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Abstract Increased atmospheric [CO2] is likely to affect pho-
tosynthesis, plant growth, and yield potential of plants.
Mustard (Brassica juncea L.) is an important oil seed crop
that is widely grown in India. Therefore, the impact of elevat-
ed [CO2] (585 μmol mol−1) on pigment and protein content,
chlorophyll a fluorescence, photosynthetic electron transport
reactions, CO2 assimilation, biomass production, and seed
yield potential was measured in B. juncea cv Pusa Bold,
grown inside free air carbon dioxide enrichment (FACE) rings
installed on the campus of Jawaharlal Nehru University, New
Delhi, India. Plants were grown for three consecutive winter
seasons (2010—2013), in ambient (385 μmol mol−1) or ele-
vated [CO2], in field conditions. Elevated [CO2] had no sig-
nificant effect on the minimal chlorophyll fluorescence (F0),
while the quantum efficiency of Photosystem II, measured as
variable fluorescence (Fv=Fm–F0) to maximum fluoresence
(Fm), increased by 3%. Electron transport rate, photosystem I,
photosystem II, and whole chain electron transport rates in-
creased by 8 % in elevated [CO2]. However, the net photo-
synthesis rate increased by ≈50 % in three growing seasons
under elevated [CO2] condition. The stomatal conductance
and transpiration rate decreased resulting in higher photosyn-
thetic water use efficiency. The photosynthesizing surface,
i.e., leaf area index substantially increased leading to higher
biomass and seed yield under elevated [CO2] condition.
Acclimatory downregulation of photosynthesis and plant pro-
ductivity was not observed in three consecutive growing years

suggesting that in the absence of nutrient limitation, B. juncea
is highly responsive to elevated CO2 whose yield potential
shall increase in changing climatic conditions.
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Abbreviations
Chl Chlorophyll
DCIP 2,6-dichloroindophenol
DCMU 3-(3,4-dichlorophenyl) 1,1-dimethyl urea
FACE Free air carbon dioxide enrichment
F0 Minimal chlorophyll fluorescence
Fm Maximal chlorophyll fluoresecence
Fv/Fm Optimum quantum efficiency of PS II
MV Methylviologen
NPQ Non-photochemical quenching of fluorescence
OTC Open top chamber
PD p-phenylenediamine
PS I Photosystem I
PS II Photosystem II
PAM Pulse amplitude modulation
PAR Photosynthetically active radiation
Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase
WUE Water-use efficiency

Introduction

The concentration of carbon dioxide in the post-industrial era
has tremendously risen due to high anthropogenic activities
and is expected to reach up to 550 μmol mol−1 by the next
50 years. Plant metabolism is directly affected due to elevated
concentrations of CO2. Our knowledge of plant responses to
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elevated CO2 concentrations mostly stems from studies in
plant growth chambers or open top chambers (OTC) under
controlled conditions with adequate water and nutrient avail-
able to plants and in the absence of weeds, diseases, and
interaction with insects. Responses of plants to elevated
[CO2], known as the CO2 fertilization effect (Dhakhwa et al.
1997), have been studied in a few crop species (for reviews,
see Kimball et al. 2002; Bowes 1993; Long et al. 2004;
Ainsworth and Long 2005; Reddy et al. 2010). Currently,
ambient CO2 concentration is a limiting factor for C3 photo-
synthesis, and elevated atmospheric [CO2] is known to in-
crease CO2 fixation because of acceleration of carboxylation
over oxygenation mediated by ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco). The enhanced carboxyla-
tion results in a reduced photorespiration (for a review, see
Leegood 2007).

Plants with C3 photosynthetic pathway are known to re-
spond better to CO2 enrichment than those with C4 pathway
(Amthor 1995; Bowes 1993; Poorter and Roumet 1996;
Rogers et al. 1997). Exposure of C3 plants to elevated CO2

generally results in enhanced photosynthesis and carbon as-
similation. Higher carbon uptake causes increased relative
growth rate (RGR) (Lambers et al. 1998), greater number of
mesophyll cells and chloroplasts, enhanced rooting
(Chaudhuri et al. 1986; 1990; Rogers et al. 1992), and increase
in biomass and yield (Kimball 1983). It also alters plant
structure (Pritchard et al. 1999), timing of developmental
stages (Bowes 1993), and growth rate (Heineke et al. 1999).
Photosynthesis, its quantum yield, and net CO2 fixation rates in
plants are increased during short-term exposures (second to
hours) to elevated CO2 (Makino andMae 1999). However, this
effect is not sustained for long, and acclimatization takes place
with lowered rate of photosynthesis and decline in growth,
after days and weeks of CO2 fertilization (Moore et al. 1999;
Stitt and Krapp 1999). Growth and above-ground biomass
production generally increase, while the response varies with
species, growing seasons, and experimental conditions
(Jablonski et al. 2002). Elevated CO2 results in taller plants
with larger stem diameter, increased branching and leaf num-
ber, and increased leaf area and leaf area index (LAI), which is
related partly to the accumulation of non-structural carbohy-
drates (Lambers et al. 1998), Moreover, elevated [CO2] slows
transpiration by partial closure of stomata (Jones and
Mansfield 1970), and water use efficiency (WUE) is expected
to rise due to reduced transpiration (Prior et al. 1991; Allen
1994; Dugas et al. 1997) with increased photosynthesis (Sionit
et al. 1981; Morison 1985; Baker et al. 1990). Stomatal con-
ductance decreases in angiosperms, including C4 plants, but
not in the conifers (Saxe et al. 1998). Decrease in nitrogen per
unit leaf area and increase in the number of flowers, fruits, and
seeds lead to a greater individual seed mass and total seedmass
but a lower seed nitrogen concentration (Jablonski et al. 2002)
under elevated CO2 condition.

Results obtained from free air CO2 enrichment (FACE)
rings and open-top chambers are often contradictory, although
both are located in the field environment. The open-top cham-
bers are covered from the sides and only partially open from
the top. Due to changes in microclimatic conditions, data
obtained from these chambers often do not match with the
actual open field conditions. However, the FACE ring system
is reliable for growing plants at elevated CO2 in the field. The
FACE eliminates the limitations of chamber studies in terms
of size limitation and artificial microclimatic condition (Long
et al. 2004). FACE studies provide the most natural environ-
ment to obtain accurate responses of plants to increased
[CO2]. Therefore, it is essential to evaluate the impact of
elevated CO2 in the field environment by increasing the
[CO2] in the plantation zone in the FACE facility. Mostly,
550–600 μmol mol−1 of [CO2] has been used in the FACE
system to evaluate plant responses to elevated CO2 (Bernacchi
et al. 2003; Leakey et al. 2009; Rogers et al. 2009).

Brassica juncea (mustard) is an important oil producing
crop and a number of studies are available on responses of this
plant to elevated concentrations of CO2 (Frick et al. 1994;
Reekie et al. 1998; Mishra et al. 1999; Uprety and Mahalaxmi
2000; Uprety et al. 2001; Johannessen et al. 2002; Qaderi and
Reid 2005; Qaderi et al. 2006). However, all these studies are
done in plant growth chambers or open top chambers but not
in FACE experiments. Therefore, this study was undertaken
on mustard (B. juncea cv Pusa Bold) plants in the FACE
system, which provides the most natural environment to as-
certain accurate responses of plants to increased CO2. Plants
were grown for three consecutive years in ambient and ele-
vated CO2 (585 μmol mol−1) in the FACE facility on the
Jawaharlal Nehru University (JNU) campus (see Fig. 1), and
their chlorophyll a fluorescence, electron transport rate, pho-
tosynthetic CO2 assimilation, growth parameters, and seed
yield were monitored. It is shown that although there was only
a small increase in Photosystem II (PS II)-dependent electron

Fig. 1 Free air carbon dioxide enrichment (FACE) facility built on the
campus of Jawaharlal Nehru University, New Delhi, India. Mustard
(Brassica) plants were grown inside FACE rings maintained at elevated
CO2 (585 μmol mol−1)
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transport rate, CO2 assimilation rate, above-ground plant dry
matter, and seed yield increased substantially in response to
high [CO2] mostly due to increased leaf area and carboxyla-
tion capacity of Rubisco in high CO2 environment.

Materials and methods

Plant material and growth conditions

Plant material

B. juncea (L.) cv. Pusa Bold, an amphidiploid (genome ab, n=
18) derivative of diploid species Brassica campestris (genome
a, n=10) and Brassica nigra (genome b, n=8), was used in
this work. Its seeds were obtained from the IndianAgricultural
Research Institute (IARI), New Delhi, India.

Treatment and sampling

Plants were grown in free air CO2 enrichment facility at
Jawaharlal Nehru University, New Delhi (28° 32′ 24″ N, 77°
10′ 2″ E), India, during three growing seasons: 2010–2011,
2011–2012, and 2012–2013 (see Fig. 1). Green manure was
added to the soil during preparation of the field for sowing.
Nitrogen (N) was provided at the rate of 100 kg ha−1 in the
form of urea to the standing crop during vegetative phase. The
crop was kept free fromweeds by regular weeding operations.
The FACE rings were maintained at 585 μmol mol−1 of
[CO2]. The FACE ring was surrounded by a ring of eight
pipes that released air enriched with CO2. Wind direction,
wind velocity, and [CO2] were measured at the center of plot,
and this information was used by a computer-controlled sys-
tem to adjust CO2 flow rate, controlled by a mass-flow control
valve, to maintain the target elevated [CO2] at
585 μmol mol−1. The fast feedback proportional integral
differential (PID) algorithms were used in response to fluctu-
ations in [CO2] which provided a stable [CO2] elevation. Clear
and windless days were chosen for the experiments. All plants
received the same agricultural management. Plant material
harvested for analysis was either immediately analyzed or
stored at −80 °C. In all the experiments dealing with chloro-
phyll (Chl), protein, fluorescence, and photosynthesis, the 3rd
leaf from the top of the shoot was harvested from different
plants for analysis.

Pigment and protein estimation

Chl a and Chl b content was estimated, after extraction from
leaves, in 80 % acetone, as described by Porra et al. (1989).
Protein content of the leaves was measured according to
Bradford (1976). Six biological replicates were prepared for
analysis for each season.

Morphological observations

The following measurements were made: (i) Plant height (cm)
was recorded using a measuring tape; (ii) Number of leaves
were evaluated visually; (iii) Leaf area (m2) was measured
using Leaf Area Meter (Model LI COR 3000, Li-COR,
Lincoln, NE, USA); (v) For fresh weight measurements, each
plant was placed in polythene bags and was weighed imme-
diately. The weight of polythene bag was deducted from the
total weight to obtain exact weight of the plant. (vi) For dry
weight measurement, whole plants, including the leaves, were
cut into small pieces, dried in an oven at 80 °C for 72 h and
then weighed. (vii) For seed weight, the harvested pods were
sun-dried for 3 days, and grains were separated manually.
Clean seeds were weighed on a precision balance. (viii) The
1000 seed weight (g) was determined by the mean over 100
grain weight samples, multiplied by 10; and (ix) harvest index
(%) was calculated as the ratio of grain weight to total dry
matter weight, expressed in percentage.

Chlorophyll a fluorescence measurements

Chl a fluorescence from the ventral side of the third attached
leaves of different plants was measured with a PAM-2001 Chl
fluorometer (Walz, Germany) at the FACE facility, as de-
scribed by Dutta et al. (2009). Before each measurement, the
sample leaf was dark-adapted for 20 min (Demmig et al.
1987). Optimum quantum efficiency of Photosystem II (PS
II) was calculated as Fv/Fm=(Fm−F0)/Fm (Schreiber and
Armond 1978), where F0 is the minimum fluorescence, Fm
is the maximum fluorescence, and Fv is the variable fluores-
cence. Electron transport rate (ETR) was calculated by the
formula described by Schreiber et al. (1994): ETR=Yield
(φPS II)×PAR×0.5×0.84, where the yield is the overall
photochemical quantum yield (estimated from Fv′/Fm′, where
Fv′ and Fm′ are variable and maximumChl fluorescence under
light); PAR is flux density of incident photochemically active
radiation (μmol photons m−2 s−1); the 0.5 factor is used
because transport of one electron requires absorption of two
quanta by the two photosystems, i.e., it assumes that PS II:PS I
ratio is 1:1; the use of 0.84 assumes that 84 % of the incident
quanta are absorbed by the leaf. Non-photochemical
quenching was calculated from the formula NPQ=Fm−Fm′/
Fm′ (see Schreiber 2004).

Isolation of thylakoid membranes

Thylakoid membranes were isolated from leaves of ambient
and elevated [CO2]-grown plants, in ice-cold 0.4 M sucrose,
10 mM NaCl, and 50 mM Hepes/KOH buffer pH 7.6, as
described by Tripathy and Mohanty (1980).
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Electron transport assay

Assays of electron transport activity of the whole chain,
PS II and PS I were carried out using a glass cuvette
fitted within a Clark-type oxygen electrode (Hansatech,
UK), as described by Tripathy and Chakraborty (1991).
The reaction was maintained at 25 °C by using a temper-
ature controlled water bath, and the samples were illumi-
nated for 20 s using a tungsten light source at a photon
flux rate of 1500 μmol photons m−2 s−1. The whole chain
electron transport from H2O to methylviologen (MV)
(1 mM) was monitored as O2 uptake. Assay mixture
(3 mL) consisted of 50 mM Hepes (pH 7.5), 10 mM
NaCl, 1 mM NH4Cl, 3 mM MgCl2, 1.0 mM NaN3, and
0.5 mM MV. Chloroplasts were added to the above reac-
tion mixture to a total concentration of 50 μg Chl. PS II
activity was monitored as O2 evolution from H2O to p-
phenylenediamine (PD). The 3 mL reaction mixture for
PD (p-phenylene diamine)-supported O2 evolution assay
consisted of 50 mM Hepes buffer (at pH 7.5), 3 mM
MgCl2, 10 mM NaCl, and freshly prepared PD (0.5 mM).
The partial electron transport chain through PS I was
measured as oxygen consumption, where ascorbate
(1 mM)/dichlorophenol indophenol (DCIP) (0.1 mM) cou-
ple was used as electron donor to PS I and MV (1 mM)
as electron acceptor; in this case, electron flow from PS II to
PS I was blocked by 3-(3,4-dichlorophenyl)-1,1-dimethyl
urea (DCMU) (20 μM).

Photosynthesis rate measurements

Photosynthesis rate, stomatal conductance, and transpiration
rate measurements were made in the FACE facility using
infrared gas analyzer (LICOR 6400 XT portable photosyn-
thetic system). CO2 concentration was maintained at
385 μmol mol−1 for ambient CO2-grown plants and
585 μmol mol−1 for elevated CO2-grown plants. Leaves were
pre-exposed to 6400-02B LED light source for 15 min at
1000 μmol photons m−2 s−1 before CO2 assimilation was
monitored. The 6400-02B provided an actinic light source to
drive photosynthesis and a blue component to control stomata
(Zeiger, et al. 1987). Red LED’s provided radiant output at
665 nm±10 nm at 25 °C while blue LED’s had an output at
470 nm±10 nm at 25 °C. Leaf temperature was maintained at
25 °C. Water use efficiency was calculated as net photosyn-
thetic assimilation rate/transpiration rate. Six replications were
made in different location in the field for calculation of all
photosynthetic parameters in every growing season.

Statistical analyses

Excel was used for the statistical analyses. After the calcula-
tion of averages, standard deviations and standard errors for

each of the growth parameters were determined at each of the
three growing seasons, a t test was used to assess the differ-
ence between ambient and elevated CO2-grown plants in each
parameter (Biswal et al. 2012).

Results

Photosynthetic pigments

The Chl content of Brassica plants exposed to higher [CO2]
(585 μmol mol−1) was marginally downregulated. Our mea-
surements of Chl content for three consecutive years revealed
that it declined by 3.3, 4.5, and 4.8 % in 2010–2011, 2011–
2012, and 2012–2013, respectively (Fig. 2a). Further, on an
average, carotenoid content decreased by 3, 2.3, and 2.0 % in
plants grown at elevated CO2 (Fig. 2b). However, no signif-
icant change in Chl a/b ratio was observed (Fig. 2c).

Protein

The protein content of leaves for three consecutive years
revealed that on an average, it declined by 1.58, 1.8, and
3 % in mustard plants grown in elevated CO2 .in 2010–
2011, 2011–2012, and 2012–2013, respectively (Fig. 2d).

Chlorophyll fluorescence

Chl a fluorescence measurement is used as a nondestructive
and non-invasive signature of photosynthesis (for reviews, see
Krause and Weiss 1991; Govindjee 1995, 2004; Baker 2008).
Chl a fluorescence transient of dark-adapted (20 min) leaves
was measured in all the growing seasons, using a plant effi-
ciency analyzer (Hansatech, UK). The minimal Chl fluores-
cence (F0) was almost similar in plants grown in ambient and
elevated CO2 (Fig. 3a). The maximum primary photochemical
efficiency of PS II, which was measured as Fv/Fm, where Fv=
Fm–F0, was slightly higher (3 %) in plants grown in elevated
CO2 (Fig. 3c). Pulse amplitude-modulated (Walz, Germany)
Chl a fluorescence measurements revealed that the electron
transport rate (ETR) (μmole electrons m−2 s−1) of PS II
increased in response to photosynthetic active radiation
(PAR). The light response curves demonstrate that ETR
in limiting (10–80 μmol photons m−2 s−1), as well as in
saturating light intensities (1200 μmol photons m−2 s−1),
was marginally higher (8 %) in plants grown in elevated
[CO2] (Fig. 3d). Non-photochemical quenching (NPQ)
of excited state of Chl increased in response to light
intensity. The NPQ was slightly reduced (6–7 %) in
plants grown in elevated [CO2] at all light intensities
measured (Fig. 3e).
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Photochemical reactions

Light-saturated whole chain electron transport (H2O→
methylviologen (MV)) rate, the partial reaction of PS II
(H2O→phenylenediamine (PD)) and that of PS I (ascorbate/
dichlorophenol indophenol (DCIP)→MV) were monitored
polarographically in the thylakoid membrane suspensions,
obtained from leaves of plants grown in ambient and elevated
[CO2] conditions (Tripathy et al. 2007 and cited literature
therein). Electron transfer rates of PS I, measured as oxygen
uptake, in thylakoid membranes isolated from leaves of plants
grown in elevated [CO2] were slightly higher (6–7 %)
(Fig. 4a). As compared to plants grown in ambient [CO2],
the partial reaction of PS II, measured as O2 evolution, was 6–
8% higher in thylakoid membranes isolated from high-[CO2]-
grown plants (Fig. 4b). The whole chain electron transport
rate, measured as O2 uptake, was also 7–8 % higher in
elevated [CO2] (Fig. 4c).

Photosynthetic CO2 assimilation

Photosynthetic CO2 assimilation of attached leaves of plants
grown in ambient and elevated CO2 was monitored using an
infrared gas analyzer using red and blue 6400-02B LED light
source at a light intensity of 1000 μmol photons m−2 s−1. The
photosynthetic CO2 assimilation rates were measured at

400 μmoles mole−1 of [CO2] in plants grown in ambient and
585 μmol mole−1 of [CO2] in elevated CO2. The rate of
photosynthesis (μmole CO2assimilation m−2 of leaf area s−1)
increased by 42, 48, and 54 % in 2010–2011, 2011–2012, and
2012–2013 growing seasons, respectively, in high-CO2-
grown plants (Fig. 5a).

Stomatal conductance (gs) (mol H2O m−2 s−1) decreased
by 24, 23, and 22 % during 2010–2011, 2011–2012, and
2012–2013 growing seasons, respectively, in plants grown
in elevated [CO2] (Fig. 5b). The decreased stomatal con-
ductance resulted in reduced transpirat ion rate
(mol H2O m−2 s−1) by 37, 40, and 41 % in the above-
mentioned years in elevated [CO2] (Fig. 5c). Therefore, the
photosynthetic water-use efficiency (μmol CO2m

−2 s−1/
mol H2O m−2 s−1) (Fig. 5d) increased due to increased
photosynthesis and decreased transpiration rates. The
water-use efficiency increased in elevated CO2 by 126,
145, and 165 % in 2010–2011, 2011–2012, and 2012–
2013, respectively.

Leaf number and area

The number of leaves per plant increased by 51, 57,
and 63 % in three different growing seasons in high
CO2 (Fig. 6a). Similarly, in plants grown in elevated
CO2, the average increase of total leaf area per plant
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(m2 plant−1) was 36, 43, and 45 % in 2010–2011,
2011–2012, and 2012–2013, respectively (Fig. 6b).
Further, the leaf area index (LAI, leaf area m−2 of land

area) increased by 22, 31, and 34 % in plants grown
under elevated CO2 (Fig. 6c), and these plants were
significantly taller than those grown in ambient CO2.
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Fresh weight and dry weight

Growth under elevated CO2 conditions resulted in an
increase in height by 12, 14, and 17 % in 2010–2011,
2011–2012, and 2012–2013, respectively (Fig. 7a, b)
Measurements of fresh weight of plants grown in ambi-
ent and elevated CO2 for consecutive 3 years revealed
that on average plants had greater fresh weight due to
enhanced growth of all plant parts. Shoot fresh weight
of high-CO2-grown plants increased by 81, 94, and
103 % in 2010–2011, 2011–2012, and 2012–2013
(Fig. 7c). Similarly, these plants produced significantly
higher shoot dry matter in elevated CO2 and had 93, 99,
and 112 % increase in plant dry weight (Fig. 7d).

Seed dry weight and harvest index

Measurement of seed yield revealed that in high CO2,
the average seed production per plant increased by 21,
24, and 26 % (Fig. 8a). The 1000-seed weight increased
by 35, 37, and 40 % in 2010–2011, 2011–2012, and
2012–2013, respectively, as compared to those from
plants grown in ambient CO2 (Fig. 8b, c). However,
harvest index (HI) of these plants had a smaller in-
crease, i.e., 7, 8, and 12 %, respectively, during the
three growing seasons (Fig. 8d).

Discussion

Adjustment of photosynthetic apparatus and sustainability of
photosynthesis to elevated CO2 are critical for plants for their
growth and development in changing climatic conditions. The
climate of Delhi, India, is favorable for the growth of
Brassica. In this paper, we were able to assess the direct effect
of elevated CO2 on photosynthesis and plant productivity
under field conditions in the absence of nutrient deficiency
and water stress.

Chl is the central part of the energy manifestation of each
and every green plant. Therefore, any significant alteration in
its levels is likely to cause a marked effect on plant metabo-
lism and growth (Pattanayak and Tripathy 2011; Biswal et al.
2012). Elevated [CO2] tends to alter the foliar chemistry of
plants (Lindroth et al. 2001). The Chl and leaf protein contents
were lower by 3–5 and 1.5–3 %, respectively, in B. juncea
plants grown in CO2-enriched environment than the ambient
ones. Previous reports also mention a decrease in Chl and
carotenoid content in elevated [CO2] in soybean grown in
FACE facility and barley and wheat in open-top chamber
(Sicher and Bunce 1997). On the other hand, Nie et al.
(1995) found no change in the amount of Chl in wheat grown
under elevated [CO2] in FACE experiments. In a comparative
study employing five different plant species, Sage et al. (1989)
observed no consistent response of leaf Chl or leaf N to high
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[CO2] in greenhouse environment. Chl content declined in
Chenopodium album, and there was no change in Phaseolus
vulgaris, Solanum melongena, and Solanum tuberosum.
However, species that exhibited decreased leaf Rubisco con-
tent during growth in elevated [CO2] also exhibited a low Chl
content (Sicher et al. 1994). In contrast, high [CO2] was
reported to increase the total chlorophyll content in Quercus
suber seedlings under greenhouse conditions (Faria et al.
1996). In our experiments, elevated CO2 concentration led
to partial downregulation of Chl and total protein content.
However, the ratio of Chl a to Chl b remained the same with
an increase in CO2 concentration. Our results demonstrate that
the growth of plants increases in high [CO2]. Therefore, Chl
content and growth responses are not necessarily positively
correlated under high [CO2] conditions. High photon flux
density decreases chlorophyll content and increases Chl a to
Chl b ratio (Biswal et al. 2012). Optimum light absorption is
needed to utilize the increased supply of CO2 in the FACE
ring. Changes in the leaf Chl content in response to elevated
CO2 are not due to the increase in light intensity as both
ambient and elevated FACE rings received almost equal solar
light intensity. Growth in elevated CO2 had affected the N
status of mustard leaves. Marginal downregulation of protein
content in successive growing seasons could be due to slightly
limited nutrient availability to plants because of increased soil
carbon sequestration and soil acidification. Collectively, these

results suggest that plant growth in elevated [CO2] may have a
broad impact on the Chl and protein contents of plants.

Elevated [CO2] has different effects on photochemistry. In
the present experiment, the ETR (see “Materials and
methods”) and Fv/Fm (a measure of maximum quantum effi-
ciency of PS II) of leaves increased by 8 and 3%, respectively,
in high [CO2] which suggests that the PS II was modulated
marginally. Further, Murray et al. (2000) observed that under
conditions of high nitrogen (N) supply, the maximum rate of
electron transport (Jmax) did not differ in response to elevated
[CO2] in Sitka spruce (Picea sitchensis). In our experiments,
the NPQ of Chl fluorescence (a measure of heat dissipation,
see Demmig-Adams et al. 2014) decreased by 6–7 % in the
elevated CO2-grown B. juncea plants (Fig. 3e). Our measure-
ments (Figs. 3 and 4) revealed only a small (3–5%) increase in
PS I, PS II, and whole chain electron transport in high-CO2-
grown plants. This could be attributed partly to a small decline
in Chl content of plants in high [CO2]. However, the increased
PS II photochemical activity corroborates well with slightly
higher ETRwhich is a function ofφPS II (yield), among other
parameters. In elevated [CO2] in a FACE facility, φPS II was
shown to either increase or decrease under different develop-
mental conditions, as observed in Loblolly Pine (Hymus et al.
1999). In the carbon reduction cycle, to reduce phosphogly-
ceric acid to phosphoglyceraldehyde, higher NADPH is re-
quired and RuBP regeneration needs high ATP to run carbon
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reduction cycle efficiently at the elevated [CO2]. However, we
did not observe any substantial increase in the electron trans-
port rate or PS II, PS I, or whole chain activities that could
have provided ATP and NADPH to sustain increased demand
of carbon reduction. This suggests that with appropriate nitro-
gen supply, electron transport rate is not a limitation for
increased carbon reduction at elevated CO2 in our measure-
ments on mustard plants.

Our study reveals that photosynthetic rate significantly
increased in mustard plants in response to elevated [CO2]
repeatedly for three consecutive seasons. Similarly, the rate
of CO2 assimilation also increased in soybean and poplar
grown in elevated [CO2] inside FACE rings (Bernacchi et al.
2003; Ainsworth and Rogers 2007). Our results did not show
downregulation of photosynthesis. Similarly, Garcia et al.
(1998) found little evidence of a decline in photosynthetic
capacity of spring wheat under field conditions, using FACE.
In their study, photosynthesis increased substantially for the
entire life of the crop. In our study, stomatal conductance
decreased in mustard plants with elevated [CO2] (Fig. 5b) that
might have helped leaves to prioritize water for leaf expansion
over transpiration. The decreased stomatal conductance result-
ed in reduced transpiration rate. Increased photosynthesis and
decreased transpiration rate per unit leaf area led to increased
photosynthetic water-use efficiency of mustard plants grown
under elevated [CO2] (Fig. 5d).Water-use efficiency is strong-
ly affected by stomatal density (Woodward and Kelly 1995).
Both stomatal density and stomatal index of leaves, which are
negatively correlated with elevated [CO2], have decreased
over the past 100 years (Woodward 1987). Improved water
status of plants, due to partial closure of stomata, causes a
higher turgor pressure, which could stimulate leaf expansion
(Lenssen and Rozema 1990). Our results reveal that not only
photosynthesis rate but photosynthesizing surface, i.e., leaf
area per plant and leaf area index increase 30–40 % and 25–
34 %, respectively, with high [CO2] indicating a strong mor-
phogenic effect of CO2 on leaf initiation. Elevated [CO2] has
varied effects on leaf area index from very little or no signif-
icant increase (Pinter et al. 1996; Weerakoon et al. 2000;
Baker et al. 1990; Ziska et al. 1997) to a significant increase
(Wilson et al. 1999; Bunce 2001) in different plant species.
The rate of transpiration of plant increases with leaf area of the
plant. The increased leaf area per plant (Fig. 6b) is likely to
offset effects of reduced stomatal conductance on transpira-
tion. Some studies have shown that increased leaf area can
more than compensate for reductions in stomatal conductance
and can actually increase water use per plant at elevated [CO2]
(Samarakoon and Gifford 1995).

In the present study, the increased photosynthesis rate
coupled with a higher leaf area per plant led to increased
biomass and yield under elevated [CO2]. We did not observe
any downregulation of photosynthesis per unit leaf area in
B. juncea and the acclimatory loss of photosynthesis, if any, in

other species could be offset by morphological characteristics,
such as greater leaf area leading to increased biomass and
yield. Elevated [CO2] is known to increase photosynthesis
during different phenological phases resulting in increased
dry matter production (Mitchell et al. 1999; Lawlor and
Mitchell 2000; Ziska et al. 2004). On average across several
species and under unstressed conditions, recent data analyses
show that, compared to current atmospheric CO2 concentra-
tions, crop yield increases at 550 μmol mol−1 [CO2] are in the
range of 10–20 % for C3 crops and 0–10 % for C4 crops
(Ainsworth et al. 2004; Gifford 2004; Long et al. 2004).
Increases in economic yield, i.e., seed production were 21–
26 % in B. juncea at elevated CO2 (Fig. 8a). Furthermore,
1000-seed weight increased by 35–40 % (Fig. 8b) demon-
strating that the higher seed yield was mostly due to increased
grain filling from long-lasting leaves whose senescence was
substantially delayed by 10 days.

In conclusion, percent increase in seed yield was lower
than the increase in total biomass in elevated CO2. If most of
the additional photosynthate produced in elevated CO2 would
have been used for economic yield, i.e., increased seed pro-
duction, a much higher grain output should have been possible
in changing climatic conditions. Further studies should be
directed towards augmenting the economic yield from the
available increased photosynthate (increase in harvest index)
produced in high [CO2] environment. We did not observe
acclimatory downregulation of photosynthesis and plant pro-
ductivity in high [CO2] for three consecutive growing years.
These clearly suggest that in the absence of any kind of
nutrient limitation, B. juncea is highly responsive to elevated
CO2 whose yield potential shall increase in changing climatic
conditions. However, the increases in overall biomass are
important towards the goal of obtaining bioenergy for other
purposes.
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