFV) of the Laboratory of Phycology and Molecular 
Biology of the Department of Plant Biology (UFV), Viçosa, 
Minas Gerais, Brazil.

The biomass of T. obliquus BR003 was produced as 
described by Covell et  al. (2020), using BG11 culture 
medium (Rippka et al. 1979) under conditions of pH 7.0, 
24 ± 1 °C, 70 µmol/m2/s light intensity, 16:8 h (light:dark) 
photoperiod, and 100 rpm of orbital shaking. After 68 h, 
cells of T. obliquus BR003 in the exponential growth phase 
were collected by centrifugation at 4000 g for 5 min at 4 °C. 
The precipitate was resuspended in deionized water follow-
ing further centrifugation and repeated three times. One part 
of the biomass was frozen at − 20 °C, lyophilized (Terroni, 
LS 30,000, Brazil) at − 48 °C for 24 h, and another part was 
diluted in a solution suitable for each evaluation.

Determination of the fatty acid profile

The determination of the fatty acid profile of T. obliquus 
BR003 was performed from the transesterification of lipids 
extracted with a mixture of chloroform and methanol (2:1). 
The transesterification reaction was performed using an 8% 
solution (v/v) of HCl in methanol at 100 °C for 1 h (Ichihara 
and Fukubayashi 2010). Methyl esters were recovered with 
hexane, identified, and quantified in a gas chromatograph 
coupled to a flame ionization detector (GC-2010, Shimadzu, 
Japan) equipped with a 100 m × 0.25 mm capillary column 
(SP-2560, Sigma-Aldrich, USA). The analysis was per-
formed by direct injection of 1 µL of the sample. Helium 
was used as a carrier gas, maintaining a constant flow rate 
of 40 mL/min and pressure of 363 kPa. The separation of 
methyl esters from fatty acids occurred using a linear heating 
ramp from 60 to 330 °C at a heating rate of 20 °C/min. The 
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identification of the peaks was confirmed by comparison 
with a mixture of fatty acid methyl ester patterns (Supelco 
37 FAME mix, Sigma-Aldrich, United States).

Total chlorophyll and carotenoids

A 2 mL volume of methanol with 99.9% purity was added 
in 2 mg of the lyophilized biomass. The extract was homog-
enized, incubated in the dark for 24 h at 45 ºC, and then 
centrifugated (Eppendorf, 5430, Germany) at 10,000 g for 
10 min. The supernatant was separated, and the absorbance 
was read in a spectrophotometer (Multskan GO, Thermo 
Scientific, Germany) at 470, 652, and 665 nm. The experi-
ments were performed in triplicate. The pigment content was 
determined using Eqs. 1, 2, 3, as proposed by Lichtenthaler 
(1987):

where A is the absorbance at the selected wavelengths, 
Cla and Clb represent chlorophyll a and chlorophyll b, 
respectively, and Car refers to carotenoid.

Proteins

Extraction of total hydrosoluble proteins was carried out 
according to Meijer and Wijffels (1998), and quantification 
was performed by Lowry’s method (Lowry et al. 1951), as 
described by Rocha (2019). Bovine serum albumin (frac-
tion V powder, Sigma-Aldrich, USA) was used to prepare 
the standard curve. The experiments were performed in 
triplicate.

Light microscopy

T. obliquus BR003 cells were fixed in Zamboni solution 
(Castro et al. 2020) for 24 h. The fixed cells were dehydrated 
using a gradient of aqueous ethanol solutions (70%, 80%, 
90%, and 95%, v/v) and soaked in historesin Leica. Two-
micrometer-thick sections were stained with hematoxylin 
and eosin and analyzed under a light microscope (Bx60, 
Olympus, Japan).

Histochemistry

Another set of slices was submitted to the Schiff periodic 
acid (PAS) test to detect neutral carbohydrates and glyco-
conjugates, Nile blue to detect acidic and neutral lipids, and 
mercury-bromophenol to detect total proteins (Pearse, 1953).

(1)Clo(�g∕mL) = 16.72A
665

− 9.16A
652

(2)Clb(�g∕mL) = 34.09A
652

− 15.28A
665

(3)Car(�g∕mL) = 1000A
470

− 1.63Cla − 104.96Clb

Confocal microscopy

Three samples of viable cultures of T. obliquus BR003 cells 
were washed twice with phosphate-buffered saline (PBS) 
(0.1 M and pH 7.2), buffer A, and centrifugated (Eppendorf, 
5430, Germany) at 4.000 g for 5 min. The cells were then 
incubated in a mixture of 20 µg/mL propidium iodide (for 
DNA visualization) and 2 µg/mL fluorescein isothiocyanate 
in buffer A (for protein visualization) for 15 min each in 
the dark (Ribeiro et al. 2018). The samples were washed 
with buffer A and examined under a confocal laser scanning 
microscope (Zeiss LSM 510 Meta, Germany) with argon 
laser excitation at 488 and 514 nm, autofluorescence with 
650 nm emission, and pinholes in 3 airy units.

Cell viability

In order to describe a straightforward methodology to evalu-
ate a pre-treatment technique for the release of T. obliquus 
BR003 metabolites, three samples of viable cultures were 
washed twice with PBS (0.1 M and pH 7.2) containing 1% 
(v/v) Triton X-100 by centrifugation (Eppendorf, 5430, 
Germany) at 4.000 g for 5 min and subsequent sonication 
(Vibra Cell, Sonics and Materials, Inc., USA) for 30 min. 
The working cycles were 5 s for sonication and 2 s for pul-
sation, with an amplitude of 40% and frequency of 40 kHz 
at 50 °C. Finally, the samples were cooled in an ice bath 
to 25 °C and centrifuged at 4000 g for 5 min, followed by 
incubation with fluorescent markers and photography under 
the same conditions as conventional confocal microscopy. 
Intact cells appeared red, while dead or damaged cells were 
stained green and/or magenta.

Scanning electron microscopy

T. obliquus BR003 cells were fixed in a 2.5% solution (v/v) 
of glutaraldehyde in 0.05 M sodium cacodylate buffer at 
pH 7.2 (buffer B) for 2 h and then fixed with a 1% osmium 
tetroxide solution (m/v) in buffer B at room temperature for 
2 h. The cells were washed three times in buffer B, dehy-
drated in a series of ethanol solutions (70, 80, 90, 95% 
v/v), and three times in anhydrous ethanol (Ribeiro et al. 
2018). The dehydrated cells were dried in hexamethyldisi-
lazane (HMDS), covered with gold (15 nm thick) (Quorum, 
Q150RS, UK) (Berger et al. 2016), and analyzed under an 
LEO 1430 VP scanning electron microscope (Carl Zeiss, 
UK) at 20 kV.

Energy dispersion X‑ray spectroscopy

The lyophilized biomass of T. obliquus BR003 was covered 
with carbon (15 nm thick) in an evaporator (Quorum Q150T-
E, United Kingdom) to evaluate the distribution of chemical 
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elements. Next, the system was analyzed in an X-ray micro-
probe (X-EDS, IXRF Systems, USA) coupled to the LEO 
1430 VP scanning electron microscope (Carl Zeiss, UK). 
The distribution of chemical elements was normalized to 
the carbon, oxygen, and nitrogen distributions (Ladeira et al. 
2020).

Transmission electron microscopy (TEM)

T. obliquus BR003 cells were transferred to a solution at 
2.5% (v/v) glutaraldehyde in 0.1 M sodium cacodylate buffer 
at pH 7.2 (buffer C) containing 2% (m/v) sucrose for 24 h. 
After this period, the samples were washed with buffer C 
three times for 10 min. The samples were postfixed in 1% 
(m/v) osmium tetroxide for 2 h, washed three times with 
deionized water, dehydrated using a gradient of an aque-
ous ethanol solution (70, 80, 90, and 95% v/v), and soaked 
in LR-White resin (London Resin Company, Basingstoke, 
UK) (Farder-Gomes et al. 2019). Ultrafine sections were 
arranged in copper grids, contrasted with 5% aqueous solu-
tion (m/v) of aqueous uranyl acetate for 30 min, with lead 
citrate (Reynolds, 1963) for 5 min, and analyzed in a Zeiss 
Libra 120 transmission electron microscope (Carl Zeiss, 
Germany).

Results

Biochemistry

In the T. obliquus BR003 dry biomass, we identified 61.6% 
unsaturated fatty acids (UFAs) and 3.4% saturated fatty acids 
(SFAs). Palmitic acid C16:0 was the main saturated fatty 
acid (SFA). For monounsaturated fatty acids (MUFAs), 
oleic acid C18:1n9c was extracted at a higher quantity 
than elaidic acid C18:1n9t. For polyunsaturated fatty acids 
(PUFAs), γ-linolenic acid C18:3n6 was obtained in higher 
quantity than linoleic acid C:18:2n6c. The PUFA/SFA and 
MUFA/SFA ratios were 0.56 and 1.04, respectively. Regard-
ing other compounds, 28.50 ± 1.47 g soluble proteins/100 g, 
0.14 ± 0.009 g carotenoids/100 g, 0.76 ± 0.013 g chlorophyll 
a/100 g, and 0.42 ± 0.015 g chlorophyll b/100 g with a chlo-
rophyll a/b ratio of 1.8 were detected.

Morphology

The isolated or aggregated cells of T. obliquus BR003 
were similar, and the following morphological description 
refers to both types. The cells were elliptical, approximately 
10 µm long, individualized (Fig. 1A) or in coenobia of four 
(Fig. 1B) to eight laterally connected cells (Fig. 1C), but 

without alignment of the edges (Fig. 1B-C). The cell surface 
was rough and had longitudinal protrusions in the median 
region (Fig. 1A).

Energy-dispersive X-ray spectroscopy, after normalized 
by the distribution of carbon, oxygen, and nitrogen, showed 
that S > Mg > P were the main chemical elements, followed 
by Co > Zn > Cu, with Mn, Mo, and Si being the most vari-
able (Fig. 2).

Fig. 1   Scanning electron micrographs of Tetradesmus obliquus 
BR003, showing the cell individualized (A) or grouped in coenobia 
of 4 (B) or 8 cells (C). Arrow indicates longitudinal ridges
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Confocal microscopy of intact T. obliquus cells showed 
no positive reaction for proteins (Fig.  3B) and DNA 
(Fig. 3C), but autofluorescence of chlorophyll was observed 
(Fig. 3D). However, after treatment with detergent Triton 
X-100 and mechanical rupture by ultrasound, the autofluo-
rescence remained less expressive (Fig. 3I). There was a 
positive reaction of proteins (Fig. 3G) and DNA (Fig. 3H). 
The labeling of protein with fluorescein isothiocyanate was 
visible and intensified, internalized (empty arrow), and 
extravasated (double arrow). The labeling of nucleic acids 
(solid arrow) by propidium iodide was also visible.

Histochemical tests of T. obliquus BR003 showed few 
acidophilic cytoplasmic compartments, some basophilic 
ones, and basophilic spherical nuclei (Fig. 4A). The PAS test 
revealed carbohydrates distributed throughout the cytoplasm 
and a strong reaction in a spherical body in each chloro-
plast, corresponding to the pyrenoid (Fig. 4B). Histochem-
istry for lipids indicated some droplets distributed within 
the cytoplasm (Fig. 4C). The mercury-bromophenol test for 
total proteins demonstrated a strong positive reaction in the 
nucleus and cytoplasmic regions (Fig. 4D).

The cells had a well-developed nucleus with some vacu-
oles, chloroplasts occupying almost the whole cytoplasm, 
and the predominance of decondensed chromatin (Fig. 5). 
The cell wall had three well-defined layers (Fig. 6). The 
outer layer is the trilaminar sheath, followed by a fibrous 
layer and an electron-dense inner layer in contact with the 
cell’s plasma membrane (Fig. 6A). The cell wall filled the 
edges of the microalgae with a predominance of fibrous 
material (Fig. 6B).

Chloroplasts were rich in starch granules, and some were 
associated with the spherical central pyrenoid (Fig. 7A-C). 
Starch granules had a crescent moon shape when associated 
with the pyrenoid. There was an extensive thylakoid mem-
brane that, in some regions, was close to the plastoglobules 
(Fig. 7C-D). The cytoplasm around the chloroplasts was rich 
in vacuoles, rough endoplasmic reticulum, mitochondria 
(Fig. 7B-D), some elements of the Golgi complex (Fig. 8A), 
and chloroplasts with abundant starch (Fig. 8B). Thus, chlo-
roplasts found in the cytoplasms were starch stores (Fig. 8B).

Discussion

The microalga Tetradesmus obliquus BR003, under salt 
stress conditions, accumulated more esterifiable neutral 
lipids (mono-, di-, and tri-glycerols) and free fatty acids 
(Rocha et al. 2019), showing that nutrition and light avail-
ability affect the content of important compounds for the 
bioenergy and food industries. The unsaturated fatty acids 
of T. obliquus BR003 are mostly oleic acid (C18:1n9c) and 
γ-linolenic acid (C18:3n6), whereas palmitic acid (C16:0) 
is the main saturated fatty acid (Table 1). The PUFA/SFA 
(0.56) and MUFA/SFA (1.04) ratios are higher than the min-
imum recommendation PUFA/SFA of 0.45 for the human 
diet (Cuthbertson 1989). Fatty acids synthesized by micro-
algae produced under different growth conditions have 16 
to 18 carbons and are similar to the fatty acids found in vas-
cular plants (Guedes et al. 2011; Talebi et al. 2013). Some 
fatty acids, as palmitic, stearic, elaidic, oleic, linoleic, and 

Fig. 2   Percentage distribution 
(mean ± SD) of chemical ele-
ments present in the biomass of 
Tetradesmus obliquus BR003 
from energy-dispersive X-ray 
spectroscopy analysis. The val-
ues represent the X-ray emission 
spectrum for the analyzed ele-
ments (X-ray emission spectrum 
of the element/X-ray emission 
spectrum of the total elements). 
CON = sum of the percentages 
of the elements carbon, oxygen, 
and nitrogen
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linolenic, are rich in ω-3, ω-6, and ω-9 and can be considered 
functional and nutraceutical foods. They are also substrates 
to produce biodiesel. Arthrospira platensis (Spirulina) has a 
PUFA/SFA ratio of 0.88, and this cyanobacterium is a refer-
ence for the food industry (Oliveira et al. 2010). Therefore, 
the fatty acids found in T. obliquus BR003 indicate that this 
microalga has the potential for food application. Some stud-
ies have shown that advanced techniques of nutrition and 
cultivation may stimulate the accumulation of lipids in the 
T. obliquus BR003 strain (Covell et al. 2020; Rocha et al. 
2019).

The soluble protein content (28.50 ± 1.47 g soluble/100 g) 
in T. obliquus BR003 is similar to those reported for this spe-
cies (Rocha et al. 2019). Amorim et al. (2021) shown that in 
tropical temperatures and under production conditions with 
an abundance of nitrogen, the strain BR003 is a promising 
alternative for obtaining biomass rich in protein.

Regarding chlorophyll contents, the total values obtained 
(1.19 g/100 g) and carotenoids (0.14 g/100 g) are lower 
than those previously reported for this strain (Covell et al. 
2020; Rocha et al. 2017). Chlorophyll a is the most abun-
dant photosynthesizing pigment in T. obliquus. The micro-
algae contain high lutein and chlorophyll b levels than other 
photosynthesizing pigments like neoxanthin, loroxanthin, 
and violaxanthin (Wiltshire et al. 2000). Specific cultiva-
tion and nutrition procedures can modulate the accumula-
tion of certain biochemical classes (lipids, carbohydrates, or 
proteins) in T. obliquus (Amorim et al. 2020b; Covell et al. 
2020; Rocha et al. 2019, 2017; Soares et al. 2018). However, 
the duration of cultivation of T. obliquus BR003 evaluated 
here was shorter than those in previous studies (Covell et al. 
2020; Rocha et al. 2019), which may explain the lower val-
ues of some biocompounds.

As for morphology, one of the ornamental characteris-
tics that help identify the genus Tetradesmus is the long and 
curved spines attached to the ends of the cells, as described 
in two species of Scenedesmus by Staehelin and Pickett-
Heaps (1975). The present study identified the BR003 
strain described in a previous report of molecular phylog-
eny analyses (Rocha et al. 2017). The use of scanning elec-
tron microscopy (Fig. 1) shows us that T. obliquus cells are 
elliptical, without appendages (spines) (Lürling 2003) and 
curved edges (Hegewald et al. 2013). The genus Tetradesmus 
can form cenobium obes containing 4, 8, 16, or more cells 
(Giraldo-Zuluaga et al. 2018). We found T. obliquus BR003 
forming the coenobium obes with eight cells. In Fig. 1A, the 
BR003 strain presented bulges in the cell length direction 
that characterize well-defined longitudinal streaks, similar to 
those observed for two species of non-verrucous Scenedes-
maceae from a temperate climate. The scanning microscopy 
also showed the formation of a characteristic coenobium 
(Hegewald et al., 2013), a defense strategy characteristic of 
the species (Oliveira et al. 2021).

Fig. 3   Confocal microscopy of Tetradesmus obliquus BR003. Bright 
field (A and F), protein (B and G) and DNA (C and H), chlorophyll-
autofluorescence (D and I), and overlap in the microalga control (E) 
and treated with detergent Triton X-100 and subjected to ultrasound 
rupture (J). Empty arrow = intensified internalized protein labeling, 
double arrow = extravasated protein, solid arrow = nucleic acids
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Fig. 4   Histochemistry of 
microalga Tetradesmus obliquus 
BR003. A Conventional stain-
ing by hemtoxylin and eosin 
showing cells with a basophilic 
nucleus—N and slightly acido-
philic cytoplasm. B Histochem-
istry for starch showing a large 
reserve of starch in a spherical 
pyrenoid—Pi and small reserves 
of starch granules—Sg distrib-
uted by the cytoplasm. C The 
lipid test showing some lipid 
droplets—Li distributed through 
the cytoplasm. D The protein 
test showing an accumulation 
of nuclear proteins—Np, some 
strongly labeled cytoplasmic 
granules—Cg, and the cyto-
plasm weakly labeled by the test

Fig. 5   Transmission electron 
microgaphs of Tetradesmus 
obliquus BR003. A Overview 
of a cell in longitudinal section 
shown chloroplasts—Cl that 
occupy most of the cytoplasm 
and cytoplasmic vacuoles—Va. 
B Cross-section of a group of 
four cells separated by the cell 
envelope (arrows). Note that all 
cells are provided with broad 
nucleus—N and chloroplasts—
Cl containing pyrenoid—Pi

Fig. 6   Transmission electron micrographs of Tetradesmus obliquus 
BR003 showing in detail the cell wall—CW. A Three distinct layers 
form the cell wall; the outermost is the trilaminar sheath—TS, fol-
lowed by a cellulosic wall layer (fibrous material—white arrows) and 

the innermost has a higher density mature cell wall (*). The inner-
most layer is in contact with the cell membrane (black arrows). B The 
ends of the microalgae are filled by the cellulosic wall layer (white 
arrow). TS = trilaminar sheath; * = mature cell wall layer

943Biochemical and morphological characterization of freshwater microalga  Tetradesmus obliquus…
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In the present report, X-ray emission spectra were 
used to study the chemical composition of T. obliquus. 
Among the chemical elements present in the biomass of 
T. obliquus BR003, we found the element sulfur (S) as 
the main component, which is poorly studied for micro-
algal nutrition compared to C, N, and P (Omta et al. 
2020; Pedruzi et al. 2020). The elementary distribution 

also demonstrated that S, Mg, and P are, in this order, 
the main minerals present in T. obliquus BR003, while 
Co, Zn, and Cu occur in small amounts. Phosphorus and 
S are some main nutrients for microalgae growth and 
Fe and Mn in smaller quantities. Co, Zn, and Mo are 
essential nutrients in very low concentrations (Ghafari 
et al. 2018).

Fig. 7   Transmission electron 
micrographs of Tetradesmus 
obliquus BR003 showing 
in detail the chloroplasts. A 
Overview showing that chlo-
roplast—Cl occupies most of 
the cytoplasm. It has crescent-
moon-shaped starch gran-
ules—Ga that are associated 
with a spherical pyrenoid—Pi. 
B Detail of starch grains—Ga 
surrounding the pyrenoid—Pi. 
Note the presence of mitochon-
dria—M that are close to the 
chloroplast. C Cross-sectional 
chloroplast showing the pres-
ence of starch grains—Ga and 
plastoglobules—PG. Note 
the presence of cytoplasmic 
vacuoles located around the 
chloroplasts. D Detail of chloro-
plast showing the organization 
of thylakoid membranes (black 
arrows) interspersed with starch 
granules—Ga. The cytoplasmic 
region near the chloroplast 
is rich in rough endoplasmic 
reticulum—RER. Va = vacuoles

Fig. 8   Transmission electron micrographs of Tetradesmus obliquus 
BR003 showing in detail the cytoplasmic organelles. A Nucleus—N 
formed with decondensed chromatin and some lumps of condensed 

chromatin. Note element of the Golgi complex—CG and vacuoles—
Va. B Details of the elements of the Golgi complex—CG in different 
planes of section and chloroplasts with abundant starch—Am
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A challenge to refine microalgae biomass lies in cell dis-
ruption to recover intracellular compounds like lipids and 
proteins (Amorim et al. 2020a). Thus, the cell wall is the 
main structure avoiding microalgae cell disruption (Safi et al. 
2013), making it necessary pre-treatments to obtain a large 
compound yield (Khoo et al. 2020; Samarasinghe et al. 2012).

According to the taxonomic classes, the cell wall struc-
tures of microalgae differ in their organic constitution 
(Ryckebosch et al. 2012). In Phaeodactylum tricornutum 
(Bacillariophyceae), for example, different physical and 
mechanical treatments of cell disruption result in no signifi-
cant difference in the fatty acid content (Ryckebosch et al. 
2012). The cell wall structure of Tetradesmus sp. (Chloro-
phyceae) consists of a rigid carbohydrate network containing 
glucosamine (aminosaccharide), galactose, mannose, and a 
higher amount of glucose (Takeda 1996).

In our studies, the protection system of viable cells guar-
anteed impermeability for the tested fluorochromes (Fig. 3B 
and 3C), notably for propidium iodide (PI), widely used for 
bacterial viability assessment, because it stains DNA and 
RNA inside cells; however, it only crosses compromised 
plasma membranes and is therefore considered an indicator 
of cell membrane integrity (Rosenberg et al. 2019). There-
fore, when this protective system is sensitized or even par-
tially destroyed, PI can cross the barriers (cell wall, plasma 
membrane, and nuclear membrane) binding to the DNA. It 
is still possible to observe in Fig. 3F and Fig. 3J extrava-
sated intracellular content, not seen in Fig. 3A and Fig. 3E. 
Another observation refers to autofluorescence, and low 
autofluorescence levels were observed (Fig. 3I) compared 
to viable cells (Fig. 3D), possibly due to the loss of fluo-
rescent pigments during the applied treatment. Thus, spe-
cific pre-treatments are needed for this species to disturb 

the system, exposing its internal components (Fig. 3J) of 
great commercial interest (Amorim et al. 2021; Vieira et al. 
2021). Therefore, knowing that it is necessary to cause cell 
disruption to obtain biocompounds (Amorim et al. 2020b), 
models that allow us to assess the extent of this damage, 
even if qualitatively, are interesting to propagate. In that 
regard, we demonstrate that confocal microscopy can be a 
suitable model to assess pre-treatment techniques for the 
effective release of microalgal metabolites since intact cells 
have a good system of protection to external components, 
unlike injured or damaged cells. Furthermore, the fluores-
cence of biomarkers can facilitate the visualization or even 
confirm the extravasation of biocompounds. The confocal 
microscopy has been used to demonstrate cell damage in 
terrestrial and aquatic green algae, submitted to water stress 
with specific labeling for the plasma membrane showing that 
the dye bound to intracellular content only in cells damaged 
by desiccation (Cardon et al. 2018; Terlova et al. 2021) such 
as we found in T. obliquus BR003.

The cell wall of T. obliquus comprises hydrated silicon 
dioxide (Navarro et al. 2008), is semipermeable, and provides 
a protective physical barrier system (Wei et al. 2010). The cell 
wall has three well-defined layers with cellulose in the inner 
wall layer, lipids and insoluble glycoproteins, and biopoly-
mers in the trilaminar outer layers that further contribute to 
the rigidity of this structure (Voigt et al. 2014). The cell wall 
contains glucose and other neutral sugars such as mannose, 
fructose, and rhamnose (Blumreisinger et al. 1983; Oliveira 
et al. 2021). One of the first studies on the Tetradesmus ultra-
structure, formely Scenedesmus, describes cells with a thick 
cell wall, covered by a trilaminar sheath that presents a warty 
structure that contributes to cell adhesion and formation of the 
cenobium (Staehelin and Pickett-Heaps, 1975).

The combined use of carbohydrate test (PAS) and trans-
mission electron microscopy demonstrate chloroplasts with 
abundant starch as the main carbohydrate reserve structure. 
However, there are also free carbohydrates in the cytoplasm, 
which may be associated with metabolic activity and cellu-
lar homeostasis maintenance. The pyrenoid matrix strongly 
reacts to carbohydrates, indicating that a starch sheath cov-
ered it (Wang and Jonikas 2020). The starch content is a 
fraction of the total neutral carbohydrates of T. obliquus 
BR003 (Rocha et al. 2017). Interestingly, the lipid test indi-
cates this component in the cytoplasm, reported in chlo-
roplasts (differentiated plastoglobules) of Chlamydomonas 
strains (Moriyama et al. 2018). The mercury-bromophenol 
test showed proteins in the nucleus and dispersed in the 
cytoplasm, corroborating that microalgae do not accumulate 
proteins in vacuoles (Shebanova et al. 2017). Therefore, the 
present cytochemical study of T. obliquus BR003 demon-
strates the intracellular localization of these compounds with 
potential commercial use.

Table 1   Fatty acids of Tetradesmus obliquus BR003 derivatized in 
HCl/methanol. nd not detected

Fatty acids mg/g (%)

Palmitic C16:0 11.29 38.4
Stearic C18:0 nd nd
Elaidic C18:1n9t 3.46 11.8
Oleic C18:1n9c 8.31 28.3
Linoleic C18:2n6c 0.8 2.7
γ-linolenic C: 18:3n6 5.55 18.9
Nervonic C: 24:1 nd nd
Total 29.41 100
Saturated (SFA) 11.29 38.4
Unsaturated (UFA) 18.12 61.6
Monounsaturated (MUFA) 11.77 40.0
Polyunsaturated (PUFA) 6.35 21.6
PUFA/SFA 0.56 -
MUFA/SFA 1.04 -
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The occurrence of many chloroplasts with starch gran-
ules associated with a central pyrenoid reveals that T. 
obliquus has high photosynthetic activity and energy stock 
capacity as starch and lipids. Interestingly, starch granules 
associated with pyrenoids have a crescent moon shape. 
Pyrenoids are a protein structure that optimizes CO2 
fixation due to the formation of a dense matrix with the 
enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase 
(RuBisCO) (Wang and Jonikas 2020). The chloroplasts 
observed here are rich in thylakoid membranes that, in 
some regions, have plastoglobules that can perform the 
lipid reserve function, as reported in other algae (Mori-
yama et al. 2018). Our findings are similar to reported 
for another strain of T. obliquus with a single cup-shaped 
chloroplast with a pyrenoid surrounded by several starch 
grains of different sizes (Terlova et al. 2021).

The cells of T. obliquus have many free ribosomes, well-
developed rough endoplasmic reticulum, and Golgi com-
plex, indicating high protein synthesis. These proteins can 
be stored as reported for A. platensis (Spirulina), cyanobac-
teria commercially cultivated to produce dietary supplements 
(Amorim et al. 2020a, b; Silva et al. 2020; Soares et al. 2018).

The cells of T. obliquus BR003 evaluated here did not 
have high levels of carbon reserve structures, such as 
starch and lipids, probably because they were neither sam-
pled in the stationary growth phase nor cultivated under 
stress conditions (Rocha et al. 2019; Soares et al. 2018). 
These microalgae may store 38% starch (Breuer et  al. 
2014) and 45% triacylglycerols (Jaeger 2014).

Plastoglobules from green algae and higher plants are 
lipophilic droplets adhered to the thylakoid membranes 
of chloroplasts (Lohscheider and Río Bártulos 2016). 
The finding of lipid droplets dispersed in the cytoplasm 
of this species shows a diversified distribution of fat-
soluble components in the cell. This study also shows 
that T. obliquus BR003 has several starch granules and 
few lipid bodies, which strongly suggests that these 
microalgae can be cultivated to produce carbohydrates. 
Also, this study is innovative because it uses the X-ray 
emission spectrum in T. obliquus and found that S is the 
main macronutrient.
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