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Abstract
Copper (Cu) is an essential plant micronutrient. Under scarcity, Cu2+ is reduced to Cu+ and taken up through specific
high-affinity transporters (COPTs). In Arabidopsis, the COPT family consists of six members, either located at the
plasma membrane (COPT1, COPT2, and COPT6) or in internal membranes (COPT3 and COPT5). Cu uptake by
COPT proteins has been mainly assessed through complementation studies in corresponding yeast mutants, but the
mechanism of this transport has not been elucidated. To test whether Cu is incorporated by an electrogenic mechanism,
electrophysiological changes induced by Cu addition were studied in Arabidopsis thaliana. Mutant (T-DNA insertion
mutants, copt2–1 and copt5–2) and overexpressing lines (COPT1OE and COPT5OE) with altered expression of COPT
transporters were compared to wild-type plants. No significant changes of the membrane potential (Em) were detected,
regardless of genotype or Cu concentration supplied. In contrast, membrane depolarization was detected in response to
iron supply in both wild-type and in mutant or transgenic plants. Similar results were obtained for trans-plant potentials
(TPP). GFP fusions of the plasma membrane COPT2 and the internal COPT5 transporters were expressed in Xenopus
laevis oocytes to potentiate Cu uptake signals, and the cRNA-injected oocytes were tested for electrical currents upon Cu
addition using two-electrode voltage clamp. Results with oocytes confirmed those obtained in plants. Cu accumulation
in injected oocytes was measured by ICP-OES, and a significant increase in Cu content with respect to controls occurred
in oocytes expressing COPT2:GFP. The possible mechanisms driving this transport are discussed in this manuscript.
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Introduction

Copper (Cu) is an essential mineral micronutrient required for
plant growth and development. It plays a key role as a redox
cofactor in basic processes of cellular metabolism such as
photosynthesis and respiration, and participates in hormone
signaling, oxidative stress defense, and lignin biosynthesis,
among other biochemical and physiological processes
(Broadly et al. 2012). Both Cu scarcity and excess result in
generation of reactive oxygen species (ROS) (Ravet and Pilon
2013; Rodrigo-Moreno et al. 2013) that can damage nucleic
acids, proteins, and membrane lipids, thus disturbing a num-
ber of biological functions (Sharma et al. 2012).
Consequently, cytoplasmic Cu levels are tightly controlled
and its homeostasis depends on the balance between uptake
and distribution among the different subcellular compartments
and cuproproteins. The main Cu species found in aerobic con-
ditions is the divalent form (Cu2+) that may enter root cells
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through low-affinity divalent cation transporters with low
specificity, such as some members of the ZIP family (Wintz
et al. 2003), though this hypothesis has been questioned
(Milner et al. 2013). Cu uptake through a low-affinity trans-
port system (Km ~580μM), abolished in the presence of ascor-
bic acid, was reported in grapes (Martins et al. 2012).
However, it is well established that the predominant transport
mechanism, particularly under Cu scarcity, consists of its re-
duction by plasma membrane NADPH-dependent cupric re-
ductases (Bernal et al. 2012) and subsequent uptake by high-
affinity Cu+ transporters of the COPT family (Sancenón et al.
2003; Puig 2014; Peñarrubia et al. 2015) expressed under the
control of the Cu-responsive transcription factor SPL7
(SQUAMOSA promoter-binding protein-like7) (Yamasaki et
al. 2009; Bernal et al. 2012).

The Arabidopsis COPT family, known as Ctr in yeast and
animals, consists of six members. Three of them are located at
the plasma membrane (COPT1, COPT2, and COPT6) and
mediate Cu uptake from the external medium while other
members (COPT3 and COPT5) are located in internal mem-
branes (Sancenón et al. 2004; Jung et al. 2012). COPT4 is not
functional in the corresponding yeast mutants (Sancenón et al.
2003). COPT5 is involved in delivering Cu from the
prevacuolar compartment to the cytosol under severe Cu de-
ficiency conditions (García-Molina et al. 2011; Klaumann et
al. 2011). The integral plasma membrane COPT1 and COPT2
transporters are located at root tips, and along the rest of the
root, respectively. Both are abundant in reproductive tissues
and their expression is upregulated by Cu deficiency
(Sancenón et al. 2003, 2004; Perea-García et al. 2013).
COPT2 is the most highly expressed among the members
located at the plasma membrane (Gayomba et al. 2013;
Perea-García et al. 2013). The participation of COPT trans-
porters in Cu acquisition has been assessed through both com-
plementation studies in the corresponding Δctr1ctr3 yeast
mutant (Kaempfenkel et al. 1995; Sancenón et al. 2003) and
in transgenic plants where the expression levels of the COPT
transporters have been modified (Puig 2014). However, little
is known about the energetic requirements of the uptake
mechanism.

Given the negative values of the membrane potential (Em)
and the extremely low cytosolic concentration of free Cu ions
(Rae et al. 1999), transport of this cation across membranes is
expected to be thermodynamically favorable. Further, COPT/
Ctr transporters do not possess obvious ATP-binding do-
mains, suggesting that Cu+ uptake does not use a primary
active transport mechanism (Lee et al. 2002). However, this
fact does not exclude the possibility of secondary active trans-
port energized by the H+-motive force, as reported for the
uptake of other metal ions through transporters of the
NRAMP, YSL, and ZIP families (Schaaf et al. 2004;
Chaloupka et al. 2005; Kavitha et al. 2015). In this sense, a
mammalian H+-coupled metal ion transporter which may

transport Cu2+ has been characterized (Gunshin et al. 1997),
and Lee et al. (2002) reported a positive effect of low pH on
Cu uptake through Ctr1 in yeast. Results reported by Lin and
Kosman (1990) showed that Cu uptake in yeast was barely
detected in glucose-starved cells, or at 4 °C; moreover, the
transport presented saturable kinetics, and was inhibited by
azide and dinitrophenol, which indicate an energy-dependent
process. In addition, electrogenic uptake of cations can also
occur by uniport mechanisms, as reported for NH4

+ (Ludewig
et al. 2002). Since electrogenic substrate transport affects the
transmembrane potential, the variation of Em is a suitable tool
to study uptake and effects of metals, such as Fe, Zn, Ni, Al, or
Cd, in plants (Sijmons et al. 1984; Llamas et al. 2000, 2008;
Sivaguru et al. 2003; Illes et al. 2006; Pavlovkin et al. 2006;
Sanz et al. 2009; Bose et al. 2010; Kenderesova et al. 2012).

To our knowledge, electrophysiological studies on Cu up-
take are scarce, and conflicting results have been published. A
previous study on corn roots reported strong Em depolariza-
tions induced by divalent cations, including Cu, when applied
at 100 μM (Kennedy and Gonsalves 1987). Similarly, the cell
resting potential ofNitellopsis obtusawas depolarized by 50%
during a 45-min test at 110 μM Cu (Manusadzianas et al.
2002). Kennedy and Gonsalves (1987, 1989) also measured
trans-root potentials (TRP) in excised corn roots and found
that supplying Cu concentrations as low as 5 μM resulted in
TRP depolarizations of more than 30 mV concomitantly with
H+-efflux inhibition. In contrast, Murphy et al. (1999) did not
observe Em changes in Arabidopsis root cells upon addition
of 30 μM Cu but the treatment induced K+ leakage, suggest-
ing an electroneutral uptake mechanism for this metal.

Electrophysiological studies of different transport proteins
have also been performed in heterologous systems, such as
oocytes of the African clawed frog Xenopus laevis. This tech-
nique has been widely used for the functional characterization
of different metal transporters from diverse origin, including
plants, and it has helped to elucidate uptake kinetics, substrate
specificity, competition with other ions, or the need for ligands
in the transport of different transition metals (Koike et al.
2004; Schaaf et al. 2004; Murata et al. 2006; Durrett et al.
2007; Zhai et al. 2014). Its use has also evidenced the mis-
match that may occur between increased gene expression and
actual transport activity (Kavitha et al. 2015).

In the present work, we performed an electrophysiological
study in Arabidopsis thaliana to test whether Cu is taken up
by an electrogenic mechanism through COPT transporters. To
this end, plants with altered expression of COPT transporters
located both at the plasma membrane and internal membranes
(T-DNA insertion mutants, copt2–1 and copt5–2, and overex-
pressing lines, COPT1OE and COPT5OE) were compared to
wild type. Further, GFP fusions with the Cu+ transporters
(COPT2:GFP and COPT5:GFP) were expressed in X. laevis
oocytes to potentiate Cu uptake signals, and the cRNA-
injected oocytes were tested for electrical currents upon Cu
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addition. Additionally, Cu uptake in COPT-expressing oo-
cytes was monitored by analyzing their metal content after
incubation in a Cu-containing medium.

Materials and methods

Plant material and growth conditions

Seeds of wild-type (WT), copt2–1 (Perea-García et al. 2013),
and copt5–2 (García-Molina et al. 2011) knockout mutant
lines and transgenic plants overexpressing COPT1OE

(Andrés-Colás et al. 2010) and COPT5OE (García-Molina et
al. 2011) of Arabidopsis (A. thaliana, Col-0) plants were strat-
ified for 2 days at 4 °C after ClO2 sterilization (200 mL com-
mercial bleach plus 3 mL HCl) for 5 h. Seedlings were ger-
minated in shortened pipette tips filled with half-strength
Murashige and Skoog (½ MS) medium in 0.8% agar plus
2.5 mM MES buffer, pH 5.7 and kept in boxes filled with
distilled water in a growth chamber (12-h light/dark; 22 °C
and 70% RH) until roots protruded a few millimeters from the
cut end of the plastic tips. Subsequently, they were grown in
hydroponic medium containing half-strength nutrient solution
for 2 weeks and then in complete nutrient solution (3 mM
KNO3, 2 mM KCl, 2 mM Ca(NO3)2, 2 mM MgSO4, 2 mM
NH4NO3, 0.5 mM KH2PO4, 0.1 mM CaCl2, 50 μM NaFe-
EDTA, 50 μMH3BO3, 10 μM ZnSO4, 5 μMMnCl2, 0.5 μM
CuSO4, and 0.01 μM Na2MoO4) which was renewed each
week. Since expression of plasma membrane COPT trans-
porters is induced under Cu deficiency (Sancenón et al.
2003), and in the case of COPT2 also enhanced by Fe defi-
ciency (Perea-García et al. 2013), plants were transferred ei-
ther to half-strength nutrient medium, 1–3 days before Em
measurements, or to fresh medium without Cu and Fe and
supplemented with 50 μM of the Cu+-chelator bathocuproine
disulfonate (BCS) 3–7 days prior to TPP measurements.
Plants from five different sowings were used to measure elec-
trical responses to Cu addition.

Electrophysiological measurements

The effect of Cu on the transmembrane potential difference
(Em) was measured in plants 30–40 days after sowing, as
described by Llamas et al. (2000). Roots of whole plants were
secured in a Plexiglass chamber that was perfused by a gravity
flow system at a rate of 4–5 mL ×min−1 with a standard so-
lution consisting of 0.2 mM KCl, 0.2 mM CaSO4, 0.4 mM
MgCl2, and 1 mM MES, pH 5.5. Transmembrane electrical
potentials were measured with glass microelectrodes filled
with 3 M KCl and reference salt bridges (3 M KCl in 2%
agar), connected via Ag/AgCl electrodes with an electrometer
amplifier (FD-223, WPI, Sarasota, FL). The reference elec-
trode was kept in the perfusion chamber near the root. The

micropipette was inserted with a micromanipulator. Changes
in Em induced by addition of 10 or 30 μM CuSO4 to the
perfusion solution were followed and recorded with
AxoScope (v.8.1) software. Electrical noise was attenuated
with a low-pass filter (Chebyshev 8-pole, 0.01 to 20 Hz).

Whole plant electropotentials (trans-plant potentials (TPP))
were measured with two electrodes similar to the above-
described reference electrode. As previously indicated, Cu
was added to the perfusion solution bathing the roots; howev-
er, the probe was introduced in a small, separate, chamber
containing perfusion solution, where the cut end of a leaf of
the plant was also immersed. In this way, the xylem exudate
closed the electrical circuit.

Heterologous expression of COPT transporters
in Xenopus oocytes and two-electrode voltage clamp

The COPT2-GFP and COPT5–GFP sequences were
subcloned from the p426GPD yeast vector (Sancenón et al.
2003) into the Xenopus expression plasmid pOO2 (Ludewig
et al. 2002) using the restriction enzyme sitesHindIII and SalI
for COPT2 (1.22 kb) and BamHI and SalI for COPT5
(1.19 kb). Capped cRNA was synthesized by in vitro tran-
scription with a mMESSAGE mMACHINE_SP6 Kit
(Ambion, Inc.) according to the manufacturer’s instructions.

Procedures for oocyte isolation, injection, and maintenance
were as described (Osawa et al. 2006; Pike et al. 2009) with
modifications: oocyte defoliculation was 2 to 4 h; 46 ng
COPT2 or COPT5 cRNAwere injected on the following day,
and the antibiotics added to the ND96 Ringer solution were
10 μg/mL streptomycin sulfate and 50 μg/mL gentamicin.
Expression ofCOPT-GFP constructs was visualizedwith con-
focal microscopy (Leica SP8) 24 h after injection of cRNA.
Oocyte batches from four different frogs were used. Two-
electrode voltage clamp measurements were performed 2–
4 days after injection of COPT2 or COPT5 cRNA. One to
100 μMCuSO4, together with 100 μM ascorbic acid to main-
tain the metal in a reduced state, was added to a bath solution
containing 230 mM mannitol, 0.15 mM CaCl2, and 10 mM
MES/Tris, pH 5.5 (Huang et al. 1999). Uninjected oocytes
served as controls. A TEV-200A amplifier (Dagan,
Minneapolis, MN) was used to clamp the voltage and signal
was recorded with Axotape 2.0 software (Axon Instruments,
Union City, CA). The effect of Cu addition was tested while
the oocyte membrane voltage was clamped at − 60 mV.

Cu uptake by COPT-injected oocytes and Cu content
analysis

For Cu uptake measurements, after injection with 46 ng
COPT2:GFP orCOPT5:GFP cRNA, oocytes were incubated
in 6-well plates, using 15 to 25 oocytes in 5 mL ND96 in each
well (2 experiments), or in Petri plates, with 50 oocytes in
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25 mL ND96 (1 experiment). Uninjected oocytes served as
controls. After 2-day maintenance in ND96 at 14 °C, the
ND96was replaced with 25μMCuSO4 plus 100 μMascorbic
acid in ND96. Subsequently, the oocytes were incubated at
room temperature for 90 to 105 min with slow rotary shaking.
They were rinsed four times with chilled ND96 and trans-
ferred to pre-weighed 1.5-mL Eppendorf tubes. Samples were
then digested with trace metal grade HNO3 after drying at
65 °C, 48–72 h. Cu content was analyzed by inductively
coupled plasma optical emission spectrometry (ICP-OES;
Optima 8000, PerkinElmer). Three batches of oocytes from
two different frogs were used, with two to three replicates
each. Significant differences with respect to controls were
established by Student’s t tests.

Results

Effects of Cu addition on membrane (Em) and TPP
potentials

Under our experimental conditions, the transmembrane poten-
tial difference (Em) of root cells measured in intact adult WT
Arabidopsis plants was around − 60 mV. Upon addition of
10 μMCu to the perfusion solution, no significant Em changes
were observed. Increasing the Cu concentration to 30 μM pro-
duced similar results, though in around 20% of the recordings,
a long-lasting small Em depolarization was registered and this
trend only reverted after withdrawal of the metal (Fig. 1a). In
contrast, addition of 0.5 mM Fe induced immediate transient
depolarizations, which were generally followed by a spontane-
ous repolarization, in some cases attaining the initial potential,
and always followed by a clear hyperpolarization after its with-
drawal from the perfusion solution (Fig. 1a). The same patterns
described for WT plants were obtained for knockout and over-
expressing Arabidopsis lines (copt2–1, copt5–2 COPT1OE,
andCOPT5OE). As an example of these results, traces obtained
for COPT1OE plants are shown in Fig. 1b.

After placing the plants in the setup to measure TPP, voltage
values oscillated for several minutes to more than 1 h. Since
trans-root potentials (TRP) and hence TPP sum up electrical
potential differences across cells in the external medium-xylem
sap path (de Boer et al. 1983), the electric potential differences
measured were smaller than those of root cell Em values. Thus,
once TPP stabilized, values recorded could be positive or neg-
ative but usually around 0 mV. The oscillations observed after
plant installation in the setup could also occur during the ex-
periment. Changes of the light environment are probably in-
volved as light/dark transitions strongly affected TPP (Fig. S1).
However, the responses of TPP were similar to those of Em
and addition of nutrients such as glucose, which is taken up by
H+ cotransport (Slayman and Slayman 1974), also showed
typical Em transients (Fig. S1). Under our experimental

conditions, the effects of Cu and Fe on TPP were similar to
those described for Em. Representative traces registered for
WTand COPT1OE plants are shown in Fig. 2a, b, respectively.
As indicated, no depolarizations occurred upon addition of
10 μM Cu. However, 0.5 mM Fe induced a depolarization
which was generally maintained while it was present in the
perfusion solution and TPP only repolarized after its withdraw-
al. A similar pattern of TPP changes was recorded for Zn,
tested in WT plants (Fig. 2a).

Overall, no electrical change (either measured as Em, or as
TPP) could be detected when 10 or 30 μMCu was supplied to
the medium bathing the roots of plants from the different geno-
types tested and maintained for 1–7 days under Cu-deficiency
conditions (see the BMaterials and methods^ section).

b 

a 

(-55) (-54) (-53) 

-45 

-50 

-55 

-60 

(-53) 
(-52) (-51) 

-45 

-50 

-55 

-60 

(-74) 
(-71) 

(-73)

-85 

-65 

-70 

-75 

-80 

30 µM Cu 

30 µM Cu 

10 µM Cu 

(-55) 

0.5 mM Fe 

(-62) 
(-58) 

(-58)
(-55) 

-50 

-55 

-60 

-70 

-65 

E
m

 (m
V

) 
E

m
 (m

V
) 

E
m

 (m
V

) 
E

m
 (m

V
) 

0.5 mM Fe 

10 µM Cu 

(-69) (-70) (-70) 

E
m

 (m
V

) 
E

m
 (m

V
) 

30 µM Cu 
-80 

-85 

-90 

-55 

-60 

-65 

-70 

-75 

(-72) E
m

 (m
V

) (-58) 

(-53) 

(-65) 5 min

-60 

-65 

-70 

-75 

(-87) (-87) 

(-92) 

5 min 

Fig. 1 Em changes in Arabidopsis thaliana root cells induced by metals.
Ten and 30 μM CuSO4 (Cu) or 0.5 mM K3Fe(CN)6 (Fe) were added to
the perfusion solution bathing the roots of intact adult (30–40 days after
sowing) WT (a) and COPT1OE (b) plants. The first and second vertical
lines indicate addition and withdrawal of the metal, respectively.
Temporal scale bar applies to both panels. Numbers in brackets show
voltages in mV
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Effects of Cu addition on electrical currents
across the membrane of COPT2-
and COPT5-expressing oocytes

Because induced currents in native Arabidopsis tissue may be
below the detection limit, we next used COPToverexpression
in X. laevis oocytes to augment any possible COPT-mediated
electrical signal. For this, we employed C-terminally GFP-
tagged COPT2 and COPT5 constructs to enable verification
of transporter localization in the oocyte plasma membrane.
Importantly, both COPT2-GFP (Perea-García et al. 2013)
andCOPT5-GFP (García-Molina et al. 2011) were previously
shown to complement the respective Arabidopsis mutant
lines, demonstrating that the GFP tag does not interfere with

transporter function. Injection of COPT2:GFP and
COPT5:GFP cRNA into X. laevis oocytes resulted in the ex-
pression of the respective GFP-tagged transport proteins lo-
cated in the plasma membrane by 24 h after injection (Fig.
S2). Despite its apparent integration into the oocyte mem-
brane, no electrical currents were recorded by two-electrode
voltage clamp (TEVC) upon addition of 1–100 μM Cu to the
bathing medium in the presence of 100 μM ascorbic acid.
Therefore, the electrical signals were similar for uninjected
(control) and COPT-injected oocytes (Fig. 3). Since the plas-
ma membrane of X. laevis oocytes possesses endogenous
transporters, including K+ channels (Sobczak et al. 2010),
oocyte membrane integrity was tested by supplying 10 mM
KCl. This treatment induced similar electrical currents in
injected and control oocytes (Fig. 3), indicating that the mem-
brane integrity was not affected in the injected oocytes.
Remarkably, the current/voltage relationship, measured in
the absence of Cu in the bathing medium, was clearly different
in COPT2-injected than in control and in COPT5-injected
oocytes (Fig. 4). COPT2-injected oocytes showed a stronger
level of transporter expression than those injected with
COPT5 (Fig. S2) and greater membrane instability, which
made them less able to withstand voltage changes.

Cu uptake by oocytes injected with COPT2:GFP
and COPT5:GFP cRNA

After COPT cRNA-injected oocytes and control uninjected
oocytes were incubated with 25 μM Cu, metal ion analysis
was performed by ICP-OES. As described for TEVC mea-
surements, Cu uptake was studied in the presence of
100 μM ascorbic acid in order to maintain the metal ion
in its reduced form. As shown in Fig. 5, Cu uptake by
COPT5-expressing oocytes was only slightly higher than
controls (1.2-fold increase) and not statistically significant-
ly different from them (Fig. 5). In contrast, the Cu content
in oocytes expressing the COPT2 transporter was signifi-
cantly higher, accumulating over 6-fold more Cu than the
control oocytes. The final Cu concentration in COPT2-ex-
pressing oocytes, 343 ± 34 μM, representing a 13-fold in-
crease over the external Cu concentration, indicates that
rather than passive Cu diffusion resulting from higher
membrane instability and leakiness, a concentrative Cu up-
take mechanism is operating.

Discussion

Given the role of Cu in physiological processes such as pho-
tosynthesis, respiration, and antioxidant defense, both defi-
ciency and excess of this metal generate ROS, which may
be deleterious for biological molecules and structures
(Sharma et al. 2012). As for most plant species, Arabidopsis
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Fig. 2 TPP changes in Arabidopsis thaliana plants induced by metal
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and 1 mM ZnSO4 (Zn) were added to the perfusion solution bathing the
roots of intact adult (30–40 days after sowing) WT (a) and COPT1OE (b)
plants. The first and second vertical lines indicate addition and withdraw-
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has a narrow range of Cu concentrations for optimal growth
and development; thus, deficiency responses are induced be-
low 0.5 μM Cu (Yamasaki et al. 2007) while 50 μM is con-
sidered toxic (Lequeux et al. 2010). In this work, we added
Cu concentrations in the middle and upper sufficiency
range, 10 and 30 μM, to Arabidopsis roots to test putative
changes of Em indicative of electrogenic uptake of this
metal. Our results, obtained from plants maintained under
Cu-deficient conditions to induce expression of COPTs
(Sancenón et al. 2003; Perea-García et al. 2013), showed
that addition of Cu to WT plants did not result in apprecia-
ble Em variations (Fig. 1a). Similar results were obtained
in plants overexpressing the high-affinity Cu transporters
COPT1 (Fig. 1b) or COPT5, as well as in copt2–1 and
copt5–2 knockout mutants. The long-lasting small Em de-
polarization registered in some plants after supplying

concentrations that were near toxicity levels (30 μM; Fig.
1a) may be related to an increased organic acid efflux as-
sociated with Cu-detoxifying mechanisms. In this sense, a
rapid increase in membrane permeability, measured as K+

efflux, together with a release of organic acids was report-
ed by Murphy et al. (1999) in Arabidopsis during the first
3 h of treatment with 30 μM Cu. Transient increases in
membrane permeability also occurred after addition of
Cd, another toxic metal, to rice and maize roots (Llamas
et al. 2000; Pavlovkin et al. 2006). Apparently, Cd uptake
in rice induced detoxifying mechanisms, which eventually
restored the initial Em (Sanz et al. 2009).
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Since no Cu effect on Em was detected in WT plants,
results obtained in the copt2–1 and copt5–2 knockout mutants
were to be expected. Similarly, lack of additional response in
COPT5OE lines as compared to WT plants was envisaged
because COPT5 is a tonoplast-located transporter that delivers
Cu toward the cytosol under severe deficiency conditions
(García-Molina et al. 2011; Klaumann et al. 2011). In contrast,
since COPT1 constitutes the major Cu acquisition system in
Arabidopsis roots (Puig 2014), it is reasonable to anticipate a
stronger response to Cu in COPT1OE plants; however, no
electrical changes after Cu addition were detected in these
plants (Figs. 1b and 2b). This undetectable effect of Cu on
root cell Em is in agreement with data reported by Murphy
et al. (1999) under similar experimental conditions, i.e., same
species and Cu concentration (30 μM). On the contrary,
Kennedy and Gonsalves (1987, 1989) reported strong depo-
larizations induced by Cu in root cells of Zea mays. Although
the Cu concentration used by these authors to measure Em
changes was in the toxicity range (100 μM), they showed that
10- or 20-fold lower Cu concentrations (10 and 5 μM) also
depolarized TRP by more than 30 mV. Measurements of TRP
have not been as broadly used as Em determinations in elec-
trophysiological studies. TRPs sum up the electrical potential
difference between the external medium and the xylem sap,
and therefore, they integrate electrical changes occurring in
cortical and stelar cells (de Boer et al. 1983), usually resulting
in lower and more variable voltage values (Fig. 2). However, a
tight electrical coupling between the cellular and tissue levels
in the intact plant, leading to similar and synchronous varia-
tions of Em and TRP, has been described (Wegner et al. 1999).
Since electrical contact with the xylem sap can also be
established at the shoot level, this enables measurements of
TPP, which respond similarly to TRP or Em during substrate
uptake. Thus, addition of glucose to the medium bathing the
roots elicited the typical transients also observed for Em dur-
ing H+/substrate cotransport (Fig. S2) (Slayman and Slayman
1974). Because COPT1 expression is limited to the tip of
primary and secondary roots (Sancenón et al. 2004), a lack
of Em responses to Cu addition (Fig. 1) could have resulted
from impalement of root cortical cells basal to the tip that do
not express this transporter. However, the need for a precise
insertion of the microelectrode in Em measurements can be
circumvented by following TPP changes, as cells are not im-
paled. Using this technique, we confirmed the results obtained
for Em; i.e., no electrical changes were detected upon Cu
addition in either WT (Fig. 2a) or COPT1OE (Fig. 2b) plants.

Overall, results obtained for Em and TPP suggest an
electroneutral process in Cu uptake. Alternatively, the small
amount of Cu taken up by plant root cells may result in
undetectable electrical signals, as pointed out by Reid (2001)
for uniport or cotransport of micronutrients. In order to distin-
guish between these possibilities, heterologous expression of
COPTs in X. laevis oocytes was carried out to potentiate Cu

uptake signals. Our results showed that Cu addition did not elicit
detectable currents in COPT2- and COPT5-injected oocytes
(Fig. 3), though COPT2-injected oocytes showed an enhanced
capacity for Cu uptake. Thus, a significant 6-fold increase in Cu
content over the controls was measured in these oocytes after
incubation in a Cu-containing medium at room temperature in
the presence of ascorbic acid (Fig. 5). Uptake assays in the pres-
enceofCu2+andascorbic acid (600μMand1mM, respectively)
resulted in non-viable and leakyX. laevis oocytes (Antala 2016)
probably because Cu+ ions damaged the oocyte membrane
through lipid peroxidation reactions. In our experiments, even
in the absence of added Cu, a higher membrane instability was
observed in COPT2-injected oocytes (Fig. 4) that could have
made themleaky.However, thepossibility thatCucouldpassive-
lydiffuse intothemcanbediscarded,sincethefinalconcentration
in the oocytes was 343 μM,which represents a 13-fold increase
over the external concentration. Further, themean Emmeasured
in COPT2-injected oocytes of the different batches was − 22 ±
7mV.Accordingto theNernstequation[EN = −RT/zFln(ci/ce)],
passive influx after incubation at room temperature in amedium
containing 25 μM Cu should result in a maximum internal Cu
concentration of around 70 μM. Therefore, a Cu concentrating
processisrequiredtoreachtheobserved343μM,thuspointingto
an energy-dependentmechanism ofCu uptake throughCOPT2.
Since according to the Irving–Williams seriesCu has the highest
capacity for binding to organic compounds, it is possible that Cu
might bind to histidine or cysteine residues of proteins or other
organic compounds, thus increasing passive Cu uptake.
However, mature oocytes are considered Bclosed^ systems con-
tainingall reservesneeded forembryogenesisuntil tadpoleshave
hatched (Nomizu et al. 1993). The fact that (1) the functional
histidine and cysteine pools measured in stage VI oocytes are in
the low pmol range (Eppig and Dumont 1972); (2) 90% of total
vitellogenin, a Zn protein which does not bind other transition
metals, is sequestered in yolk platelets until hatch and is not
accessible to cytosolic events (Montorzi et al. 1994; Falchuk et
al. 1995); and (3)Cu treatments did not increasemetallothionein
(MT) contents in the frog oocytes (Sunderman et al. 1995) and
furthermore, Cu uptake in MT-deficient strains of yeast do not
differ fromthat incontrols (LinandKosman1990), argueagainst
apassivemechanismfor theincreaseof theinternalconcentration
up to almost 350μMin 90min that wemeasured. In accordance
with this, the existence of an energy-dependent mechanism has
beenreported forCuuptake inyeast, showingstronglydecreased
uptake at 4 °C and in glucose-starved cells, together with satura-
ble kinetics and inhibition bymetabolic poisons such as azide or
dinitrophenol (Lin and Kosman 1990).

A model proposed by Tsigelny et al. (2012), based on the
structure of the human Ctr1, suggests that Cu+ may undergo
ligand exchange reactions that provide a neutral passage at the
middle of the pore of the transporter endo-domain, together with
negative and positive charges at the entrance and exit ecto-
domains that attract and repel Cu+ ions, respectively. According
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to this model, net charge would be transferred across the mem-
brane. However, considering the amount of Cu taken up in
COPT2-injected oocytes during the experimental period (around
12 ng per oocyte) and using the molar mass of Cu and
Avogadro’s constant, about 1.13 × 1014 Cu+ ions were
transported. Taking the outdated definition of the Ampere
(1A= 6.242 × 1018 elemental charges per second), this amount
of Cu+ ions would generate a current of 18μA if all Cu ionswere
taken up in 1 s. Though uptake experiments lasted 90 min, this is
not a linear process. According to data reported by Lin and
Kosman (1990) in a time-course kinetics study in yeast lasting
90–120 min, more than 50% of Cu taken up through a high-
affinity transport system (Km = 4.4 μM) occurred in the first
20 min. Under voltage clamp, the electric driving force remains
constant, whereas in uptake experiments, both the electric and
chemical gradient collapse as substrate is taken up and the system
moves toward equilibrium. However, even assuming the most
unfavorable scenario, that is, that 50% of the uptake occurred in
the first 20min and taking into account only the electrical charges
corresponding to Cu+ ions (uniport), a current of about 8 nA
should have been generated, and would be even greater in the
case of a H+/Cu+ symport mechanism. Since a current of 8 nA is
within the detection limits of our TEVC equipment and no cur-
rents were detected using a 4-fold higher Cu concentration than
in uptake experiments, our results are consistent with an
electroneutral process in Cu uptake through COPT2.

In summary, with the experimental approaches used in
this work, a combination of different electrophysiological
techniques and elemental analysis by ICP-OES, our re-
sults altogether indicate that whereas the COPT5-
mediated Cu+ remobilization does not affect Cu content
or Em, Cu+ uptake through the plasma membrane, medi-
ated by COPT2, is an energy-dependent and electroneutral
process. Further experiments are needed to establish the
biophysical mechanism and source of energy for COPT-
mediated Cu uptake in plants.
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