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Abstract

The larvae of Bittacidae, a cosmopolitan family in Mecoptera, have an interesting habit of spraying the body surface with soil
through the anus after hatching, and each molts. The fine structure of Malpighian tubules, however, remains largely unknown in
the larvae of Bittacidae to date. Here, we studied the ultrastructure of the larval Malpighian tubules in the hangingfly
Terrobittacus implicatus (Huang & Hua) using scanning and transmission electron microscopy. The larvae of 7. implicatus have
six elongate Malpighian tubules at the junction of the midgut and hindgut. The tubule comprises a basal lamina, a single-layered
epithelium, and a central lumen. The basal plasma membranes of the epithelial cells are conspicuously infolded and generate a
labyrinth. The epithelium consists of two types of cells: large principal cells and scattered stellate cells. Mitochondria and cisterns
of rough endoplasmic reticulum are numerous in the principal cells but are sparsely distributed in the stellate cells, indicating that
the principal cells are active in transport. On the other hand, spherites are only abundant in the principal cells and are likely

associated with the soil-spraying habit of the larvae.
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Introduction

Malpighian tubules are the main excretory and osmoregulato-
ry organs of insects (Maddrell 1978; Chapman 2013; Gullan
and Cranston 2014) and are responsible for releasing primary
urine, reabsorbing solutes, and maintaining osmotic homeo-
stasis (Bradley 1998; Hazelton et al. 2001). In general, they
are ectodermal in origin (Chapman 2013; Yue and Hua 2013)
and arise from the junction of the midgut and hindgut. The
Malpighian tubules are free in the hemocoel in most insects
but connect with the hindgut to form a cryptonephridial sys-
tem in the meal worm Tenebrio molitor Linnaeus (Coleoptera:
Tenebrionidae) (Koefoed 1971). The Malpighian tubules vary
in number among different orders (Chapman 2013) and even
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differ between the larvae and adults in the stingless bees
(Hymenoptera: Apidae) (Barbosa-Costa et al. 2012).

The Malpighian tubules are also diverse in morphology
among various insect species (Bradley 1998; Chapman
2013). The tubules are in a narrow tubular shape and are
divided into two equal branches in the thrips Aeolothrips
intermedius Bagnall (Thysanoptera: Aeolothripidae) (Conti
et al. 2010) and the larval mosquito Anopheles sinensis
(Diptera: Culicidae) (Yu 2003), are often differentiated into
several morphologically distinct segments in Hemiptera (Li
et al. 2015; Zhong et al. 2015; ()zyurt et al. 2017), and are
non-segmented and possess a beaded appearance in the adult
flesh fly Sarcophaga ruficornis Fabr. (Diptera:
Sarcophagidae) (Pal and Kumar 2013). The Malpighian tu-
bule comprises a monolayered epithelium with one or more
types of cells and a central lumen in many insects (Martoja
and Ballan-Dufrancais 1984; Bradley 1998; Beyenbach et al.
2010). The morphology and histology of Malpighian tubules,
however, have only been briefly described in Mecoptera
(Grell 1938; Potter 1938a, b; Setty 1940; Liu S and Hua
2009; Liu L and Hua 2017).

Bittacidae is the only cosmopolitan family in Mecoptera
(Penny and Byers 1979; Chen et al. 2013; Wang and Hua
2017). The adults are commonly known as hangingflies
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because they usually hang themselves on the edges of leaves
or twigs between flights with their prehensile forelegs in moist
shady woodlands (Setty 1940; Byers 2009; Jiang et al. 2015).
The larvae of Bittacidae have an interesting habit of spraying
soil on their body surface through the anus after the soil pass-
ing through the digestive tract (Currie 1932; Setty 1940). The
larvae are eruciform with furcated seta-bearing protuberances
(Tan and Hua 2008, 2009a, b), which are likely associated
with the soil-spraying habit (Jiang et al. 2015). Terrobittacus
is a small genus of Bittacidae (Tan and Hua 2009b) and has
been studied in detail in the morphology of mouthparts (Ma
etal. 2014) and cytology (Miao and Hua 2017). However, the
ultrastructure of the Malpighian tubules remains largely un-
known in the larval Bittacidae to date.

In this study, we investigated the ultrastructure of the
Malpighian tubules in the larval stage of the hangingfly
Terrobittacus implicatus (Huang & Hua in Cai et al. 2006)
using scanning and transmission electron microscopy in an
attempt to clarify if the Malpighian tubules have any special-
ization associated with the soil-spraying habit.

Material and methods
Insect collecting and rearing

Adults of T. implicatus were captured in the Liping National
Forest Park (32° 50" N, 106° 36" E, elev. 1500—1600 m) in the
Michang Mountains, Shaanxi Province, Central China, in ear-
ly August 2016.

Live female adults of 7. implicatus were reared in a nylon
gauze cage (40 cm x 40 cm x 60 cm), with wet cotton gauze
covered outside to maintain relatively high humidity (Jiang
and Hua 2015; Jiang et al. 2015). The adults were provided
plant twigs to suspend from and live house flies as food items.
Eggs were collected with wet tissue papers at the bottom of the
cage and were transferred into plastic jars with soil to over-
winter. The larvae were collected in March 2017 and reared to
the last (fourth) instar.

Scanning electron microscopy

Live last instar larvae were anesthetized with diethyl ether,
and the Malpighian tubules were dissected rapidly. Then, the
samples were fixed in a mixture of 2.5% glutaraldehyde and
2.0% paraformaldehyde in phosphate-buffered saline (PBS,
0.1 mol/L, pH 7.2) at 4 °C for 12 h.

For scanning electron microscopy, the samples were rinsed
in PBS for six times and dehydrated through a graded ethanol
series (30, 50, and 70% for 10 min each, 80% for 15 min, 90%
for 20 min, 95% for 25 min, and 100% for 30 min twice). The
dehydrated samples were subsequently replaced by tertiary
butanol and freeze-dried for 3 h. After being sputter-coated
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with gold, the samples were examined in a Hitachi S-3400N
scanning electron microscope (Hitachi, Tokyo, Japan) at
15 kV.

Transmission electron microscopy

For transmission electron microscopy, the fixed samples were
rinsed with PBS for six times and post-fixed in 1% osmium
tetroxide (OsQy4) in PBS at 4 °C for 1 h (Liu and Hua 2010;
Zhang and Hua 2014). The post-fixed samples were rinsed in

Oe

Fig. 1 Schematic illustration of the alimentary canal and Malpighian
tubules in Terrobittacus implicatus. Co colon, DMT the distal part of
the Malpighian tubule, // ileum, Mg midgut, MT Malpighian tubule, Oe
esophagus, PMT the proximal part of the Malpighian tubule, Re rectum.
Scale bar=1 mm
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the same buffer for six times and dehydrated through a graded
ethanol series (30, 50, and 70% for 10 min each, 80% for
15 min, 90% for 20 min, and 100% for 30 min twice). The
samples were infiltrated in the mixtures of ethanol and LR
White resin (3:1 for 2 h, 1:1 for 4 h, and 1:3 for 12 h) and
then in pure LR White resin for 24 h twice at 18 °C. The
samples were finally embedded in pure LR White resin and
polymerized at 55 °C for 48 h.

Ultrathin sections were cut with a diamond knife on a Leica
ULTRACUT ultramicrotome (Leica, Nussloch, Germany)
and double stained with uranyl acetate and lead citrate. The
stained sections were observed in a Tecnai G2 Spirit Bio Twin
transmission electron microscope (FEI, Hillsboro, USA) at
80 kV.

Results
Morphology of the Malpighian tubules

The larvae of T. implicatus have six Malpighian tubules,
which are of approximately equal length and extend from
the junction of the midgut and hindgut to the body cavity
(Fig. 1). The elongate tubules are thin and blindly ended,
yellowish at the proximal part. The distal part of tubules is
often dark red and wavy. The tubules usually connect with fat

Fig. 2 The Malpighian tubule of
Terrobittacus implicatus. a SEM
micrograph of the Malpighian
tubule (M7) with branching
tracheoles (7). b TEM
micrograph of the proximal part
of the tubule in the cross section,
showing the monolayered
epithelium with principal cells
and a central lumen. ¢ The TEM
micrograph of the distal part of
the tubule in the cross section,
showing the epithelium contained
principal and stellate cells. BL
basal lamina, Ep epithelium, Lu
lumen, Mv microvilli, N nucleus,
PC principal cell, SC stellate cell.
Scale bars: a 50 um; b—¢ 5 pm

bodies or are free in the body cavity. The tubules exhibit a
smooth appearance and are unsegmented, with several slender
branched tracheoles on the surface (Fig. 2a).

Ultrastructure of the Malpighian tubules

The Malpighian tubule comprises a single-layered epithelium
surrounded by a non-cellular basal lamina (Fig. 2b, c). The
cross section of the tubule shows two types of epithelial cells:
large principal cells and small stellate cells. The great majority
of epithelial cells are the principal cells, which are present in
the whole length of the tubule (Fig. 2b, ¢). The stellate cells are
visible in the distal part and are usually invisible in the prox-
imal part of the tubule (Fig. 2c). Several principal cells and
one stellate cell are visible in the cross section of the distal
tubule (Fig. 2¢). The apical surfaces of the epithelial cells
possess numerous microvilli.

The principal cells are characterized by a rectangular shape
and amounts of close-packed microvilli (Fig. 3a). The basal
plasma membranes of these cells are evidently invaginated
and form membranous labyrinths with numerous mitochondria
lying in close proximity (Fig. 3b). The adjoining principal and
stellate cells are connected loosely in the basal regions due to
invaginations formed by the basal plasma membranes (Fig. 3a).
Septate junctions are visible between the adjacent cells in the
apical regions (Fig. 3¢). The rounded nucleus occupies the large
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space of the cell and contains several patches of heterochroma-
tin (Fig. 2¢). The cytoplasm is electron-dense and rich in rough
endoplasmic reticulum, mitochondria, and spherites (Fig. 3a—
e). Vacuoles are also visible in the cells (Fig. 3a, b). The
spherites contain several concentric laminate concretions near
the apical membrane (Fig. 3e). The extensive microvilli extend
into the central lumen as finger-like projections at the apical
surfaces of the cells. The microvilli are swollen and contain
mitochondria (Fig. 3f).

The stellate cells are smaller than the principal cells and
assume a strip shape in the cross section (Fig. 4a). The stellate
cells are scattered among the principal cells and rest on the
basal lamina. In the apical region, the neighboring cells are
held by septate junctions (Fig. 4b). The septate junctions are
scarce between the adjacent epithelial cells in the basal region
(Fig. 4c). The basal plasma membrane is conspicuously
infolded with a few mitochondria and generates a labyrinth
(Fig. 4c). The large oval nucleus with double membranes oc-
cupies the central part of the cell (Fig. 4a, f). The cytoplasm is

Fig. 3 TEM micrographs of the
principal cells in the cross section
of Malpighian tubules in
Terrobittacus implicatus. a The
principal cells. b The basal region
of a principal cell. ¢ Septate
junction between two
neighboring principal cells. d
Apical region of the principal cell
with many mitochondria. e
Numerous spherites in the apical
region of the principal cell. f
Closely packed microvilli with
mitochondria. BL basal lamina,
BM basal plasma membrane, Lu
lumen, M mitochondrion, Mv
microvilli, PC principal cell, RER
rough endoplasmic reticulum,
spherite, SC stellate cell, SJ
septate junction, V vacuole. Scale
bars: a2 um; b—e 1 pm; £ 500 nm
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electron-lucent and devoid of vacuole and spherite (Fig. 4).
The cells contain rough endoplasmic reticulum and Golgi
complex (Fig. 4d, e). The mitochondria of the stellate cells
vary in shape and are fewer than those of the principal cells
(Fig. 4b, d). The microvilli of the stellate cells are shorter than
those of the principal cells and lack mitochondria and are
sparsely distributed in the luminal spaces (Fig. 4f).

Discussion

The larval Malpighian tubules of 7. implicatus lack morpho-
logically specialized segments and branches and are similar to
those of other mecopterans (Grell 1938; Potter 1938a, b; Setty
1940; Liu S and Hua 2009; Liu L and Hua 2017) and other
insects (Bradley 1998), such as the blow fly Calliphora
erythrocephala (Meigen) (Diptera: Calliphoridae) (Berridge
and Oschman 1969) and the larval mosquito Aedes
taeniorhynchus (Wiedemann) (Diptera: Culicidae) (Bradley
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Fig. 4 TEM micrographs of the
stellate cells of Malpighian
tubules in Terrobittacus
implicatus. a A stellate cell with
an oval nucleus. b Septate
junction between adjacent
principal and stellate cells. ¢ Basal
region of the stellate cell. d
Mitochondria in various shapes in
the cytoplasm. e Perinuclear
region of the stellate cell. f Short
microvilli of the stellate cell. BL
basal lamina, BM basal plasma
membrane, G Golgi complex, Lu
lumen, M mitochondrion, Mv
microvilli, N nucleus, PC
principal cell, RER rough
endoplasmic reticulum, SC
stellate cell, SJ septate junction.
Scale bars: a 2 um; b, d—f

500 nm; ¢ 1 pm

et al. 1982). The tubule of T. implicatus consists of a
monolayered epithelium bounded by a non-cellular basal lam-
ina and a central lumen. The epithelium consists of large prin-
cipal cells and small stellate cells, the latter of which are un-
evenly distributed along the length of the tubules. These two
types of cells are greatly different in ultrastructure and associ-
ated with different functions (Berridge and Oschman 1969).
The principal cells are the primary epithelial cells of the
Malpighian tubule in insects (Bradley 1998; Chapman 2013;
Gullan and Cranston 2014) and are with minor variation in
fine structure among different species (Martoja and Ballan-
Dufrancais 1984). In 7. implicatus, the principal cells of larval
Malpighian tubules are characterized by deeply infolded basal
plasma membrane, a lot of mitochondria, rough endoplasmic
reticulum, and a large number of closely packed microvilli.
These ultrastructural features indicate that they are active in
ion and water transport (Pal and Kumar 2013). The water and
ion from the hemolymph are transported by an osmotic gradi-
ent, which is generated within the tubule cells and the central

lumen (Pannabecker 1995; Gullan and Cranston 2014). The
transport takes place by a secretory process of tubule cells
(Ruiz-Sanchez et al. 2015). The numerous mitochondria lie
within microvilli or with the basal plasma membrane and are
involved in supplying energy for the transport and secretion of
the cells (Bradley 1998). In addition, the principal cells are
associated with sequestration of organic or inorganic compo-
nents as inclusions bounded by membrane (Martoja and
Ballan-Dufrangais 1984; Leonard et al. 2009).

The inclusions bounded by membrane such as spherites are
universal in the principal cells of Malpighian tubules (Martoja
and Ballan-Dufrancais 1984; Bradley 1998) and usually also
occur in the midgut epithelium (Pigino et al. 2005; Pinheiro
et al. 2008; Santos et al. 2017). Numerous spherites are pres-
ent in the principal cells of the larval Malpighian tubules in 7.
implicatus and also occur in the larval midgut of Bittacus
planus (Liu L and Hua 2017). The spherites with concentric
lamination are formed by mineral accumulation (Pinheiro
et al. 2008). The spherites of Malpighian tubules are the vital
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mineral supply to support the crucial processes of the life
cycle in the cave cricket Troglophilus neglectus Krauss
(Orthoptera: Rhaphidophoridae) (Lipovsek et al. 2009). In
the herald moth Scoliopteryx libatrix Linnaeus (Lepidoptera:
Noctuidae), the stored spherites are gradually utilized in the
Malpighian tubules during overwintering (Lipovsek et al.
2017). In addition, the accumulation of metals in spherites is
also a detoxification mechanism of insects at the cellular level
(Ballan-Dufrangais 2002).

In contrast to the principal cells, the stellate cells are thin in
the cross section and possess sparser organelles, short micro-
villi, and a few mitochondria in the larval Malpighian tubules
of T. implicatus, as in other insects (Bradley 1998; Chapman
2013). Judged from the ultrastructure, the stellate cells are not
actively related to ion transport (Pal and Kumar 2013). The
function of stellate cells is involved in sodium resorption in
the blow fly C. erythrocephala (Berridge and Oschman 1969)
and the larval fruit flies Drosophila hydei Sturtevant and D.
melanogaster Meigen (Diptera: Drosophilidae) (Wessing
et al. 1999).

The Malpighian tubules release primary urine from the
lumen towards and into the alimentary canal (Gullan and
Cranston 2014) and are in high sensitivity (Giglio and
Brandmayr 2017) in altering the epithelial ultrastructure
subject to heavy metals (Pigino et al. 2005; Talarico et al.
2014) and insecticides (Sumida et al. 2010; De Almeida
Rossi et al. 2013; Decio et al. 2013; Ferreira et al. 2013).
After exposure to heavy metals, the larval flesh fly
Boettcherisca peregrina Robineau-Desvoidy was found
to increase spherites in the midgut and Malpighian tubules,
indicating that these are the primary organs to store metals
(Wu et al. 2009). In Bittacidae, the larvae swallow soil
through the mouthparts and then spray the soil on their
body surface through the anus after hatching, and each
molts (Currie 1932; Setty 1940). The soil particles pass
through the digestive tract and are likely mixed with pri-
mary urine before excretion from the larval anus. Spherites
are rich in the epithelium of larval Malpighian tubules in 7.
implicatus and are also abundant in the larval midgut epi-
thelium of the hangingfly B. planus, but are lacking in that
of the scorpionfly Neopanorpa longiprocessa (Liu L and
Hua 2017). Considering that the larval soil-spraying habit
is only present in the larvae of Bittacidae and not in other
families of Mecoptera, we suppose that the spherites of
bittacid larvae may store heavy metals from the soil parti-
cles temporally stored in the alimentary canal.
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