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Abstract New challenges posed by the development of resis-
tance against artemisinin-based combination therapies (ACTs)
as well as previous first-line therapies, and the continuing
absence of vaccine, have given impetus to research in all areas
of malaria control. This review portrays the ongoing progress in
several directions of malaria research. The variants of RTS,S
and apical membrane antigen 1 (AMA1) are being developed
and test adapted as multicomponent and multistage malaria
control vaccines, while many other vaccine candidates and
methodologies to produce antigens are under experimentation.
To track and prevent the spread of artemisinin resistance from
Southeast Asia to other parts of the world, rolling circle-
enhanced enzyme activity detection (REEAD), a time- and
cost-effective malaria diagnosis in field conditions, and a
DNA marker associated with artemisinin resistance have be-
come available. Novel mosquito repellents and mosquito trap-
ping and killing techniques much more effective than the
prevalent ones are undergoing field testing. Mosquito lines
stably infected with their symbiotic wild-type or genetically
engineered bacteria that kill sympatric malaria parasites are
being constructed and field tested for stopping malaria trans-
mission. A complementary approach being pursued is the
addition of ivermectin-like drug molecules to ACTs to cure
malaria and kill mosquitoes. Experiments are in progress to

eradicate malaria mosquito by making it genetically male ster-
ile. High-throughput screening procedures are being developed
and used to discover molecules that possess long in vivo half
life and are active against liver and blood stages for the fast cure
of malaria symptoms caused by simple or relapsing and drug-
sensitive and drug-resistant types of varied malaria parasites,
can stop gametocytogenesis and sporogony and could be given
in one dose. Target-based antimalarial drug designing has be-
gun. Some of the putative next-generation antimalarials that
possess in their scaffold structure several of the desired prop-
erties of malaria cure and control are exemplified by OZ439,
NITD609, ELQ300 and tafenoquine that are already undergo-
ing clinical trials, and decoquinate, usnic acid, torin-2,
ferroquine, WEHI-916, MMV396749 and benzothiophene-
type N-myristoyltransferase (NMT) inhibitors, which are can-
didates for future clinical usage. Among these, NITD609,
ELQ300, decoquinate, usnic acid, torin-2 and NMT inhibitors
not only cure simple malaria and are prophylactic against
simple malaria, but they also cure relapsing malaria.
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Introduction

Malaria continues to persist in 97 countries inhabited by 3.4
billion people. It is reported that in the year 2013, 219 million
persons became sick with malaria disease, and of them,
627,000 died including 483,000 children (WHO; World
Malaria Report 2012, 2013a). Malaria mortality was more in
the countries of Africa than in Asia or South America. There
were 60.7 million new infections of malaria in India in 2013
(Murray et al. 2014). In India, ≤0.2 million have been dying of
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malaria each year, largely in the states of Chattisgarh, Orissa
and Jharkhand (Dhingra et al. 2010; Murray et al. 2014).
Climate change is allowing malaria to reach new densely
populated areas, such as in the highlands (Siraj et al. 2014).
Malaria is caused by the parasites of five species of the genus
Plasmodium of the phylum Apicomplexa. Malaria disease
caused by Plasmodium knowlesi, Plasmodium malariae,
Plasmodium ovale and Plasmodium vivax is milder than that
caused by Plasmodium falciparum which is often lethal.
P. vivax and P. falciparum are respectively the principal agents
of morbidity and mortality causing malaria (Garcia et al. 2008).
Besides causing disease in vertebrates, Plasmodium parasites
infect mosquitoes of the genus Anopheles. Thirty to 40 species
of Anopheles are sensitive to Plasmodium. The main vectors of
malaria transmission to humans are Anopheles gambiae and
Anopheles stephensi (Hay et al. 2010). Females of these mos-
quito species acquire malarial parasite infection by biting and
taking a blood meal from infected humans. About a week or
more than a week later, infected mosquitoes transmit infection
to humans while taking their next blood meal. The life cycle of
Plasmodium is complex (Fig. 1). It comprises of a gametophyt-
ic (male and female gamete forming, haploid) phase followed
by a sporophytic (arising from zygote/embryo via mitotic divi-
sions, diploid) phase in a female mosquito and a sporophytic
phase each in liver and red blood cells and a gametophytic
phase in blood in human host (Rosenberg 2008).

As shown in Fig. 1, Plasmodium’s asexual liver stage in
human host (exo-erythrocytic schizogony) begins with inocula-
tion of its eight to ten sporozoites, during the meal bite by an
infected female mosquito. The sporozoites injected into the
bloodstream travel to the liver and invade hepatocytes. In the
invaded hepatocyte, the sporozoite differentiates and grows,
within 6–8 days into a schizont (mother cell), by dividing
mitotically to produce 1×104–3×104 merozoites (daughter
cells). The liver merozoites, released into the bloodstream upon
rupturing of liver schizont(s), invade erythrocytes, thus, begins
Plasmodium’s human blood stage life cycle (erythrocytic schi-
zogony). Invading merozoite grows into ring stage trophozoite
of large size, at the expense of rich nutrition available in the host
erythrocyte. Further progression of trophozoite into schizont
involves several rounds of mitotic divisions to produce up to
36 merozoites. Erythrocytic schizonts rupture to release mero-
zoites into the bloodstream. The erythrocytic schizogony is
completed in about 48 h. Erythrocytic merozoites invade fresh
erythrocytes andmerozoites get multiplied. This process leads to
the presence of 108 to 1012 circulating merozoites in the blood-
stream. At this stage of 12–14 days from infection, the inocula-
tion period ends and symptoms of parasitaemia get manifested
by the infected human. After parasitaemia has set in, merozoites
of some erythrocytic schizonts invade erythrocytes and differen-
tiate into male gametocytes. Similarly, merozoites of relatively
more schizonts invade erythrocytes to produce female gameto-
cytes. Gametocytes circulate in the blood of parasitaemic human.

Gametocytes are the only forms of Plasmodium that survive in
female mosquito when ingested from malarial human during its
blood meal. The Plasmodium life cycle starts in mosquito, when
the ingested erythrocytes burst and the released gametocytes
produce gametes. The male gametocyte undergoes divisions to
produce eight male gametes that are exflagellated. The female
gametocyte transforms into a female gamete. Fusion of a male
gamete and female gamete results in a zygote, which develops
into a ookinete. The motile ookinete migrates to the midgut
epithelium to initiate an oocyst. Multiple divisions in oocyst
result in the production of thousands of sporozoites. Upon
release from oocysts, the sporozoites migrate to salivary glands.
Sporozoites from salivary glands are injected into a fresh human
host during the next bloodmeal of theAnopheles after 8–10 days
of the previous meal (Hall et al. 2005; Eckhoff 2011). The life
cycles of P. vivax and P. ovale, which cause relapsing malaria,
somewhat differ at the liver stage from that of P. falciparum. The
parasites in the hepatocytes invaded by the P. vivax and P. ovale
sporozoites often enter into hibernation for a period up to more
than a year. Resumption of liver stage in the hibernated
hypnozoites becomes the cause of relapsed malaria. Several
aspects of malaria, including parasite biology, clinical features
in patients, diagnosis of the infected, protection from the disease
and treatment of the diseased, have been broadly reviewed
recently by White et al. (2014). Epidemiology and research
priorities of malaria and strategies to eliminatemalaria have been
discussed in some detail in the reviews of Feachem et al. (2010),
Enayati and Hemingway (2010), Alonso et al. (2011), Cohen
et al. (2012), Burrows et al. (2013), Cotter et al. (2013),
Whittaker et al. (2014) and White (2014). The reviews reveal
that in the history of malaria, evolution of artemisinin resistance
in plasmodia in recent years is a landmark. This development
has led to revision of research agenda on diagnosis and treatment
of malaria and, therefore, significant changes in plans for malaria
control and eradication.

Eradication of malaria from a region requires detection and
effective chemotherapeutic treatment of all parasitaemic
persons and prevention by blocking of transmission from
infected to other persons by a variety of means (Fig. 2).
The objective of this review is to discuss new insights
into human-Plasmodium-mosquito interaction and its con-
trol with reference to eradication of malaria, in the back-
ground of the origin of artemisinin resistance in malarial
parasites.

Origin of artemisinin-resistant malaria

Table 1 gives a list of 15 antimalarials of seven chemical classes
that have been used to treat malarial disease, singly or in
combination, at different times in different geographical areas
(Biamonte et al. 2013). Since 1996, no new class of antimalarial
has been added to clinical practice against malaria. On the

718 S. Kumar et al.



other hand, malaria disease treatment has suffered gravely,
for more than 60 years, from acquirement of genetic drug
resistance property by malarial parasites (Sibley and
Ringwald 2006). Malarial parasites developed chloroquine
resistance as early as 1950. Subsequently, resistance was
noted against other drugs such as pyrimethamine,
sulfadoxine, atovaquone, amodiaquine and mefloquine.
Occurrence of drug resistance mutations was rare and
sporadic, but they subsequently spread worldwide. The

main reason for their first appearance and selection has
been deduced to be drug underdosing of malaria patients.
The dominant nature of certain drug resistance alleles like
crt, mdr1, mrp1 and dhfrts was perhaps responsible for the
rapid spread of drug resistance in the areas of their origin
and subsequently in other areas where migration intro-
duced the resistance alleles (Johnson et al. 2004; Cooper
et al. 2007; Plowe 2009; Petersen et al. 2011; Hrycyna
et al. 2013; Nwakanma et al. 2013).

Fig. 1 Life cycle of the protozoan parasite Plasmodiumwhose five species
induce malaria in the infected humans: P. falciparum, P. malariae, P. ovale,
P. vivax and P. knowlesi. P. falciparum is the cause of maximum mortality
(nine out of ten malaria deaths), and P. vivax causes maximum morbidity.
The genome sequence of P. falciparum is known (Gardner et al. 2002).
Malaria parasites are transmitted person to person by Anopheles mosqui-
toes. There are 430 species of Anopheles of which up to 40 species serve as
malaria vectors. Among them, A. gambiae and A. stephensi are prominent
vectors in Africa and India, respectively. Genome sequence of A. gambiae
is known (Holt et al. 2002). Both mosquitoes have African origin (Liu et al.
2014). The symptoms of malaria in humans are headache, back pain,
muscle ache, fatigue, sweats, fever, chills, vomiting and enlarged spleen.
The symptoms appear 7 to 40 days after infection. The parasite life cycle is
divisible into three parts: a, liver and red blood cell stages in the human host
wherein parasite multiplies asexually; b, sexual stage in human blood-
stream where some pre-merozoites undergo gametocytogenesis; and c,
sexual stages in female mosquito after it has acquired the gametocytes as
a part of bloodmeal from infected human. The antimalarial compounds that
interfere with the progression of different stages are shown as numbers

against horizontal bars. The antimalarials 1–15 are as follows: 1,
dihydroartemisinin; 2, artesunate; 3, artemether; 4, lumefantrine; 5,
piperaquine; 6, sulfadoxine; 7, pyrimethamine; 8, chloroquine; 9,
primaquine; 10, atovaquone; 11, proguanil; 12, mefloquine; 13,
amodiaquine; 14, pyronadrine; and 15, quinine. The antimalarials shown
to act in the b and c parts of Plasmodium life cycle negatively control the
transmission of infection and those that act in the a part control the
progression of malaria and some of them also control sexual gametogenesis
and thereby malarial transmission. The blood meal obtained by a female
mosquito by biting to an infected person under treatment also contains the
drugs which continue to act on the sexual stages undergoing in the mos-
quito. A developmental stage of parasite in the liver called hypnozoite is not
shown in this figure. Hypnozoites are P. vivax or P. ovale parasites that
hibernate in hepatocytes for many months and become the cause of
relapsed malaria. The only clinical antimalarial that kills them is
primaquine. Besides the bite of an infected mosquito, malaria transmission
can also occur via mother to newborn, blood transfusion or sharing of
contaminated needle or syringe and organ transplanting
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In response to the prevalence of resistance to antimalarials
commonly used in clinical practice, the artemisinin (ART)-
based combination therapy (ACT) was adopted in 1978 as the
first line of treatment of malaria (Banek et al. 2014). In ACTs,
ARTor one of its derivatives—dihydroartemisinin, artesunate,
artemether/arteether—is combined with antimalarial(s) such
as piperaquine, mefloquine, amodiaquine, sulfadoxine+pyri-
methamine, atovaquone+proguanil, pyronaridine and
lumefantrine. ARTs via a spectrum of their inhibitory effects,
that are not fully understood (Kumar and Srivastava 2005),
block the development of parasite’s trophozoites and schiz-
onts in red blood cells and also eliminate, at least partially, the
parasite’s gametocytogenesis in the blood of the treated
humans (see Table 1). Thus, ARTs not only remediate malaria
disease by killing the asexual parasites, but they also block
malaria transmission to some extent. The ARTs are fast acting.
They kill the malarial parasites present in the blood of patients
in 2 days. Their in vivo half life is short. The accompanying
drug in ACTs overcomes this deficiency of ARTs. The pres-
ence of two drugs in ACTs also serves to safeguard against
development of resistance against either of the antimalarials.
ACTs are being used in an area-specific manner, such that
resistance to ARTs’ partner drug does not exist in the area of
usage of an ACT. The ACT comprising of dihydroartemisinin
and piperaquine was found to cure 97 % of the P. falciparum-
caused malaria patients in Asia, Africa and South America;
thus, ACTs have saved millions of lives (WHO 2013b).

The presence of resistance to ARTs of ACTs has been
consistently observed in western Cambodia over about the last
10 years (Noedl et al. 2008; Dondorp et al. 2009; Phyo et al.
2012; Satimai et al. 2012; Miotto et al. 2013). As evidence of
resistance development, it was noted that clearing of parasites

following ACT treatment was taking more than 3 days. Survey
in Cambodia showed that in many cases of malaria, clearance
of parasites byACT took up to 20 days.More recently, a similar
type of resistance to ARTs has been noted in a wider Southeast
Asian region comprising Myanmar, Thailand, Cambodia and
Vietnam (WHO 2013a, b).

Measures to contain migration of artemisinin-resistant
malaria to outside of Southeast Asia

Evolution of artemisinin resistant in Plasmodium parasites has
been a grievous setback to the national and international
programmes aiming to eradicate malaria. There is imminent
danger of migration of ART-resistant malarial parasites to Sri
Lanka, Bangladesh, Nepal, India, Pakistan and Africa. There
is an urgent need to stop such possibilities. It is urgently
required to detect in the affected Southeast Asian region all
persons infected with malarial parasites and treat them by
administering the ACT antimalarial to which the local para-
sites are sensitive. Further, transmission requires to be blocked
by the control of mosquitoes as well as by administration of
primaquine or an equivalent drug as a prophylactic, in mass
campaigns, taking care to avoid this treatment of people
afflicted with heritable glucose-6-phosphate deficiency. Such
people may be treated with new complementary safe experi-
mental drugs such as ELQ300, GNF156, NITD609 and torin-
2. However, until very recently such a programme suffered
from deficiencies in rapid method(s) to detect parasitaemic
persons on the one hand and persons suffering from ART-
resistant infection on the other hand. These lacunae have now
been remedied. Juul et al. (2012) have given a cost-effective

Fig. 2 Diagramme of a scheme
for prevention of malaria in a
malaria burdened geographical
region. Implementation of such a
programme in different regions
can roll back by reducing the
burden of malaria such that
WHO’s goal of eradicating
malaria worldwide by 2030 is
achieved. Statistical analysis has
shown that if transmission of
parasites is prevented by the use
of bed nets by 75% of population,
malaria will be stopped in the
concerned geographical region
(Agusto et al. 2013). Once
transmission is stopped, the
disease is unlikely to reappear
(Chiyaka et al. 2013)
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Table 1 Properties of antimalarial compounds in clinical use: chemical structure, biological activity, drug formulation and effectivity against parasites in
mosquito vectors and in malaria patients
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field method to detect the presence of even one parasite in a
drop of blood or saliva of a person to be tested. Ariey et al.
(2014) have revealed a DNA marker to rapidly detect the
presence of any artemisinin-resistant malarial parasites. The
essential and novel features of these techniques are discussed
in subsequent sections.

Procedures for the rapid detection of malaria infection
in single drops of blood

Sensitive techniques are required to identify and manage cases
of malaria infection in general as well as ART-resistant ma-
laria, in hospital laboratories and field conditions, to screen
populations and for surveillance at ports and borders (Moody
2002; Congpuong et al. 2012; Hsiang et al. 2012; White et al.
2014). Three kinds of diagnostic tests are already available. In
the conventional optical microscopic techniques, parasites
present in erythrocytes are visualised in films of blood smear

made and stained on a glass slide. This technique, developed
in the 1900s, does not detect with certainty the Plasmodium
parasites present in the blood of an infected person in the pre-
parasitaemic stages of infection. The microscopic test is diffi-
cult to perform, is time consuming and requires considerable
skill. The sensitivity of this test is only 50–500 parasites/μL of
blood (Warhurst andWilliams 1996). Despite its limitations, it
is the only WHO-standardized and quality-assured test. The
immunochromatographic monoclonal antibody-based dip-
stick rapid diagnostic tests (RDTs) that qualitatively detect
the presence of Plasmodium antigens in human blood com-
prise the second kind of malaria test. It was introduced in the
1990s (Beadle et al. 1994; WHO 2011; Global Fund 2011;
FIND 2013; White et al. 2014). One of the RDTs detects the
presence of histidine-rich protein 2 (HRP2) of P. falciparum.
HRP2 is a Plasmodium protein present in the parasite’s cyto-
plasm and cell membrane of merozoite-invaded erythrocytes.
The HRP2-based RDT detects only the P. falciparum infec-
tions. Its other deficiency is that the test gives a positive result

Table 1 (continued)

NK not known
aThese activities are responsible for the antimalarial treatment efficacy
bThe activity against the parasite’s gametocytes in humans and/or female mosquitoes and against the parasite’s ookinete and/or oocyst stages in female mosquitoes
allow the arrest of transmission of infection between humans via infected female mosquitoes
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even after the parasitaemia has cleared. Another RDT detects
lactate dehydrogenase (LDH), the final enzyme of the para-
site’s glycolytic pathway. The LDH-based RDT detects ma-
laria infection of P. falciparum, P. vivax, P. ovale and
P. malariae. The sensitivity of RDT is ≤90 % in infections
of 100–200 parasites/μL of blood. The advantage of RDTs is
that the results become available in less than 30 min. The third
kind of rapid malaria test is the nucleic acid amplification
(NAA) polymerase chain reaction (PCR) technique that is
able to detect malaria infection in all stages of parasite devel-
opment in humans with the sensitivity ranging from ≤1 to 6
parasites/μL of blood. The technique was introduced in the
1990s (Barker et al. 1992; Erdman and Kain 2008; Cordray
and Richards-Kortum 2012;WHO 2014). The PCR technique
amplifies and detects Plasmodium-specific DNA or RNA
present in the blood sample taken from persons asymptomatic
or symptomatic of malaria disease. Several versions of PCR
techniques are available: reverse transcriptase-based small or
large subunit 18S rRNA molecular amplification (QT-
NASBA) that detects P. falciparum, P. vivax, P. ovale and
P. malariae infections; nested PCR by the successive use of
two sets of Plasmodium genome-specific primer; multi-
plex PCR which allows detection of more than one
Plasmodium species (mixed infections); and quantitative
PCR that quantifies the targeted Plasmodium gene(s).
The NAAs are more sensit ive than RDTs and
microscopy and are useful for revealing the areas of
oncoming malaria epidemics. Because of the requirement of
specialized equipment and trained personnel, the PCR
technique is proving difficult to apply in field
conditions. The more recently developed technique of
Juul et al. (2012) is sensitive and affordable and of
practical utility for surveillance of malaria infections in large
populations.

Field-applicable rolling circle-enhanced enzyme activity
detection diagnostic test of malarial parasites in single
drops of blood or saliva

The new technique that detects a Plasmodium-specific en-
zyme in droplets of blood or saliva is considered easy to use
in field conditions on a large scale. The technique called
rolling circle-enhanced enzyme activity detection (REEAD)
system is used in combination with a fluidic lab-on-a-chip
microreactor. REEAD is based on the type 1B topoisomerase
activity of the enzyme pTOP1 ofPlasmodium species (Fig. 3).
For carrying out the Plasmodium-specific REEAD, a DNA
sequence or a reaction substrate (called S) for pTOP1 has been
designed. On reacting with pTOP1, the sequence folds into a
hairpin structure. The DNA sequence (S) has a single-stranded
loop and a double-stranded stem. The loop contains a primer
annealing sequence and a probing sequence. One of the

Fig. 3 Design of the rolling circle-enhanced enzyme activity detection
(REEAD) system that detects Plasmodium in droplets of crude human
blood or saliva, for field screening of malaria symptomatics plus asymp-
tomatics in large populations. A drop of blood/saliva and S DNA are
added to a lysing buffer. A 5 μl sample of it is deposited on a
slide that already has attached to it primers for S DNA. The
Plasmodium enzyme pTOP1 released from infected blood/saliva
reacts with S and via cleavage ligation a single-stranded DNA
circle is formed. The P site on it anneals to primer (P) and rolling
circle DNA replication occurs producing a long (×103 of original)
molecule. Its presence is read by annealing it to a DNA product with
rhodamine-labelled complementary (FP) sequence; fluorescent signals
are counted microscopically
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strands of the stem has a site close to 3′-end that pTOP1
can cleave. Formation of covalent enzyme-DNA interme-
diate in the stem at the site of cleavage allows religation
of the new 3′-end with the protruding 5′-end of the stem’s
intact strand. Thus, a covalently closed single-stranded
circle is formed. The circle serves as template for its
extensive (≥103-fold) amplification by the rolling circle
mode, using a small primer (P). The hybridizability of the
rolling circle product (RCP) to a short red fluorescent
probing nucleotide (FP) sequence allows visual reading
of the RCP. The method detects ≤1 parasite/μL of blood
or saliva.

The blood or saliva sample lysed in low salt buffer is
added to the DNA substrate and a very small part of it is
transferred to a primer-coated slide. The reaction product
annealed to the probe is microscopically read for fluo-
rescence. A microfluidic device is used to deposit the
reactants on the slide placed on a platform where many
reactions can be conducted simultaneously. The REEAD
method diagnoses with equal sensitivity the malaria in-
fection caused by the parasites of P. falciparum, P. vivax,
P. ovale, P. knowlesi and P. malariae.

In vitro and ex vivo phenotypic tests
of artemisinin-resistant malaria

A significant property of the ART-resistant malaria, of
the kind that has emerged in western Cambodia, western
Thailand, southern Myanmar and southern Vietnam, is its
slower than normal rate of parasite clearance in patients
under ACT treatment. The conventional method of
measurement of parasite clearance half life is by taking
parasite density counts on parasitaemic patients every
6 h, by optical microscopic examination of thick blood
films, from the time of start of ART administration to the
time disappearance of parasitaemia. However, this kind
of diagnosis could require hospitalization of patients for
several days. Witkowski et al. (2013) have now provided
an in vitro and an ex vivo assay for diagnosing ART-
resistant malaria that uses blood sampled from patients
before they receive treatment, and hospitalization of pa-
tients is not required. In the in vitro ring stage survival
assay (RSA0–3 h), the parasites isolated from blood are
culture adapted. The parasites in culture are then quanti-
fied for the time taken by ART to clear their infection in
fresh erythrocytes. In the ex vivo assay, parasites in the
blood are cultured directly in the presence and absence
of ART. The parasite survival rate suggests whether the
patient suffered from ART-sensitive or ART-resistant
malaria. The ex vivo test is suitable for large-scale
surveillance for ART resistance in affected human
populations.

Identification of the principal DNA marker
of P. falciparum associated with artemisinin-resistant
malaria prevalent in Southeast Asia

Artemisinin-resistant malaria in Southeast Asia has been
found to be associated with mutations in K13 propeller do-
main of the PF3D7_134700 gene of P. falciparum. Ariey et al.
(2014) found that ART resistance experimentally generated in
a line of P. falciparum and ART resistance that naturally
evolved in many P. falciparum parasites present in malaria
patients in Cambodia carried mutations at the same locus
called PF3D7_1343700. They showed that mutations in the
kelch K13 propeller domain part of the gene PF3D7_1343700
makes P. falciparum resistant to ARTs (Fig. 4).

The wild-type ART-sensitive Tanzanian clone (line) F32 of
P. falciparum upon in vitro culturing for 125 cycles in the
presence of escalating concentrations of artemisinin devel-
oped into an ART-resistant line called F32-ART5.
Comparison of the whole genome sequences of the parental
ART-sensitive F32 line and derived ART-resistant F32-ART5
line detected eight point mutations in seven genes in the F32-
ART5 line. Sequencing of 49 parasite lines collected from
malaria patients which responded differentially to ART treat-
ment, in the conventional and developed procedures of
Witkowski et al., demonstrated polymorphism at the
PF3D7_1343700 locus. The ART-resistant Cambodian lines
and F32-ART5 carried mutations in the same general region
that is kelch K13 propeller region of the PF3D7_1343700
locus. The locus PF3D7_1343700 was wild type in the
ART-sensitive Cambodian lines. These observations implied
that mutations in the K13 propeller domain of the protein
product of PF3D7_1343700 gene rendered P. falciparum re-
sistant to artemisinins. It was possible to rule out the associ-
ation between ART resistance and mutation in five other genes
of F32-ART5 and mutations/polymorphism observed at other
loci in previous P. falciparum population genetic studies in
areas of ART resistance (Table 2). Among the ≤1,000
Cambodian clinical parasite isolates that had been genotyped,
K13 propeller mutations were found at 17 different sites in
PF3D7_1343700 gene. Apparently independent mutations in
K13 propeller site were responsible for P. falciparum resis-
tance to ART in Cambodia. Involvement of other genes in the
determination of ART resistance has not been ruled out. For
the present, K13 propeller sequence of PF3D7_1343700 locus
can serve as a reliable DNA marker for surveillance of ART
resistance in Southeast Asia.

A question has arisen about the origin and selection of 17
independent recessive mutations at a locus in a gene in a small
sample of ≤1,000 of P. falciparum prevalent in provinces of
western Cambodia. What mechanisms could be responsible?
There is a possibility that the oxidative stress created by free
radicals generated by breakage of the endoperoxide bridge of
artemisinin may be responsible. Since the malarial parasite
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genome is methylated at cytosines (Gupta et al. 2013; Ponts
et al. 2013) and parasite methylome is a known target of the
antimalarial drugs, the ART-imposed stress may result in
hypomethylation of the parasite genome; a variety of environ-
mental stresses are known to cause genomic hypomethylation
in a variety of eukaryotic systems (Kumar et al. 2013). It is
also known that demethylated cytosines are mutational hot
spots (see Kumar et al. 2013 for review on epigenetics in
plants). Although mutations may occur randomly over the
genome, the presence of ART may allow selection of resis-
tance mutations against itself in the isolated niches of
P. falciparum occurrence in Cambodia.Mosquito gut provides
the opportunity for the production of homozygotes for K13
propeller mutation from a population of gametocytes segre-
gating for the mutation received by the mosquito via blood

meal, from a patient in whose liver and/or blood cells para-
site’s schizonts or merozoites acquired the ART-resistant mu-
tation. This idea will get tested in future studies on the ART-
exposed P. falciparum in vitro and on the extent of genetic
polymorphism in P. falciparum populations in Southeast Asia.

Advancements towards the prevention of malaria
transmission from person to person

Interference with transmission is the means to reduce infection
reservoir from areas of occurrence of malaria. Blocking trans-
mission involves several complementary approaches (Fig. 2).
These include elimination of the malaria vector mosquitoes,
prevention of mosquito bites and killing of malaria parasite

Fig. 4 Diagramme of the structure of PF3D7_143700 protein of Plas-
modium falciparum. Kelch motives located towards the carboxy terminal
are found in a large number of eukaryotic proteins. The KLHL2 human
proteins involved in ubiquitin-mediated protein degradation and KEAP1
human protein involved in cellular adaptation to oxidative stress have
domains homologous to kelch K13 propeller ofPlasmodium. It is thought
that for its activity, PF3D7_143700 folds into a six-bladed propeller
supported by its interaction with C-terminal beta sheet and N-terminal

blade. It is thought that PF3D7_143700 protein is involved in protein
degradation-led cytoprotection against oxidative stress imposed by
artemisinin. This process is disrupted by mutations in K13 propeller
(Ariey et al. 2014; Mitsuishi et al. 2012; Prag and Adams 2003). How-
ever, the full mechanism by which the absence of intact PF3D7_143700
gene protects the parasites from the killing action of artemisinin remains
to be understood

Table 2 Evidence about the association of point mutations in the pro-
peller domain of K13 gene/PF3D7_1343700 locus with artemisinin
(ART) resistance, observed in in vitro and in vivo populations, of the
malarial parasite Plasmodium falciparum. In the malaria patients

undergoing artemisinin combination therapy (ACT), K13 mutant para-
sites get cleared from the red blood cells much more slowly than the
rapidly cleared wild-type parasites

Genetic polymorphism observed in Genes/loci in which variation was observed to be

Associated with ART resistance Not accountable for ART resistance

In vitro parasite line selected against
high concentrations of artemisinin
in culture medium

PF3D7_0110400 and PF3D7_1343700a PF3D7_0213400, PF3D7_1115700, PF3D7_1302100,
PF3D7_1459600 and PF3D7_1464500

Natural populations of parasite of
western Cambodia and adjoining
areas where ART-resistant malaria
has been documented, under
deployment of ACT as the first line
of malaria treatment

PF3D7_1343700a, b PfABC transporter, PfATPase6, Pfcrt,
PfCTP, Pfdhps, Pfdhfr, PfGTP-cyclohydrolase
1, Pfmdr1, Pfmrp1, Pfubcth, PF3D7_145960; MALIO-
688956, MAL13-1718319, MAL13-1719976; MAL14-
718269, SNPs denoted 1 and 2 and PF10_0355

Natural population in Gambia PF3D7_1343700c

References Ariey et al. (2014) Ariey et al. (2014), Miotto et al. (2013), Takala-Harrison et al.
(2013), Amambua-Ngwa et al. (2012), Cheeseman et al.
(2012), Cui et al. (2012), Pillai et al. (2012), Van Tyne et al.
(2011), Yuan et al. (2011), Plowe (2009), Sidhu et al. (2006)

a Non-synonymous point mutations in the kelch propeller domain of the K13 gene
b Seventeen different K13 propeller mutations, responsible for slow clearing of malaria treated with ART, have been identified in 886 parasite isolates
from Cambodia
c Synonymous mutation in the K13 propeller domain
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during its development in the vector mosquito. The subject
areas of mosquitocides, mosquito repellence and mosquito
management in general have been respectively reviewed re-
cently by Prato et al. (2012), Maia andMoore (2011), Dickens
and Bohbot (2013) and Beier et al. (2008). New results in each
of the three approaches that offer promise of their successful
contribution in the control of malaria are discussed below.

Killing of Plasmodium in mosquito

Female Anopheles mosquitoes transmit malaria while biting
and taking blood meals from humans. When a mosquito bites
a malarial human, it obtains along with blood 103 to 104

sexual stage haploid male and female Plasmodium gameto-
cytes. The gametocytes mature into gametes, fertilization oc-
curs and zygotes form in the mosquito midgut. From the
zygotes, 102 to 103 motile ookinetes are formed. These diploid
asexual ookinetes form oocysts. Thousands of motile sporo-
zoites released from oocysts into haemocoel accumulate in the
salivary glands of the mosquito. Each of the Plasmodium’s
developmental stages in mosquito is a potential target for
controlling malaria transmission. Two approaches are being
pursued to make mosquito refractory to Plasmodium. One of
these aims to genetically engineer mosquito genome by the
use of the clustered regularly interspaced short palindromic
repeat (CRISPR) Cas9 associated system. It is aimed on the
one hand to disrupt or delete the genes in mosquito that are
essential for Plasmodium’s sporogony and, on the other hand,
to add heterologous genes that will antogonise Plasmodium’s
survival in mosquito (Oye et al. 2014; Esvelt et al. 2014). Upon
their release as per regulations, the genetically engineered
mosquitoes are expected to spread the Plasmodium-resistant
trait into the local population of mosquito (Marshall 2009;
Reeves et al. 2012). In the second approach, the wild-type or
genetically engineered bacteria that secrete compounds lethal to
Plasmodium are made to co-reside with Plasmodium in the gut
of the female mosquitoes. Two experimental results of the
approach offer hopes for the development of field-applicable
technologies to block malaria transmission.

Bian et al. (2013) have isolated a line of A. stephensi
mosquito in whose gut the gram-negative bacterium
Wolbachia (strain WAlbB) has resided stably for 34 genera-
tions. Wolbachia is harmless to mosquitoes and humans. It
was already known that Wolbachia, not a normal resident of
mosquito gut, is lethal to parasite when present together with
it. The mosquitoes that are stably carryingWolbachiaWAlbB
have been observed to be stably refractory to Plasmodium.
Malarial parasite’s reproductive development is completely
suppressed in the Wolbachia-carrying female mosquitoes. In
the new mosquito line, female mosquito egg cytoplasm trans-
mits Wolbachia to the progeny upon mating with either in-
fected or uninfected males. An experimental release of

Wolbachia-infected females into a noninfected mosquito pop-
ulation led to all mosquitoes acquiringWolbachia in less than
ten generations. Replacement of mosquito population in a
malaria-infected area with Wolbachia-infected mosquitoes is
expected to reduce/stop malaria transmission.

The bacterium Pantoea agglomerans is a part of mosquito’s
microbiome and co-resides with Plasmodium. Wang et al.
(2012) genetically engineered P. agglomerans such that its
population in mosquito midgut will kill the sympatric
Plasmodium population. The genetically modified
P. agglomerans secreted the peptide scorpine or other such
proteins that inhibited Plasmodium’s developmental pathway
for sporozoite formation. Its presence in the mosquito gut
inhibited P. falciparum and Plasmodium berghei by up to
98 %. In the treated mosquito population, only 16 % carried
live parasites. Having no effect on humans and the mosquito life
cycle, the engineered P. agglomerans is highly promising for
field release. It could be spread amongmosquitoes by placing in
malaria-affected areas many clay jars containing cotton balls
soaked in sugar and bacteria to serve as baiting stations.

Malaria prevention by keeping mosquitoes away
from the human body

Malaria bites on humans are preventable in several ways.
Mosquitocides are sprayed on the walls of homes.
Insecticide-treated bed nets are used to protect people while
sleeping during nights. Poisonous baits are used to attract and
kill mosquitoes in homes and in the open near water bodies
(Jawara et al. 2009; Okumu et al. 2010; Smithuis et al. 2013).
People are protected by repelling mosquitoes away from them
by spraying chemicals that cause hypnosia in mosquitoes, on
walls, curtains and other suitable stations in homes (Agusto
et al. 2013). Mosquito-repellent-laden bands and patches are
used on human clothing and skin; repellents are also added to
soaps, shampoos and lotions. There have been developments
in each of these strategies to prevent malaria transmission.

Identification of new mosquito repellents

Mosquitoes land on surfaces attracted by certain odours. Their
chemoreceptors for odours are borne on sensilla that are at-
tached to the organs antennae, maxillary palp and proboscis (De
Moraes et al. 2014; Touhara and Vosshall 2009). The chemore-
ceptors are non-selective ion channels, each consisting of two
proteins, an odour receptor (OR) and a co-receptor called Or83b
(orco) which is sensitive to both agonist and antagonist odours
(Dickens and Bohbot 2013). Carbon dioxide, lactic acid and
octenol present in breath and sweat attract mosquitoes to
humans. Malarial parasite-infected female mosquitoes possess
3-fold more attraction to humans than the uninfected
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mosquitoes (Smallegange et al. 2013). The olfactory sensitivity
of mosquitoes is extra high at night (Rund et al. 2013).
Mosquito repellents act by shutting the receptors that function
in tandem with Or83b. The orco gets overactivated leading to
scrabbling of the sense of smell in mosquito such that humans
become invisible to them. N,N-diethyl-meta-toluamide (DEET;
Fig. 5a) has been a much used mosquito repellent for the last
several decades. DeGannarro et al. (2013) by comparing the
effect of DEET on wild-type and mutant orco mosquitoes have
shown that DEET action is dual. On one hand, it is a strong
repellent in the absence CO2, and on the other hand, it deters
biting when present on human skin, irrespective of CO2. The
search for new repellents, in view of the strong unfavourable
smell of DEET, epigenetic changes that it causes and
development of tolerance towards DEET in mosquitoes
(Bernier 2013; Stanezyk et al. 2013), has led to the discovery
of safer and more efficacious compounds than DEET.

Bernier (2013) has developed a formulation, containing
homopiperazine (Fig. 5b), 1-methylhomopiperazine (Fig. 5c)
and several other human skin secretion compounds, which is
more effective than DEET. Chen and Leutje (2013) have iden-
tified several orco antagonists of phenylthiophenecarboxamide
class of compounds which have the potential to serve as mos-
quito repellents (Fig. 5d). Kain et al. (2013) have identified
several anthranilates [methyl N,N-dimethyl anthranilate, ethyl
anthranilate and butyl anthranilate (Fig. 5e–g)] compounds
present in fruits which could be used as pleasant smelling,
safe and effective mosquito repellents much superior than
DEET. Jones et al. (2011) and Pask et al. (2013) have reported
about a group of Vanderbilt University Allosteric Agonists
(VUAA) such as VUAA1 (Fig. 5h) and amiloride derivatives
which are up to hundred thousand fold more potent in activat-
ing orco than DEET. Besides, a variety of essential oils rich in
geraniol, linalool and/or α-pinene have been shown to be
effective mosquito repellents. Some of the fatty oils such as
those of castor, Jatropha and catnip have also been observed to
be effective mosquito repellents. Many such preparations are
listed in en.wikipedia.org/wiki/insect_repellent.

Causing reduction in the indoor mosquito population

Placement of aromatic plants such as of Lantana species, and
likewise those of Lippia and Geranium, that spontaneously
release essential oils into the air, has proven to be an inexpen-
sive means of reducing mosquito population indoors
(Mng’ong’o et al. 2011). Lantana camara adult plants kept in
homes were observed to reduce mosquito population by 50 %.
Similarly, cultures of the skin bacterium Staphylococcus
epidermidis strain DSMZ 11047 can be used to inactivate
mosquitoes indoors. The bacterial population produces volatile
organic compounds that disrupt the behaviour of mosquitoes
(A. gambiae). The stations of bacterial culture can also be used

to trap mosquitoes or kill them by combining an insecticide
with bacterial culture (European patent application EP2
140764A1/08159618.1, 2010).

Killing of mosquitoes by attracting them to toxic baits

A simple and widely affordable method called attractive toxic
sugar bait (ATSB) that controls mosquitoes in the countryside
has been found successful when tested at several field locations.
In the ATSB procedure, the sweet bait material is produced
locally and sprayed on plants growing near the water bodies.
The principal component of ATSB is fruit juices from such
diverse plants, locally growing in African locations, as of nec-
tarine, guava, honeymelon and cactus. ATSB contains 60–70 %
v/v fruit juice, 5–25 % v/v wine and 10–20 % w/v brown sugar.
This pulpy material is kept for fermentation for a few days.
Finally, 1 % w/v Biostab (a mixture of antibacterial and antifun-
gal substances standardized in Israel that serves as a preserva-
tive) and 1 % w/v boric acid (the killing agent) are added.
Mosquitoes get attracted to the sprayed plants and intake by
them of the sweet mix kills them. The procedure has proven
effective in curtailing the local mosquito populations in several
different African geographical locations where it was field tested
(Muller et al. 2010; Beier et al. 2012; Marshall et al. 2013).

New mosquitocidal formulations

Although costly, spraying of insecticides in homes and the use
of insecticide-treated bed nets have contributed immensely in
reducing malaria morbidity and mortality. Insecticides of or-
ganochlorine, organophosphate, carbamate and pyrethroid
classes have been used at various times and locations.
Mosquitoes are known to have developed resistance to one
or more insecticides of all classes of insecticide compounds at
different locations. A single mutation in the upregulated gene
for glutathione S-transferase (GSTe2) made a local population
of A. funestus malaria vector resistant to DDT as well as
pyrethroids in Benin, West Africa (Riveron et al. 2014).
Mutations allowing overexpression of P450 family genes
CYP6M2 and CYP6P3 and duplication of the genes ACE-1
(allele G119S) encoding acetylcholine esterase have made
A. gambiae population of Tiassale in West Africa resistant to
all four kinds of insecticides: carbamates, DDT, organophos-
phates and pyrethroids (Edi et al. 2014).

Pyrethroids are safe, affordable and effective and have long-
lasting effects. Therefore, they have been the first choice in
malaria control. Since new types of insecticides are yet to arrive,
the alternatives to pyrethroids continue to be organophosphates
and carbamates. To avoid resistance development, the use of
insecticides in rotation is apparent. Whereas one chemical class
of insecticide is used for spraying of walls of homes, another
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kind of insecticide must be used for preparing insecticide-laden
bed nets. To control pyrethroid resistance in the environment of
sub-Saharan Africa, Rowland et al. (2013) have recommended
a long-lasting encapsulated formulation for use in spraying of
walls. It consists of the organophosphate insecticide primi-
phosmethyl (Fig. 5i). The effect of formulation lasted for about
1 year, whereas the effects of other sprayings lasted for only a
few months. Thus far, only the DDT sprays had long-lasting
antimosquito effect but DDT is now banned. The new formu-
lation of organophosphate has doubled the lasting effect of
DDTwhich was observed to be 6 months. Several formulations
similar to that of Rowland et al. are on the horizon. The use of
methoprene on infested soil, mud or puddles and oil film on
sedentary water as larvicides and pyrethroid sprays on walls or
fogging of environment with malathion in homes as adulticides
has proven effective in the control of local mosquito popula-
tions (Meister 1992).

Drugs that kill mosquitoes and thereby block sporozoite
transmission

The use of the endectocide ivermectin to reduce malaria
transmission as well as to kill mosquitoes has been

proposed, and experiments on the effectivity and safety
of this tool have been initiated (Chaccour et al. 2013).
Ivermectin (Fig. 6) is semisynthesized from a
Streptomyces avermectinius fermentation precursor. It
has been in use for the last 25 years for the control
of onchoceriasis and lymphatic filariasis (Omura 2008).
Ivermectin is known to agonize glutamate-gated chloride
channels of invertebrates which lead to their flaccid
paralysis and death. Anopheles mosquitoes have proven
to be highly sensitive to ivermectin (Tesh and Guzman
1990). Presently, to control onchoceriasis and filariasis,
ivermectin is administered to all residents of a village
on a single day. In such villages, mosquitoes that bite
humans die because they acquire ivermectin with blood
meal. Repetition of ivermectin administration in malaria-
burdened villages has been identified as a means to kill
mosquitoes and thereby reduce transmission. Another
approach considered is to add ivermectin to ACT drugs.
The new combination containing three drugs, including
ivermectin, will kill malaria parasites in the human body
and also kill mosquitoes that may bite the treated pa-
tients. The transmission of malaria parasite will be
checked because the Plasmodium-infected mosquitoes
will be eliminated.

Fig. 5 a–i Chemical structures of the conventional mosquito-repellent DEET and some new mosquito repellents of promise and the insecticide primi-
phosmethyl
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Protecting humans during their sleep

Malaria vector female mosquitoes mostly bite people at night-
time when the latter are asleep. Two inter-country population
studies have revealed that malaria transmission can be elimi-
nated altogether by precautionary measures taken at the hu-
man population level. Agusto et al. (2013) concluded from
their survey that the use of bed nets by 75 % of the population
is sufficient for eradication of malaria from any region.
Hulden et al. (2013) reached to the conclusion that segmenta-
tion of sleeping quarters in households can be a means of
stopping malaria transmission. They observed that malaria
transmission was negligible where the number of persons
sleeping in a bed room was less than four.

Eradication of malaria mosquito by the use of male sterile
genetic technique

Experiments are in progress to adapt, in malaria mosquitoes for
their control, the conventional and CRISPR-associated genetic
engineering techniques to cause heritable male sterility that has
been successfully used for eradication of several agricultural
pests (Knipling 1959; Whitten andMahon 2005; Alphey 2014;
Esvelt et al. 2014; Oye et al. 2014). In this method, male sterile
mosquitoes will be released in cycles until the area becomes
free of mosquitoes. The field-released male sterile spermless
mosquitoes will mate with females but copulated females will
not produce any offspring. Thus, each time male sterile mos-
quitoes will be released, the size of the mosquito population
will get reduced. The technique has been successful in field test
conditions for the control of Aedes aegypti, the dengue-
spreading mosquito (Harris et al. 2012; Lacroix et al. 2012).
Thailayil et al. (2011) have developed a male sterile line of
malarial parasite transmitting A. gambiae mosquito, by RNAi
silencing of the germ cell differentiation gene ZERO

POPULATION GROWTH (ZPG). The genetically modified
mosquitoes were found to copulate with wild-type females
normally. They switched off in the females the receptivity for
further copulation. Subsequent responses of the females were
also normal. The spermless mosquitoes are expected to be field
tested for mosquito control. The use of the GMmosquitoes will
require extensive pre-release safety trials.

Vaccine for malaria prevention

Presently, millions of lives are being saved from malaria
morbidity and mortality by the use of drugs that either block
malaria transmission or treat malaria disease. Vaccine against
malaria could be a cost-effective means to eradicate malaria
by reducing the transmission of parasite. Several different
approaches to develop efficacious vaccine(s) to stop malaria
are in progress. The subject has been recently reviewed by
Schwartz (2012) and Riley and Stewart (2013). Although 27
malaria vaccines are under clinical trials, no effective vaccine
is as yet available (Moorthy et al. 2013; Cowan et al. 2014).
The ongoing programmes are using one or more of the pro-
teins present on the surface of sporozoites and/or merozoites
of Plasmodium as antigens. The genetic polymorphism pres-
ent in the parasite population of an area and among popula-
tions of different areas is proving to be a challenge in vaccine
development. The RTS,S has been the first-generation malaria
vaccine candidate now undergoing phase 3 trials. Besides,
there are a few second-generation promising malaria vaccine
candidates on which experiments are continuing. Greater un-
derstanding of Plasmodium parasite-human host interaction,
aided by second-generation genome sequencing and function-
al genomics of both host and pathogen, will be valuable in
improving the vaccines under development and conceptuali-
zation of new vaccines.

RTS,S vaccine candidate

The antigen in RTS,S is a hybrid protein, in which R and T
domains of the circumsporozoite protein, the major coat pro-
tein of the sporozoites of P. falciparum, are covalently linked
to the hepatitis B virus antigen (HBs). The vaccine is formu-
lated in the form of virus particles in a liposomal adjuvant
(A5P1). The vaccine antagonizes the invasion by sporozoites
of host liver hepatocytes; thus, the formation of merozoites in
the liver is prevented. RTS,S induces high antibody titres
against P. falciparum circumsporozoite protein (CSP) and a
moderate CD4+ T cell response. The children vaccinated with
RTS,S got protected against uncomplicated as well as severe
malarias (Riley and Stewart 2013).

RTS,S is now in the final stages of efficacy trials that started
in 1984 and is expected to be released for use in 2015, perhaps

Fig. 6 Chemical structure of ivermectin, the compound suitable to add to
artemisinin combination therapy drugs to combat malaria transmission on
account of its mosquitocidal activity
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in selected geographical areas of high malaria burden. A year
after vaccination with RTS,S, about half of young children
subjects (aged 5–17 months at the time of vaccination) and
one third of infants (aged 6–12 weeks at the time of vaccina-
tion) were foundmalaria protected. However, protection did not
last long. The incidence of malaria among the vaccinated
children and infants increased progressively over time. Four
years from the time of vaccination, protection against malaria in
the vaccinated subjects was zero. Recently summarized results
of a phase 3 randomized control trial on 8,923 children and
6,537 infants in Africa have led to the estimate that during
18 months after three dose standard vaccination with RTS,S/
ASO 1 malaria vaccine, the vaccinated children and infants
respectively averted 83 and 45% of clinical cases of malaria
(The RTS,S Clinical Trials Partnership 2014).

It is believed that booster dosing of the safe RTS,S vaccine
may provide sustained immunity against malaria (Agnandji et al.
2012; Olutu et al. 2013; Riley and Stewart 2013; Fouquet et al.
2014). GlaxoSmithKline have filed an application with the
European Medicine Agency for the licensing of RTS,S vaccine.

Whole parasite vaccine of sporozoites attenuated
by ionizing radiation(s)

Seder et al. (2013) have developed the PfSPZ vaccine which
gave 100 % protection in the phase 1 safety trial. The vaccine
consists of metabolically active but replicatively inactive spo-
rozoites that are attenuated by exposure to ionizing radiations
(irrspz). The irrspz sporozoites are isolated from the salivary
glands of irradiated mosquitoes which are raised under sterile
conditions. To generate sporozoites, mosquitoes are fed with
malarial parasite-infected human blood. The purified cryopre-
served irrspz are used as intravenously administered vaccine.
In the phase 1 trial, six volunteers who had been injected with
five doses of vaccine did not develop malaria when they were
subjected to bites by malaria-infected female mosquitoes.
However, among the nine volunteers who were injected with
four doses of vaccine, only four demonstrated complete pro-
tection from malaria. In all of the 16 subjects, there was a
correlation between vaccine dose and antibody level plus
immune response. The RTS,S safe vaccine now requires
regulatory standardization. New techniques need to be devel-
oped for efficient mass production and genetic attenuation of
sporozoites to make the vaccine affordable.

Vaccine of genetically attenuated sporozoites

As an alternative to the irradiation-attenuated sporozoites
serving as vaccine, Mikolajczak et al. (2014) have developed
a line of P. falciparum in which three of the genes involved in
the development of malaria disease in humans are deleted.

The deleted genes are P36 and P52 whose protein products
function in the formation of parasitophorous vacuole in hu-
man cells where the parasite invades, grows and multiplies
and SAP1 which specifies a protein that regulates RNA sta-
bility and thereby the expression of parasites genome in
general. The triple mutant has normal gametocytogenesis,
mosquito infectivity and sporozoite production. In the human-
izedmouse model system that harbors human hepatocytes and
human erythrocytes, the sporozoites do not progress to pro-
duce merozoites and liver stage does not transition into the
blood stage. The p36− p52− sap1− vaccine now awaits assess-
ment of safety, effective induction of immune responses and
efficacy against infectious wild-type sporozoites.

Novel vaccine candidates, synthetic MSP-1 and SEA-1

Two new antigens identified are as follows: SEA-1, a protein
required for egress of schizonts from erythrocytes; and MSP-
1, a merozoite surface protein. Synthetic antigen consisting
only of the N- and C-terminal regions of MSP-1
expressed in the ciliate Tetrahymena thermophila as a
recombinant protein elicits antibodies in mice which
provided protection against lethal malaria (Cowan et al.
2014). rPf SEA-1 vaccinated Tanzanian children did not
experience severe malaria. Similarly, Kenyan adoles-
cents and adults possessing antibodies against rPf
SEA-1 had lower parasite densities than people who
did not produce these antibodies (Raj et al. 2014). The two
antigens may be used together with others such as RTS,S and
p36p52sap1 vaccines.

AMA1-based vaccines

Apical membrane antigen 1 (AMA1) is a microneme protein
of P. falciparum present in both sporozoites and merozoites of
the parasite. It is essential for the invasion of hepatocytes by
sporozoites and of red blood cells by merozoites. Antibodies
against AMA1 block the multiplication of parasites in both the
liver and blood stages of the parasite’s life cycle in human host
(Dutta et al. 2013). One of the vaccines based on AMA1
which is undergoing phase 2 trials in Mali is FMP 2.1/
A502A. In this vaccine, AMA1 has been resourced from the
corresponding gene of the field strain 3D7 of the P. falciparum
parasite. The recombinant form of AMA1 protein called
FMP2.1 has been formulated in the A502A adjuvant system.
Children of the age group 1–6 years were administered the
vaccine at 0, 1 and 2 months and followed for 1 year. The
vaccine proved to be safe and well tolerated; it induced and
sustained high levels of antibodies against AMA1 in malaria-
exposed children. FMP2.1/A502A, is now undergoing phase
2 trial in Mali. If it is found successful in phase 2, FMP2.1/
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A502A may be used in combination with RTS,S vaccine to
achieve additive or synergistic effects (Thera et al. 2012).

AMA1 demonstrates considerable variability among
P. falciparum field isolates. Therefore, there is doubt on its
success to stop malaria caused by P. falciparum bearing
AMA1 alleles genetically diverse from 3D7 type of parasites.
Dutta et al. (2013) have developed AMA1-based Quadvax or
QV vaccine, amixed allele vaccine. Here, AMA1 proteins from
four strains of P. falciparum namely 3D7, FVO, HB3 and
W2mef have been combined to serve as antigen. Antibodies
formed against Quadvax were inhibitive to a total of 26 parasite
strains which perhaps represented global AMA1 diversity. In an
early trial, Quadvax provided 100% protection. Now, to further
improve the efficacy of the AMA1 vaccine, to cover all of the
polymorphisms in its structure in natural populations of
the parasite, the region of AMA1 that interacts with RON2
protein of the parasite, which is perhaps conserved, has been
used in vaccine construction (Dutta et al. 2013; Srinivasan
et al. 2014). The AMA1 and RON2 complex injected into
mice protected the vaccinated mice from lethal malaria
(Srinivasan et al. 2014).

AMA1 in its various forms, RTS,S and other vaccines offer
promise of affordable vaccines to eradicate malaria. They may
be used in combination to harvest their additive or synergistic
antibody responses.

Increased genetic variation in parasite, absence of vaccine
and resistance towards approved drugs necessitate
discovery of new antimalarials

In recent years, studies have compared the genetic structure of
P. falciparum populations occurring in Africa, America
(Oceania) and Asia (Southeast Asia), especially in the context
of emergence of ART resistance in Southeast Asia. Van Tyne
et al. (2011) investigated polymorphism for 17,000 single
nucleotide polymorphic (SNP) markers in 57 culture-
adapted parasites from representative countries of the three
continents. Manske et al. (2012) genotyped parasites present
in 227 blood samples of malaria patients of six countries of
Southeast Asia and Africa, for polymorphism at 86,158 SNPs.
Takala-Harrison et al. (2013) examined 290 parasite samples
from Bangladesh, Thailand and Cambodia for polymorphism
at 8,079 SNPs. Miotto et al. (2013) studied 825 parasite
samples, from ten locations in several countries in Africa
and from Thailand, Vietnam and four locations in
Cambodia, for polymorphism at 86,158 SNPs. Ariey et al.
(2014) by screening several hundred (n=886) blood samples
of malaria patients found 17 different alleles of the gene
PF3D7_1343700 to be responsible for artemisinin resistance
in the studied Cambodian population. The observations from
the above-mentioned studies altogether indicate the following
about P. falciparum malaria: (a) There are inter-continental

genetic differences in the Plasmodium populations since the
principal component analysis showed that the parasites clus-
tered together continent-wise. Intra-continental genetic varia-
tion-wise, the parasites fell in the following order Africa>
Asia>America (van Tyne et al. 2011). These observations are
consistent with the origin of P. falciparum being in Africa and
its presence in other continents a result of independent migra-
tion of and founding of subpopulations. Very high levels of
genetic variability in Africa are related to high levels of
malaria transmission there (van Tyne et al. 2011). On account
of high transmission, humans infected by sporozoites of dif-
ferent genotypes by a mosquito or more than one mosquito
will produce gametocytes of many different genotypes which
upon transmission to mosquito will produce gametes that
upon recombination will amplify the genetic variability fur-
ther. (b) In Cambodia and adjoining countries, a high inci-
dence of selection of ART resistance imparting recessive
mutations suggests a high level of inbreeding and hypermu-
tability in parasites (Miotto et al. 2013). It is reported that
many human communities live there in small villages with
little interaction (Takala-Harrison et al. 2013). The hypermu-
tability may be due to the genetic stress imposed by malaria
drugs leading to hypomethylation of genomic DNA
(discussed in an earlier section). (c) The inter- and intra-
continental genetic diversity, mutability imposed by drug
pressure and high recombination rate (17 kb/CM; Su et al.
1999) are continuously increasing divergence between para-
sites at different locations. The growing genetic variability is
creating obstacles in the form of new antigenic variation for
the formulation of a globally effective vaccine. These con-
cepts are diagrammed in Fig. 7.

It appears that until effective vaccine(s) can be developed,
the control of malaria with the use of new antimalarials is an
essentiality (Dondorp et al. 2010a, b; Wells 2010).

Search for new antimalarials in the background
of artemisinin resistance

In recent years, the ongoing malaria control programme got
derailed because of the emergence of resistance in malaria
parasites to ART; mosquito vectors of malaria had already
developed resistance to insecticides. Artemisinin in ACTs had
been performing two functions: it, along with an accompany-
ing compound, cured parasitaemia in infected humans by
killing the asexual blood stage parasites and it also killed
gametocytes present in the blood (especially male gameto-
cytes) and thereby reduced the occurrence of new infections.
Post-ART resistance, the malaria control strategy has been
resurrected. In the absence of an efficacious vaccine, it seeks
antimalarials that will target sexual (sporogony) stages of the
parasite in mosquito and the parasite’s asexual schizogonous
stages in the liver and blood and sexual blood stage in
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humans. These four kinds of antimalarial activities are sought
in one compound or in combination of two or three com-
pounds. Most importantly, all of the new generation antima-
larials must target strongly the asexual blood stages of para-
sites resistant or sensitive to the first-generation antimalarials;
they must cure malaria and must be safe and selective against
parasite. The concepts, approaches and progress being made
in the search for the desired kinds of antimalarials have been
reviewed by a number of groups including the following:
Gamo et al. (2010), Guiguemde et al. (2010), Aguiar et al.
(2012), Derbyshire et al. (2012b), Delves et al. (2012b, 2013),
Kirkpatrick (2012), Ghosh (2013), Flannery et al. (2013a),
Klein (2013) and Sun et al. (2014).

Campaigns to identify new antimalarials

Avariety of in vitro and in vivo tests are available to find out
whether or not a given compound has antimalarial activity.
Some of the in vitro tests can be practised as throughput
screens on 96, 384 or higher number of well plates. In the
conventional type in vitro screens, the asexually replicating
parasites in culture (Trager and Jensen 1976) synchronized for
ring stage are exposed to a specific dose of a test compound

and the effect is monitored variously at the schizont stage, in
terms of survival of parasites (by the use of optical microsco-
py), incorporation of [3H] hypoxanthine (by measuring the
radioactivity), amplification of DNA (by use of PCR), mea-
surement of lactate dehydrogenase or histidine-rich 2 (HRP2)
protein [by the use of enzyme-linked immunosorbent assay
(ELISA)] or confocal fluorescent image counting following
exposure to DNA intercalating dye (Flannery et al. 2013a, b;
Nogueira and Estolio do Rosano 2010), in comparison to
control. A variant form of the above in vitro assay uses
transgenic P. berghei that expresses green fluorescent protein
(GFP)-linked luciferase (GFP:LUC) in place of normal
P. berghei or P. falciparum parasites. The luciferase activity
measured by bioluminescence in the lysates of treated and
control parasites tells whether the tested compound is antima-
larial (Lin et al. 2013).

On the compounds that are found to be positive in in vitro
test(s), the in vivo therapeutic efficacy tests are performed,
either in mouse-P. berghei or in rhesus monkey-Plasmodium
cynomolgi model systems, to determine half maximal inhibi-
tory (IC50) concentration. Such a test can also be done on
P. falciparum-infected immune-deficient mice (Jimenez-Diaz
et al. 2009). In these assays, parasite growth is measured by
optical microscopy or other sensitive methods such as PCR

Fig. 7 Scheme delineating
genetic mechanisms for increase
of genetic diversity and
emergence of antimalarial
resistance in malaria causing
populations of Plasmodium, in
geographical locations favouring
outbreeding as in Africa or
inbreeding as in parts of
Cambodia
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Table 3 Properties of the antimalarial compounds undergoing different stages of development for clinical usage
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(Flannery et al. 2013a, b). The in vivo drug luminescence
(IVDL) assay makes use of GFP:LUC transgenic
P. berghei infections in rodents. In these 4 day suppres-
sive drug tests, the in vivo presence of parasites is
quantified by luciferase activity in samples of animal
tail blood (Lin et al. 2013). The human-P. falciparum
system is used to perform ex vivo assays. Parasites
taken from a patient are brought to ring stage and
exposed to a known amount of the test compound and
the effect is monitored in terms of parasites growing into
schizonts (Witkowski et al. 2013).

Using one or more of the screening procedures outlined
above, several campaigns, to find molecules inhibitive to the
asexual blood stage (ABS) of malarial parasites, have been
accomplished and a few are in progress. Some new campaigns
may arise from new methods for synthesizing compounds of
diverse structures (Heidebrecht et al. 2012), such as by the use
of reactions of diazo compounds (Karageorgis et al. 2014).
The St. Jude Children’s Research Hospital (Guiguemde et al.
2010), Genome of Institute of the Novartis Research
Foundation (Plouffe et al. 2008) and GlaxoSmithKline Tres
Cantos (Gamo et al. 2010) have altogether screenedmore than
four million compounds. The Medicines for Malaria Venture
(MMV) continues to test the chemical libraries assembled by
sundry biotechnological and pharmaceutical companies. Thus
far, more than 25,000 compounds have been found to be
active against ABS of malarial parasites. This voluminous
portfolio of antimalarials has been open to identify the ones
whose targets in parasites are different from those against
which resistance has arisen and those that are active against
all of the four developmental stages of parasite life cycle in
man and mosquito. To share with the researchers the com-
pounds of some promise, an open source Malaria Box of 200
drug-like and 200 probe-like compounds has been formed.
The participants of this campaign are expected to conduct

studies on each compound’s metabolic properties; effects on
different stages of Plasmodium life cycle for the identification
of cellular and molecular targets; cellular, tissue and organ
toxicity; in vivo pharmacokinetics and activity against vari-
ants of malaria causing Plasmodium species. etc.; and share
the results (Spangenberg et al. 2013).

It will be seen from Table 1 which lists the properties of
antimalarials in clinical practice and Table 3 which lists anti-
malarial molecules undergoing clinical trials that majority of
the identified antimalarials target hemoglobin degradation or
heme detoxification pathways [amodiaquine, piperaquine,
pyronaridine, quinine, endoperoxides (including OZ-439),
NPC-1161B and tafenoquine], folate pathway (pyrimeth-
amine, P218) or mitochondrial pathways (primaquine,
atovaquone, proguanil, DSM265, ELQ300). Only
albitiazolium, GNF156, methylene blue and NITD 609 target
pathways distinct from the above-mentioned. All of the drugs
in Tables 1 and 3 got selected because of their pronounced
parasitocidal activity on intraerythrocytic asexual stage of
parasite replication. Table 4 gives preliminary properties of
26 antimalarial molecules that have proven to be promising in
preclinical evaluation experiments. Majority of the molecules
in Table 4 have targets distinct from those of the molecules
(ACT-21365, alpha-pyrone, azithromycin, bivalent tetrazoli-
um, cladosporin, 4-CF3 phenyl, Genz668764, hydroxy
ethylamine, indolisquinolone, ketotifen, ML238, methyl
benzylamide, N-myristoyltransferase (NMT) inhibitors,
NSC-158011, nutilin-3, phenyl propanoid conjugated
iridoid, strictosamide, torin-2) in Tables 1 and 3. The
ongoing work on the characterization of the biological
effects of the new molecules of variant scaffolds, in
search of new clinical series with a wider range of activities
against parasite stages in infected individuals and mos-
quitoes, is bound to enlarge the chemical series represented in
Tables 1, 3 and 4.

Table 3 (continued)

NK not known
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Table 4 Properties of some leading natural and synthetic compounds found active against in vivo malaria model system(s) and in vitro-grown malarial
parasites but non-toxic to human cell lines, which are selectable for preclinical testing
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New liver stage malaria drugs

The liver stage develops from invasion of hepatocytes by a
small number of sporozoites released into the bloodstream via
a bite from an infected mosquito. The sporozoites in hepato-
cytes mature and undergo one cycle of replication to form
liver stage schizonts. Clinical symptoms develop when liver
schizonts release merozoites into erythrocytes. Since only a
small number of hepatocytes initially get infected, the parasite
load is low despite long residence time; therefore, liver stage is

asymptomatic, but it is a critical drug target for interrupting
further progression of life cycle events of parasite in infected
human and for lowering the chances of resistance develop-
ment. The infecting sporozoites of P. vivax and P. ovale are
able to enter a dormant phase in hepatocytes. The dormant
parasites or hypnozoites that survive for many months are the
cause of recurring malaria. Among the approved ABS drugs
(Table 1), the combination of atovaquone and proguanil clears
the parasites (of P. vivax or P. falciparum) from the liver and
that of primaquine and chloroquine clears both liver stage

Table 4 (continued)

NK not known
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schizonts and hypnozoites. However, primaquine has draw-
backs: it is slow acting (chloroquine the companion drug is
fast acting and therefore clears parasitaemia) and harms peo-
ple with glucose-6-phosphate dehydrogenase (G6PD) defi-
ciency by causing severe life-threatening adverse reaction.
The mechanism by which primaquine and other antimalarials
of 8-aminoquinoline family cause haemolytic anemia in
G6PD-deficient people is not fully understood (Uthman
et al. 2014). G6PD as a part of the pentose phosphate pathway
produces the coenzyme nicotinamide adenine dinucleotide
phosphate (NADPH). NADPH is involved in the production
of glutathione which protects cells against reactive oxygen
damage. Reduced levels of glutathione make G6PD-deficient
erythrocytes vulnerable to oxidative damage and liable to
haemolysis (Cappellini and Fiorelli 2008). G6PD is coded
by a 18.5 kb gene comprised of 13 exons on the long arm of
the X chromosome. About 400 alleles that reduce the activity
and stability of G6PD gene product are known.More than 400
million people worldwide, largely of origin in tropical Africa,
tropical and subtropical Asia andMediterranean regions, carry
the deficiency. All the mutation-carrying males and some
females who carry the defective gene in heterozygous condi-
tion (due to normal X-inactivation) are G6PD deficient. There
is an overlap in the geographic distribution of G6PD

deficiency and the spread of malaria (Howes et al. 2013; von
Seidlein et al. 2013). Further research needs to provide new
families of antimalarials that are safe for G6PD-deficient
people and can replace 8-quinolines and rapid low-cost,
high-quality field test for G6PD deficiency suitable for screen-
ing large populations.

To meet the dearth of liver stage malaria drugs, some of the
recent antimalarial drug discovery campaigns have emphasized
on liver stage. The success of these campaigns is largely attrib-
utable to the use of novel liver stage throughput culture assays
that have complemented the hitherto available tedious animal
model systems. The liver stage in vitro drug screens have several
general features. Cultured primary hepatocytes or cells of hep-
atoma lines of human, rodent or primate origin are infected with
sporozoites of different species of Plasmodium. The sporozoites
dissected out of the salivary glands of mosquitoes may be fresh
or cryopreserved. The infected liver cells are exposed to a
known quantity of the test compound, and the treated and
control cultures are allowed to grow to produce liver schizonts.
At the end of incubation period, parasite cells are observed by
optical microscopy, and alternately parasite growth is monitored
by bioluminescence imaging, RT-PCR, fluorescence-activated
cell sorting or measurement of enzyme activities (Plouffe et al.
2008; Derbyshire et al. 2011; Meister et al. 2011; Delves et al.

Fig. 8 a–d Chemical structures of some of the important antimalarial compounds that have been found to be active against the liver stage malaria on
account of their schizonticidal-cum-hypnozoiticidal activity
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2012a, b). In the variant forms of the in vitro drug screens, the
normal sporozoites may be replaced by transgenics carrying a
fluorescent GFP:LUC gene (Derbyshire et al. 2013; La Crue
et al. 2013) or a centromere (Voorberg-van der Wel et al. 2013).
Both, freshly derived or cryopreserved hepatocytes can be used
(Zou et al. 2013). In human hepatocytes infected with P. vivax
sporozoites or monkey hepatocytes infected with P. cynomolgi
sporozoites, formation of both liver large multinucleate schiz-
onts and small uninucleate hypnozoites can be quantified
(Dembele et al. 2011, 2014). Besides the above, March et al.
(2013) have developed a micropatterned coculture MPCC plat-
form. Here, cryopreserved primary hepatocytes derived from
individual human donors are cocultured with the support of
stroma cells. Liver cells are infected with fresh or cryopreserved
P. falciparum or P. vivax sporozoites. Infected liver cells are
overlaid with erythrocytes. Since the MPCC platform can be
maintained for 4 to 6 weeks, the drugs can be screened against
liver stage schizonts as well as hypnozoites.

In the conventional in vivo test, monkeys are infected with
P. cynomolgi sporozoites followed by treatment with a com-
pound such as chloroquine that eliminates the blood stage
parasites and then the test drug is administered. Infected

monkeys are monitored for several months to observe if
malaria reoccurs (Schmidt 1983). This test for anti-
hypnozoite drugs is complemented by a test on a rodent model
for liver stage. Rodent malaria sporozoites are infected into a
mouse shortly before or after the mouse has been treated with
the drug under testing. The infection is visualized by estima-
tion of luciferase (if GFP:LUC transgenic sporozoites are
used) or by measuring the level of blood stage parasitemia
or survival (Mwakingwe et al. 2009; Flannery et al. 2013a, b).

The in vitro and in vivo revaluation campaigns, on mole-
cules established as asexual blood stage antimalarials,
possessing sundry biological activities and drugs approved
for diverse ailments, to identify molecules having liver stage
antimalarial activity have designated many of them as liver
stage schizonticidals, and among the latter, some as
hypnozoiticidals. In Tables 3 and 4, the proven liver stage
hypnozoiticidal and schizonticidal molecules having potential
for development into clinical drugs or prophylactics are as
follows: albitiazolium, decoquinate, ELQ300, GNF156,
NITD609, NMT inhibitor (a benzothiophene), NPC-1161B,
nutilin-3, tafenoquine, torin-2 and usnic acid. Most of them
have different modes of inhibitory action against parasites.

Fig. 9 a–i Chemical structures of some of the important antimalarial compounds that have been found to be active against the liver stage of malaria on
account of their schizonticidal activity
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Besides, Zeeman et al. (2013) have observed a new molecule
KAI-407 (imidazopyrazine) as much effective against
hypnozoites as are tafenoquine, bulaquine (Dutta et al. 1989)
and NPC-1161B (LaMontagne et al. 1982). Tinidazole (an
antiprotozoal nitrogroup containing imidazole synthetic deriv-
ative; Wells 2010; Wells et al. 2010; Amit et al. 2013;
Macareo et al. 2013), inidazolidinone (Wells et al. 2010) and
CEM-101 solithromycin (a fluoroketolide antibiotic; Wells
et al. 2010; Wittlin et al. 2012) are also found to be active
against hypnozoites (Fig. 8). The liver schizonticidal antima-
larials not possessing the hypnozoiticidal activity listed in
Tables 3 and 4 are as follows: cladosporin, C-10 trioxane,
DSM265, 4-CF3 phenyl, ketotifen, methylene blue, OZ439,
P218 and sulphide-3-artesanilide. Some additional molecules
that offer scope for using their liver schizonticidal activity are
MMV007907 (an Atg8-Atg3 protein-protein interaction in-
hibitor; Hain et al. 2014), ICI 56.780 (a phenoxyethoxy quin-
oline), P4Q-146 and P4Q-158 (3-phenyl-4(1H)-quinolones)
(Hanson et al. 2013), esmeprazole (a proton pump inhibitor
that is used to treat gastroesophageal reflux disease),
methylsergide (a migraine drug), salinomycin (a breast cancer
drug), telmisartan (drug for management of hypertension),
halofuginone (synthetic halogenated derivative of the plant
Dichroa febrifuga quinazolinone alkaloid febrifugene that is a
traditional Chinese antimalarial medicine) (Derbyshire et al.
2012a, b) and MMV396749 (a benzimidazole; Burrows et al.
2012) from the Medicines for Malaria Venture (Fig. 9). The
bulk of the molecules listed above represents antimalarially
active chemical scaffolds offering possibilities for derivation
of more active and safer malaria-stopping molecules.

Stopping of transmission and treatment of malaria
simultaneously

This approach targets individual, more than one or all of the
developmental stages of Plasmodium in female mosquito, to
thereby stop parasite transmission via drug(s) administered to
people for treatment of malaria or for prophylaxis. The aim is to
give a drug or drug combination to infected humans so that on
the one hand formation of merozoites and gametocytes is
interfered in patients and on the other hand parasite’s develop-
ment in mosquito is also blocked. The drugs to be given for
prophylaxis will also possess these dual properties, including
action against liver stages of the parasite. Several of the early
antimalarials did not possess such properties. The concept is
that the drug administered to people will get passed on to the
female mosquito through its blood meal. Thus, by biting to a
treated person, the mosquito gut will receive parasite gameto-
cytes as well as the drug active against subsequent development
of gametocytes. The passaged antimalarial will therefore inca-
pacitate parasites in mosquito. Mosquito stages of parasite
development are now important targets in programmes

of development of antimalarials, and several effective and
safe compounds have been identified. The candidate com-
pounds that are simultaneously used for the treatment of
malaria as well as transmission blockers are described below.

Discovery of new transmission blocking drugs

The life cycle of Plasmodium (Fig. 1) in the human host begins
with the bite by an infected mosquito for a blood meal which
releases sporozoites along with some saliva into the blood-
stream. The sporozoites invade the hepatocytes and develop
into schizonts. The merozoites released from liver schizonts
invade erythrocytes where they grow through ring and tropho-
zoite stages into schizonts which release mitotically multiplied
blood stage merozoites into the blood for their further asexual
replication in erythrocytes. Some of the merozoites instead enter
sexual cycle and go through five stages of gametocytogenesis,
involving meiosis, to produce stage V mature male and female
gametocytes. The gametocytes start to appear a few to 12 days
from the appearance of malaria symptoms. They persist even
after remission of malaria symptoms. The gametocytes are the
only parasite cells that survive transmission from the human
host to the mosquito host. A mosquito through its bite to obtain
a blood meal ingest about 103–104 gametocytes. These undergo
differentiation to produce gametes. In the process, male game-
tocytes undergo three mitotic divisions to produce exflagellated
male gametes. Fusion of male and female gametes forms a
zygote which differentiates into ookinete. An infected mosquito
may produce 102–103 ookinetes. The motile ookinetes traverse
to midgut epitheliumwhere each of them forms an oocyst. Each
oocyst upon maturation releases thousands of motile sporozo-
ites which migrate to salivary glands. The mosquito possessing
mature sporozoites releases about a dozen of them through its
bite to a human, thus completing themosquito-human-mosquito
transmission cycle (Baton andRanford-Cartwright 2005). There
are two phases to block transmission: one in humans that
produces mature gametocytes and other in mosquito. In mos-
quito, the parasite sexual stages, gametogenesis and fertilization
and sporogony stages ookinete→oocyst→sporozoites are tar-
gets to block transmission. The ACT drugs reduce the transmis-
sion only partially because they are active against early stages of
gametocytogenesis. At low concentrations, some of them actu-
ally increase the gametocyte burden (Peatey et al. 2012).
Primaquine is the only fully gametocytocidal among the cur-
rently approved antimalarial drugs. There is an urgent need for
new transmission blockers because primaquine has G6PD lia-
bility, malaria vaccines are awaited and therefore interruption of
malaria transmission via drugs is necessary to control,
eliminate and eradicate malaria (Alonso et al. 2011).
High-throughput in vitro, semi-in vitro and in vivo re-
liable assays have been recently developed to test the efficacy
of candidate molecules against gametocytogenesis,
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gametogenesis and sporogony (Roncales et al. 2012;
Ojo et al. 2012).

The available in vitro procedures for testing the efficacy of
candidate compounds for killing the mature gametocytes are

Fig. 10 a–h Chemical structures of some of the important antimalarial compounds that have been found to be sporogonocidal and antagonistic to
malaria transmission
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typified by that given by Sun et al. (2014). Here, ring stage
parasites are cultured conventionally to 0.1 % parasitemia. And
at day 9 or 10, the culture is exposed to 50 mM N-
acetylglucosamine to block further asexual growth. At day 12,
the stage III–IV gametocytes are isolated by Percoll density
gradient and recultured for 24 h to reach 70 % parasite cells to
stages IV–V. The subculture of about 20,000 gametocytes,
medium and test compound is incubated for 72 h at 37 °C in
5 % CO2 atmosphere. Then, AlamarBlue (oxido-reduction
indicator) dye is added to the subculture, and after 24 h of
further incubation, fluorescence is read such that the fluores-
cence signal has a linear relationship with surviving gametocyte
number. In the procedure of Lelievre et al. (2012), Pf3D7HT-
GFP gametocytes in N-acetylglucosamine-treated culture are
separated by density gradient-cum-magnetic column. About
50,000 gametocytes are subcultured in the presence of test
compounds for 48 h before the effect of the test drug is mea-
sured by ATP luminescence produced by oxygenation of lucif-
erin catalyzed by luciferase or microscopically by examination
of Giemsa-stained thin blood films. The assay of Roncales et al.
(2012) uses D-sorbitol treatment to remove asexual parasites
and induce gametocytogenesis in cultures. The procedure of
Duffy and Avery (2013a, b) deploys confocal fluorescence
microscopy on gametocyte-specific protein pfs 16-LUC-GFP
and a viability marker MTR (Mitotracker Red CM-H2 X ROS)
that allow automated image detection and quantitation of sur-
viving gametocytes. D’Alessandro et al. (2013) in their proce-
dure use calometrically estimated lactate dehydrogenase as
measure of surviving gametocytes following drug treatment.
Kaushal et al. (1980) suggest the use of 1 mM cyclic AMP in
static asexual culture to achieve abundant gametocytogenesis.

The exflagellation assay uses in vitro cultures rich in ma-
ture gametocytes, such as those in Sun et al. (2014) and variant
procedures. The test compound is added and exflagellation is
triggered by lowering the incubation temperature to about
21 °C. Motile exflagellated cells are counted microscopically
in samples withdrawn 20 min later (Sun et al. 2014). In the
ookinete development assay, gametocytes are cultured in fresh
medium together with the test compound for 24 h at 19 °C.
Giemsa-stained ookinetes are counted microscopically (Sun
et al. 2014; Delves et al. 2012a, b, 2013).

In the membrane feeding assay (FMA) of sporogony,
Anopheles mosquitoes starved overnight are fed gametocytes
through a parafilm membrane (Churcher et al. 2012). In the
case of P. falciparum, the in vitro-produced gametocytes and
test compound are subcultured in fresh medium at 37 °C for
24 h and fed to mosquitoes. Correspondingly, blood taken
from P. berghei-infected mice is heparinized, added to the test
compound and fed to mosquitoes. The starved mosquitoes are
fed the gametocytes for 30min at 37 °C. Engorged mosquitoes
are maintained at 28 °C, 60–80 % relative humidity for 8–
12 days. The mosquitoes are dissected and their midgut is
stained with 0.2%mercurochrome and the numbers of oocysts

formed are counted. The in vivo sporogony assay uses
P. berghei gametocytes formed in mice. Using thewhole blood
from mouse showing 10 % P. berghei parasitemia, mice are
infected. After the mice have produced gametocytes, they are
treated with drugs under testing. Such mice are anaesthesized
and starved. A. stephensi mosquitoes are allowed to feed on
them for 30min. The engorgedmosquitoes are maintained and
examined for oocyst formation as in FMA (Blagborough et al.
2013; Delves et al. 2012a, b).

Information on activities of many putative next-generation
antimalarials listed in Tables 3 and 4 with regard to malaria
transmission is now known, since the above assays became
available. The molecules of Tables 3 and 4 that have been found
to possess significant antitransmission activity fall into three
groups: (a) The following 16 compounds possess both
gametocytocidal (blockading of mature gametocytes) in human
blood stage and sporogonocidal (blockading of sporogony in
mosquito) activities: albitiazolium, C10-trioxane, DSM265,
ELQ300, 4CF3 phenyl, fosfidomycin, GNF-156, ketotifen,
methylene blue, NITD-609, NMT inhibitor, NPC-1161B,
OZ439, sulphide-3-artesanilide, torin-2 and usnic acid. In this
group, several molecules such as ELQ300, methylene blue and
usnic acid possess multiple antitransmission activities:
gametocytocidal, anti-exflagellation, anti-fertilization, anti-
ookinete formation and anti-oocyst development. (b) A total of
six compounds possess gametocytocidal property: ACT-21365,
cladosporin, decoquinate, NSC-1158011, tafenoquine and qui-
nine dimer. (c) Pyrimethamine and mefloquine comprise the
sporogonocidal group. Besides, several compounds of known
biological activities have been reported to be sporogonocidal
(Fig. 10). This group includes bumped kinase inhibitor (BKI)-1.
This orally bioavailable compound selectively inhibits the par-
asite’s calcium-dependent protein kinase 4 and thereby micro-
gametocyte exflagellation as well as oocyst formation get
inhibited (Ojo et al. 2012). A number of HSP90 inhibitors
(Fig. 10), mostly anticancer agents, have been found to possess
sporogonocidal activity: alvespimycin (analogue of benzoqui-
none antibiotic geldanamycin), maduramycin (monoglycoside
polymer of Actinomadura rubra fungus), MMV019406,
MMV666125, narasin (derivative of salinomycin from
Streptomyces aurofaciens), NSC-174938 and NVP-AYU922
(isoxazole amide) (Sun et al. 2014). Plasmodium specifies
about 5,500 genes. Molecules that can target any of the
essential Plasmodium protein/RNA selectively are expected
to possess gametocytocidal and/or sporogonocidal property.

Molecules active against asexual liver and blood stages,
gametocytogenesis and sporogony

Now that assays are available for testing activities against all the
four important stages of Plasmodium life cycle in human and
mosquito hosts, it has been possible to identify molecules that

742 S. Kumar et al.



are prophylactic against malaria as well as cure malaria. Such
molecules of great interest included in Tables 1, 3 and 4 are as
follows: albitiazolium, C10-trioxane, decoquinate, ELQ300,
4CF3 phenyl, GNF156, ketotifen, NITD609, NMT inhibitor,
NPC-1161B, primaquine, sulphide-3-artesanilide, tafenoquine,
torin-2, WEHI-916 and usnic acid. The following 11, of these
16 molecules, have been found to be active also against
hypnozoites: albitiazolium, decoquinate, ELQ300, GNF156,
NITD609, NMT inhibitor, NPC-1161B, primaquine
tafenoquine, torin-2 and usnic acid. Among these, only
primaquine and tafenoquine demonstrate G6PD liability, and
others have distinct targets and represent novel chemical scaf-
folds. Thus, it appears that there is a good scope for develop-
ing new combination of drugs that will cure and eliminate
malaria pleiotropically.

Single-dose safe drug candidates active
against drug-resistant malaria to provide protection
against reinfection

One of the major obstacles in malaria control programmes has
been non-compliance of prescribed schedule of drug intake by
patients. Underdosing has been associated with the develop-
ment of resistance against the first-generation antimalarial
drugs. To eradicate malaria, there is a need for drugs that should
possess the following features: curing ofmalaria in a single dose
by having high activity against liver and blood asexual stages
and gametocytogenesis in humans and/or sporogony in mos-
quitoes; long in vivo half life; rapid onset of action against
plasmodia sensitive or resistant against first-generation
antimalarials; resistance to resistance development; and
selectivity against parasite targets thus providing safety,
especially for children and pregnant women, and least
liability. The candidate molecules possessing at least
some of such properties are C10-thioacetal, decoquinate,
ELQ-300, GNF156, sulphide-3-artisanilide and torin-2.
Molecules like decoquinate, ELQ300, GNF156 and torin-2
combined with each other and with suitable quick acting
drugs should in the future provide cure as well as long-
term prophylaxis against malaria and open possibilities of
eradicating malaria.

Finding of targets of known antimalarials
and for innovative new antimalarials

Flannery et al. (2013a, b) have reviewed the genetic methods
that can be used for defining the targets of known antimalar-
ials. The molecules listed in Tables 3 and 4 are only a small
fraction (<0.15 %) of the total already shown to be active
against asexual blood stage of malaria parasites. Many of the
molecules remaining to be characterized for their biological

properties are expected to be active against multiple stages of
human and mosquito parts of life cycles of different malaria-
causing species of Plasmodium. If the targets of such mole-
cules, among the products of ~5,500 genes that are reported to
be present in genomes of Plasmodium species, become
known, then it may be possible to derive from them altered
forms of molecules that are relatively more effective and safer
antimalarials. A list of important targets already identified for
which novel antimalarial chemical scaffolds are desired is
given in Table 5, and the methodology of discovering targets
of active compounds is outlined below. It is already exempli-
fied in the section in the discovery of mutations in K13
propeller domain of the PF3D7_134700 gene associated with
the development of resistance against artemisinin. The proce-
dure involves in vitro evolution of parasite lines resistant to an
antimalarial. Replicated cultures containing 2×109 cells are
exposed stepwise to increasing levels of an antimalarial
starting from IC50 of the parent line and reaching to 2–5×
IC50 or in single step at 2–10×IC50 concentration. The
compound-added cultures are grown for 12 weeks. The pres-
ence of live and growing parasites in them is indicative of
evolvement of resistance in the culture. Independent isolates
from replicated cultures exposed to low and high concentra-
tions of the antimalarial are purified and rechecked for the
degree of resistance. The parental and resistant lines are whole
genome sequenced to identify changes in the genome of
resistant lines. Common mutations in sequences of resistant
lines recovered from replicates, identified by whole genome
resequencing, are held responsible for resistance development
(Langmead et al. 2009; Li et al. 2008, 2009; Samarakoon et al.
2011; Bopp et al. 2013). Usually, resistance is found associ-
ated with non-synonymous base substitutions or small dele-
tions in the promoter or structural parts of specific gene(s) or
changes in a number of active copies of specific gene(s).
Mutation in the promoter of a gene may be the cause of
under- or over-expression and that in the structural parts
may cause abolition or change in the activity of the gene
product. The presence of gene in the decreased or increased
number of copies results in under- or over-production of the
gene product. Characterization of the life cycle of a mutant in
model system(s) identifies the phenotype of the mutation.
Reverse genetic analysis also contributes to phenotype de-
scription (Nkrumah et al. 2006; Yu et al. 2008; Straimer
et al. 2012). Differential stage-specific transcriptomic and
proteomic analyses on separated parasites of in vivo-/
in vitro-grown mutants and bioinformatics too help in the
revelation of the phenotypic properties of mutants. In vitro
interaction studies between target macromolecules of the
parasite and drug molecule will allow derivation/
designing of new molecules. This area of research is
in its infancy, and emphasis on it is bound tomake antimalarial
molecules effective in the control/elimination/eradication
of malaria.
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Concluding remarks

The significant reduction in malaria cases from 515 million
in 2002 to 219 million in 2013 is thought to be fragile in

view of the emergence and spread of resistance against
artemisinin, the principal drug of ACT that was combating
malaria, in Southeast Asia. The migration of ART-resistant
parasites to other malaria endemic countries requires

Table 5 Some molecular targets identified for innovative antimalarial drug development

S. no. Target Affected life cycle stage in Reference(s)

Human host Mosquito host

1 Actin-myosin motor system Liver stage Derbyshire et al. (2012a, b)

2 AP2-G protein Gametocytogenesis Kafsack et al. (2014), Sinha et al. (2014)

3 ATPase 4 All stages, including
hypnozoites

Sporogony Spillman et al. (2013), Smith et al. (2014)

4 ATP binding cassette (ABC) transporter Blood and liver stages Sporogony Eastman et al. (2013)

5 Calcium-dependent protein kinase 4 Gamete
exflagellation

Ojo et al. (2012)

6 Calpain Blood stage Choi et al. (2013)

7 CAX transporter Sporogony Guttery et al. (2013), Straimer et al. (2012)

8 CRT digestive vacuole transmembrane
protein transporter

Papakrivos et al. (2012)

9 DXR (1-deoxy-D-xylulose-5-phosphate
reductoisomerase)

Blood stage Goble et al. (2013)

10 Export protein 1 and upregulated
sporozoite protein 4 of
parasitophorous vacuole membrane

All stages All stages Sun et al. (2014), Hanson et al. (2013)

11 Falcipain-2 Blood stage Rizzi et al. (2011)

12 FAS-II All stages All stages Lauinger et al. (2013)

13 GAP-50 Gametogenesis Simon et al. (2013)

14 Heme biosynthesis Liver stage All stages Nagraj et al. (2013)

15 Histone deacetylase Blood stage Mukherjee et al. (2008)

16 HSP90 Sporogony Sun et al. (2014)

17 Hypoxanthine-xanthine-guanine
phosphoribosyl transferase

All stages All stages Gardiner et al. (2009)

18 Kelch-like protein phosphate Sporogony Guttery et al. (2012a, b)

19 Lysyl tRNA synthetase Liver and blood stages Hoepfner et al. (2012)

20 MDM2 Liver and blood stages
including hypnozoites

Kaushansky et al. (2013)

21 N-myristoyltransferase All stages All stages Goncalves et al. (2012), Wright et al. (2014)

22 PF3D7_134700 Blood stage Exflagellation Ariey et al. (2014)

23 Phosphoethylamine methyl-transferase Gametocytogenesis Bobenchick et al. (2013)

24 Phosphatidyl inositol-4-kinase Gametocytogenesis All stages McNamara et al. (2013)

25 Plasmepsin aspartate proteinase(s) Blood stage McKay et al. (2011)

26 Pyrimidine biosynthesis in mitochondria All stages All stages Nilsen et al. (2013), Duffy
and Avery (2013a, b)

27 PTP2 Gametocytogenesis Regev-Rudzki et al. (2013)

28 R10-2 kinase Blood stage Parveen et al. (2013)

29 Reticulocyte-binding protein
homologue-1

Blood stage Gao et al. (2013)

30 ROM1 protein Liver and blood stages Vera et al. (2011)

31 Shewanella-like protein phosphatase Sporogony Patzewitz et al. (2013)

Empty space means information not available
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immediate countermeasures. The perception of possible
retreat in malaria control programme has reinvigorated re-
search interest in multiple fronts of human-parasite-
mosquito interactions. In the above discussion, some of
the important recent progress and avenues of new research
have been delineated. Virtues and deficiencies of the puta-
tive antimalarial vaccines RTS,S and AMA1 make their
synergetic use in the future possible. The new malaria
diagnostic technique REEAD is both time and cost effec-
tive for usage in field conditions. The DNA marker iden-
tified in ART-resistant parasites will complement REEAD
in tracking of artemisinin-resistant malaria patient for their
treatment to block further spread of such malaria. Progress
towards blocking of malaria transmission includes discov-
ery of mosquito repellents that are manifold more effective
than DEET, construction of bacteria-infected mosquitoes in
which the parasite is killed, suggested use of ivermectin
molecules in ACTs to cure malaria as well as kill mosqui-
toes that may bite treated patients and discovery of antima-
larial molecules of long half life for use as prophylactics.
Development of imaginative high-throughput screens have
provided a vast library of antimalarial molecules as well as
means to discover drugs that singly or in combination are
able to cure simple as well as relapsing malaria by activity
against liver and blood stages of parasite in human and
annulling sporozoite production in mosquitoes, thus
blocking transmission of malaria between humans and also
serving as prophylactic against reinfections in the im-
mediate future. Genome sequencing and annotation and
proteomic, biochemical and biophysical and chemical
technologies now offer means for discovering antimalar-
ials against specific parasite gene products, allowing the
synthesis of innovative molecules that will be safe, cure
malaria, stop parasite transmission and thus help in the
achievement of the projected goal of eradicating malaria
by 2035.
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