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Bird–nest puzzle: can the study of unisexual flowers
such as cucumber solve the problem of plant sex
determination?
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Abstract Unisexual flower development has long been
used as a model system to understand the mechanism of
plant sex determination. However, based on our investigation
of the mechanisms regulating the development of unisexual
cucumber flowers, we have realized that understanding how
organ development is inhibited may not necessarily reveal
how an organ is formed. We refer to this problem as a
“bird–nest puzzle,” meaning one cannot understand how a
bird lays and hatches its eggs by understanding how its nest is
ruined. To understand the biological significance of unisexual
flowers, we reexamine the original meaning of sex and
its application in plants. Additionally, we propose that
the fundamental biological advantage for the selection
and maintenance of unisexual flowers during evolution is to
promote cross pollination.
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Sex is an evolutionarily ancient phenomenon. It is well
accepted that sexual differentiation evolved in unicellular eu-
karyote organisms, and the hallmark events of the sex-related

life cycle, or sexual reproduction cycle, are meiosis and fertil-
ization. Although there is no consensus yet on the origin of
meiosis during evolution, the origin of sexual differentiation is
considered to relate to heterogamy, and the advantage of
different sexes for the creation of genetic variability, which
provides opportunities for natural selection and increased fit-
ness, is well recognized. According to its Latin root “sexus,”
sex originally means “to divide” (secare). The word sex is used
to describe gender probably because that any organisms of any
kind, especially in the animal kingdom, can be divided into
two groups: male and female.

Sex is closely related to the daily life of human beings;
therefore, the process of sex determination has been a long-
standing question in biology since Aristotle. After more than
2,000 years’ belief that sex was determined only by environ-
mental conditions, sex chromosomes were discovered in ani-
mals in the early twentieth century (Gilbert 2000). Currently, it
is well accepted that both external environmental and internal
genetic mechanisms of sex determination can operate in dif-
ferent animal species (Bull 1983).

Although cross-pollination in agronomy can be traced
back to 1,000 BC (Stanley and Linskens 1974), Charles
Alston, a keeper of the Royal Physick Garden in the seven-
teenth to the eighteenth centuries, considered sex in flowers
to be an insult to his profession (Robbins and Pearson
1933). According to Robbins and Pearson (1933), sex in
plants was originally defined by the morphological charac-
teristics associated with gamete generation, just as second-
ary sex traits are used for the classification of mammals. For
example, a flower or a plant was male if it only bore
stamens. Therefore, the vast majority of flowering plants
were considered to be hermaphrodites or bisexual as perfect
flowers bear both stamens and carpels. Following this view-
point, studies of sex determination in angiosperms essentially
investigated how unisexual plants (dioecious) or unisexual
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flowers borne on the same plant (monoecious) were
regulated. Since then, this conceptual framework has
been continuously applied, according to representative
review articles and books on the topic (Irish and Nelson
1989; Dellaporta and Calderon-Urrea 1993; Tanurdzic
and Banks 2004; Ainsworth 1999).

Several model systems have been used for the study of
unisexual flower development, including dioecious Silene
latifolia, Romex acetosa, and Carica papaya, and monoe-
cious maize, cucumber, and melon. Great efforts have been
made in the analysis of dioecious plant sex chromosomes
(Ainsworth 1999; Charlesworth 2002; Ming et al. 2007a).
So far, the most successful case is the mapping and sequenc-
ing of the sex loci in C. papaya (Ming et al. 2007b).
However, the genes identified in the sex locus have provid-
ed no clues regarding their functional relationship with the
dioecy (Yu et al. 2008). The first breakthrough in monoe-
cious plants was made in the early 1990s when TASSEL-
SEED2 (TS2) was cloned and identified as a factor required
for stage-specific floral organ abortion (DeLong et al. 1993).
Since then, more genes involved in unisexual flower devel-
opment have been cloned, such as TS4 and TS1 in maize
(Chuck et al. 2007; Acosta et al. 2009), F and M genes in
cucumber (Mibus and Tatlioglu 2004; Boualem et al. 2009;
Li et al. 2009), and A gene in melon (Boualem et al. 2008).
To some extent, the molecular mechanisms of the afore-
mentioned genes have been revealed in these plants. For
example, TS2 suppresses pistil development in maize by
mediating cell death. This process is required for TS1 and
prevented by SK (Calderon-Urrea and Dellaporta 1999).
While TS1 plays a role in sex determination by affecting
JA signaling (Acosta et al 2009), TS4 affects sex determi-
nation by targeting IDS1 in maize (Chuck et al 2007). It is
known that the cucumber M gene is specifically expressed
in carpels (Saito et al. 2007) and that the melon A gene
expression is indirectly repressed by the transcription fac-
tor CmWIP1 (Martin et al. 2009). However, additional
details of unisexual flower development in these plants
remain elusive.

Instead of adopting a genetic approach to clone the genes
responsible for unisexual flower development, we have
studied unisexual flower development in cucumber by in-
vestigating when the inappropriate organs stop growing,
what occurs in the inappropriate organs, and how gaseous
ethylene selectively promotes female flower development.
We observed that morphological divergence leading to male
and female flowers occurs in stage 6 floral buds (Bai et al.
2004). While we confirmed that both inappropriate stamens
in female flowers and carpels in male flowers are alive
(Yang et al. 2000; Hao et al. 2003), we detected primordial
anther-specific DNA damage in female flowers (Hao et al.
2003). DNA damage was not detected in the inappropriate
carpels of male flowers (Bai et al. 2004); however, we

observed a correlation between the low expression levels
of several types of pre-microRNA (miRNA) and arrested
carpel development in male flowers (Sun et al. 2010).
Furthermore, we demonstrated that the expression of the
ethylene receptor CsETR1 gene is organ-specifically
downregulated in the stamens of female flowers com-
pared to the stamens of male flowers and carpels of
female flowers (Wang et al. 2010). Organ-specific down-
regulation of ethylene receptor gene expression or upregula-
tion of ethylene synthesis gene expression in transgenic
Arabidopsis plants can mimic female flowers (Wang et
al. 2010; Duan et al. 2008). We have also identified an
ethylene-inducible nuclease, which may be responsible
for primordial anther-specific DNA damage in female
flowers (Gu et al. 2011). These findings have helped
explain, in part, how gaseous ethylene selectively pro-
motes female flowers by inhibiting stamen development
(Bai and Xu 2010).

Our observations, together with the fact that both the F
andM genes encode different members of the ACC synthase
(ACS) gene family, have triggered further questions regard-
ing why ethylene was selected to inhibit stamen develop-
ment in female cucumber flowers. Taking advantage of the
availability of the cucumber genome (Huang et al. 2009),
we analyzed the phylogenic relationship of the F and M
genes. We found that the M gene probably diverged and
became involved in stamen development prior to the F gene
(Sun et al. 2010). This result is consistent with the high
frequency of M gene mutations in cucumber, as well as the
equivalent A gene in melon (Boualem et al. 2008, 2009; Li
et al. 2009), and the proposed recent duplication of the F
gene (Knopf and Trebitsh 2006). As the M gene is prefer-
entially expressed in carpels (Saito et al. 2007), the role of
ethylene in the inhibition of stamen development can be
narrowed down to how the expression pattern of the M gene
evolved. Three lines of recent evidence are worth noting
with regard to this question. Firstly, organ size can be
regulated by the TCP genes in the leaf and petal (Efroni et
al. 2008; Nag et al. 2009). Secondly, miRNAs such as
miR171 are involved in organ size regulation via targeting
TCP genes (Palatnik et al. 2003; Efroni et al. 2008; Nag et
al. 2009). Thirdly, the expression levels of some miRNAs,
including miR 171, miR 396, and miR319, are stress-
regulated (Sunkar and Zhu 2004; Liu et al. 2008). Therefore,
we proposed a “miR initiation” hypothesis to explain the
origin of unisexual flowers in cucumber (Sun et al. 2010).
This hypothesis suggests that environmental changes trigger
changes in the expression of miRs, which alters the expres-
sion of TCP and leads to the arrest of ovary development.
The M gene was co-opted to correct miR expression levels
in order to rescue the fatal defects in ovary development
which prevented seed production. While theM gene rescued
ovary development, a high level of ethylene production
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inhibited stamen development as a side effect. This mecha-
nism was eventually selected during evolution as it introduced
the advantages of cross-pollination.

Our initial purpose of studying cucumber unisexual flow-
er development was to understand the mechanisms of sex
determination, in particular, how phytohormones play a role
in this process. However, our findings on unisexual cucum-
ber flower development, both empirical and theoretical,
have revealed a rather accidental series of chain reactions
in response to environmental challenges. The relationship
between heterospore generation and sexual organ develop-
ment in cucumber is similar to the relationship between a
bird and its nest. In general, a bird needs a nest to lay and
hatch its eggs, and in most cases, the nest is built by the bird.
Now the question is that can we properly understand how a
bird lays and hatches its eggs by investigating how it builds
its nest? If the answer is no, how can we expect to under-
stand the sex determination mechanism in cucumber by
studying the inhibition of either male or female organ de-
velopment, which seems comparable to the ruining of a nest
rather than building one? We refer to this problem as the
“bird–nest puzzle.”

According to Robbins and Pearson (1933), a flower or
a plant can only be identified as a separate sex if it bears
only stamens or carpels. However, all plants with perfect
flowers, which include approximately 90% of angio-
sperms (Ainsworth 1999), can generate heterogametes
as well as heterospores, yet these plants definitely have
a sex. The definition of plant sex based on whether the
plant or flower bears only stamens or carpels actually
introduced difficulties to the application of the organ-
based sex definition in plants with perfect flowers. Can
we find a proper way to define sex determination in
plants? Since the Latin root of “sex” is “dividing,” it is
clear that in an evolutionary perspective, the essence of
“sex” should be an event or process leading to cells
generated from zygotes diverged to either male or female
gametes, e.g., heterogametes. In other words, sex determina-
tion should be a mechanism which ensures the completion of
the divergence. In this sense, the first divergence point during
the developmental process of an angiosperm with perfect
flowers should be when a primordium initiated from the
shoot apical meristem (or more specifically the floral
meristem) adapts its developmental path to either a sta-
men or a carpel. Although Ainsworth’s (1999) opinion
suggests that the study of unisexual flowers provides
opportunities to understand the developmental regulation
of perfect or hermaphrodite flowers, understanding how
primordia such as inappropriate stamens in female cu-
cumber flowers are inhibited helps little to understand
how the developmental path to stamen is established, just
like knowing how a nest is ruined helps little to under-
stand how the nest was built. In contrast, identification

of ABC genes that determine floral organ identities
(Coen and Meyerowitz 1991) was actually the most
fundamental breakthrough in the effort to understand
the mechanism of plant sex determination, or in a better
term “sex differentiation,” in the last several decades.
Together with recent understanding of the mechanisms
which regulate flower development in unisexual plants
such as cucumber, these analyses have inspired a reex-
amination of the traditional concepts of plant sex and
will inspire further investigation from new perspectives
to address the long-standing question of plant sex differ-
entiation in the future.

What is the role of unisexual flowers in plants then? Based
on our investigation of unisexual cucumber flowers, we pro-
pose that the main function of unisexual flower development
is to promote cross-pollination. As plants evolved a sessile
morphogenetic strategy and cannot move to positively select
mating partners, cross-pollination provides tremendous
advantages to introduce genetic variation in order to increase
fitness. Compared with self-incompatibility, a recognition
mechanism to avoid self-pollination with normal floral mor-
phology (Rea and Nasrallah 2008), unisexual flowers provide
a sacrifice mechanism to avoid self-pollination, or, as this can
alternatively be viewed, greatly increase the opportunity for
cross-pollination by functionally disabling one of their sexual
organs. Regardless of the method adopted, inhibition of male
or female organ development will always result in cross-
pollination. Moreover, if our “miR hypothesis” is true, uni-
sexual cucumber flowers have originated as a response to
randomly occurring environmental challenges. This provides
a simpler mechanism for fulfilling cross-pollination compared
to the self-incompatibility that requires complicated genetic
interactions for recognition. The viewpoint that the main
function of unisexual flower is to promote cross-pollination
explains the extremely diversified mechanisms of unisexual
flower development and the widespread unisexual flower
traits across the phylogenetic tree (Charlesworth 2002).

The bird–nest puzzle, derived from our investigation of
unisexual cucumber flowers, has inspired a reexamination
of the traditional concept of sex determination in plants.
This reexamination does not underestimate the significance
or contribution of previous efforts, which have improved the
understanding of unisexual flower development, but rather
opens new opportunities, based on historical contributions,
to pinpoint the actual events of plant sex differentiation in a
broader perspective.
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