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Abstract During the past decade, there has been a paradigm
shift in our understanding of the roles of intracellular lipid
droplets (LDs). New genetic, biochemical and imaging
technologies have underpinned these advances, which are
revealing much new information about these dynamic
organelles. This review takes a comparative approach by
examining recent work on LDs across the whole range of
biological organisms from archaea and bacteria, through yeast
and Drosophila to mammals, including humans. LDs
probably evolved originally in microorganisms as temporary
stores of excess dietary lipid that was surplus to the
immediate requirements of membrane formation/turnover.
LDs then acquired roles as long-term carbon stores that
enabled organisms to survive episodic lack of nutrients. In
multicellular organisms, LDs went on to acquire numerous
additional roles including cell- and organism-level lipid
homeostasis, protein sequestration, membrane trafficking
and signalling. Many pathogens of plants and animals
subvert their host LD metabolism as part of their infection
process. Finally, malfunctions in LDs and associated proteins
are implicated in several degenerative diseases of modern
humans, among the most serious of which is the increasingly
prevalent constellation of pathologies, such as obesity and
insulin resistance, which is associated with metabolic
syndrome.
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Abbreviations
ABA Abscisic acid
DAG Diacylglycerol
ER Endoplasmic reticulum
LD Lipid droplet
MLDP Myocardial lipid droplet protein
PA Phosphatidic acid
PAT Perlipin, adipophilin and TIP47

(now termed Plin)
PC Phosphatidylcholine
PE Phosphatidylethanolamine
PHA Polyhydroxyalkanoate
PHB Polyhydroxybutyrate
PHB/V Co-polymer of hydroxybutyrate and

hydroxyvalerate
Plin Perilipin
PPAR Peroxisome proliferator-activated

nuclear receptor
TAG Triacylglycerol
TIP47 Tail-interacting 47-kDa protein (or Plin3)
WS Wax ester synthase
WS/DGAT Wax ester synthetase/diacylglycerol

acyltransferase

Introduction

The purpose of this article was to review recent progress in
elucidating the origins, organization and functions of
intracellular lipid droplets (LDs). Over the past few years,
several articles have summarized various aspects of LD-
related studies. Examples include: Martin and Parton (2005,
2006), Wältermann and Steinbüchel (2005), Fujimoto and
Ohsaki (2006), Wolins et al. (2006a, b), Welte (2007,
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2009), Ducharme and Bickel (2008), Fujimoto et al. (2008),
Goodman (2008, 2009), Thiele and Spandl (2008), Walther
and Farese (2009), Farese and Walther (2009), Guo et al.
(2009), Murphy et al. (2009), Ohsaki et al. (2009),
Olofsson et al. (2009), Zehmer et al. (2009b), Arrese and
Soulages (2010), Beller et al. (2010b), Fujimoto and Parton
(2010), Kalantari et al. (2010), Bozza et al. (2011),
Kühnlein (2011), Greenberg et al. (2011) and Greenberg
and Coleman (2011). Most of these articles focus on
specific organisms and/or LD functions, and they are all
recommended to readers interested in more detailed
accounts of LDs in major groups such as prokaryotes,
animals, plants and fungi. The present review is intended to
complement these accounts and especially to draw together
findings across all biological taxa in order to appreciate
more fully both the similarities and differences in LD
function in cells and organisms.

Many, and perhaps all, eukaryotic and bacterial cells
contain varying amounts of cytosolic lipidic inclusions, and
similar structures are also found in several types of archaea.
These structures occur most commonly as spheroidal
macromolecular assemblies of neutral lipid esters or lipid-
based polymers that are normally bounded by a phospho-
lipid monolayer membrane plus a variety of lipid-associated
proteins. Cytosolic lipid inclusions in cells were originally
described by Hanstein (1880), Altmann (1890), and Wilson
(1896) and were originally called microsomes or liposomes.
However, these terms were later appropriated by others to
describe quite different bilayer-based lipid structures.
Depending on the organism and scientific field, cytosolic
neutral lipid inclusions have been variously referred to as
lipid bodies, lipid droplets, adiposomes, granules, oleo-
somes, or oil bodies. Despite several attempts to arrive at a
common terminology (Murphy 2001), several of the above
names are still in widespread use in the literature. Although
we originally favoured ‘lipid body’ (Murphy and Vance
1999; Murphy 2001), by far, the most common term in the
current literature is ‘lipid droplet’ (Martin and Parton 2006).
Therefore, this term, abbreviated as LD, is used in the
present article.

During most of the twentieth century, intracellular LDs
in multicellular organisms were almost universally regarded
as specialized storage organelles that were largely limited to
specific cell types such as adipocytes and steroidogenic
cells in mammals; fat bodies in insects: and cotyledon,
mesocarp or scutellar cells in plants. In most cases, these
lipid deposits were believed to be relatively long-term
carbon stores with slow rates of turnover. During the 1990s,
however, evidence began to accumulate that some cytosolic
LDs had more dynamic roles, e.g. as readily accessible
sources of inflammatory mediators in leukocytes or steroid
hormones in steroidogenic cells. In 1999, we attempted the
first synthesis of knowledge about LD formation in both

plants and animals (Murphy and Vance 1999). This was
followed in 2001 by a more detailed review of LDs that
stressed their roles as near-ubiquitous and highly dynamic
organelles across the full range of biological organisms
(Murphy 2001).

Over the past decade, technical advances in cell biology
and the progress in genomics and proteomics have under-
pinned considerable advances in our understanding of the
nature and function of intracellular LDs. The advent of
cheap and rapid sequencing of the genomes of whole
organisms and transcriptomes of specific cell types, coupled
with the increasing ease of generating gene knockout or
overexpression lines, has greatly extended or knowledge of
LD composition and function. New developments in mass
spectrometry have also enabled researchers to monitor lipid
remodelling in living cells (de Kroon 2007).

However, some of the most important advances have
come from the use of new imaging technologies. These
have contributed greatly to our understanding of the real-
time dynamics of LD behaviour in cells and in following
such behaviour during processes such as inflammatory
responses (Melo et al. 2011). Examples of such imaging
techniques include: novel fixation methods for LDs in
immunofluorescence microscopy DiDonato and Brasaemle
2003); vibrational imaging of LDs in live fibroblast cells
(Nan et al. 2003); 1H NMR-visible lipid labels (Wright et
al. 2003; Delikatny et al. 2011); third-harmonic generation
microscopy (Débarre et al. 2005); fluorescent imaging
(Kuerschner et al. 2008); multiplex CARS microscopy
(Müller and Schins 2002; Rinia et al. 2008); quantitative
electron microscopy (Cheng et al. 2009); freeze-fracture
replica immunogold labelling (Robenek et al. 2011);
stimulated Raman scattering microscopy (Bewersdorf et
al. 2011); and confocal reflection microscopy (Gaspar and
Szabad 2009). In the past few years, there have been
particular advances in the use of live imaging systems
including live microscopy (Digel et al. 2010; Somwar et al.
2011); vital staining in combination with fluorescence-
activated cell sorting (Cooper et al. 2010); and time-lapse
adaptive harmonic generation microscopy (Watanabe et al.
2010). The dynamic motion of cytosolic LDs as captured by
live imaging has been reviewed by Welte (2009).

Studies employing these and other methods have now
firmly established the roles of LDs in fundamental cellular
processes such as the trafficking of lipids, proteins and
entire membranes. Moreover, malfunctions in LDs are
implicated in numerous human degenerative conditions
including type 2 diabetes, Parkinson’s disease, some
cancers and Alzheimer’s. LDs also play important roles in
a number of serious infections including hepatitis, leprosy,
Chlamydia, trypanosomiasis, Chagas disease and dengue
fever. More recently, LDs have also been exploited for a
wide range of biotechnological purposes including as
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carriers of pharmaceutical products (Bhatla et al. 2010;
Bonsegna et al. 2011) or as renewable, carbon-neutral
feedstocks for the manufacture of biodegradable polymers
(Anderson and Dawes 1990; Grage et al. 2009; Quillaguamán
et al. 2010) and biofuels (Kalscheuer et al. 2007a, b;
Beopoulos et al. 2009; Kosa and Ragauskas 2011). In this
review, a comparative approach will be adopted to survey
recent findings about the nature, roles and exploitation of LDs
across each of the major biological domains. The principal
emphasis will be on the function rather than on the structures
of LDs and their associated proteins. There have been several
recent accounts of the structure and targeting mechanisms of
LD proteins (Hickenbottom et al. 2004; Zehmer et al. 2008).

Prokaryotes

The cells of all biological organisms are bounded by lipid-
based membranes that, except for some archaeal species, are
based on lipid bilayer structures (Vereb et al. 2003). It is
therefore interesting to pose the question: are all cells also
capable of accumulating intracellular lipidic assemblies, and
specifically cytosolic LDs? Prokaryotes are divided into
bacteria and archaea, but which of these groups has the more
ancient lineage is yet to be fully resolved. It is appealing to
consider that early cells resembled modern archaea, many of
which retain an ability to live in the kinds of extreme
environments found on earth when life first evolved well
over three billion years ago (Stetter 2006; Berg et al. 2010;
Jarrell et al. 2011). However, this hypothesis has been
challenged by suggestions that archaea may have evolved
more recently and that bacteria are the more ancient taxon
(Cavalier-Smith 2006). Archaeal membrane lipids are very
different from those of bacteria and eukaryotes as they are
made up of glycerol ether lipids rather than glycerol esters.
Moreover, archaea do not synthesize fatty acyl esters, which
are the most common constituents of LDs; instead, their
lipids are based on isoprenoid chains. Despite these differ-
ences, however, recent evidence suggests that most bacteria
and some (but not all) archaea can form various types of LDs
(containing fluid acyl esters) or granules (containing semi-
solid lipopolymers).

This begs the question: ‘when did intracellular lipid
assemblies first arise?’ Despite the fundamental differences
in their lipid compositions, many archaea and bacteria are
able to accumulate LDs or granules of some description
(Han et al. 2009; Jendrossek 2009; Rehm and Steinbüchel
1999). Unlike eukaryotes, however, only a minority of
prokaryotes can accumulate triacylglycerol (TAG)-rich and/
or wax ester-rich droplets. Instead, most lipid-accumulating
bacterial and archaeal genera synthesize a range of
polymeric lipids, of which the most common are polyhy-
droxyalkanoates (PHAs), such as polyhydroxybutyrate

(PHB) or polyhydroxyvalerate (PHV). Other polymers
synthesized by bacteria include polythioesters, which are
sulphur analogs of PHAs (Lütke-Eversloh et al. 2001a, b;
Tessmer et al. 2007). To date, all known LD-containing
archaeal species accumulate PHAs as their exclusive
storage lipid components, and current evidence suggests
that the ability to accumulate TAG or wax esters has only
arisen in bacterial lineages.

The accumulation of LDs or granules in prokaryotes is
normally a facultative response to nutrient depletion. In
cases where the organism is adapted for nutrient-rich
habitats, little or no lipid accumulation is found. Examples
of non-lipid-accumulating prokaryotes include lactobacilli,
Enterobacteriaceae and methanogenic archaea (Wältermann
and Steinbüchel 2005). Unlike in eukaryotes, LDs/granules
in prokaryotes appear to act exclusively as energy stores,
with the hyper-accumulation of lipid normally occurring in
response to specific forms of nutrient limitation, most
commonly a low carbon/nitrogen (C/N) ratio. Therefore,
the accumulation of lipidic droplets in prokaryotes fre-
quently marks the cessation of growth and division and the
entry of cells into a quiescent phase.

PHA accumulators

The most common class of intracellular lipid accumulated
by prokaryotes is the PHAs. The monomers that make up
PHAs are synthesized from acetyl-CoA via a short pathway,
as shown in Fig. 1. For example, the assembly of PHB from
acetyl-CoA involves three enzymes respectively encoded
by the phaA, phaB and phaC genes, which in most bacteria
are located in a single operon (Legat et al. 2010). The most
important enzyme in this pathway is the PHA synthase that
assembles monomers such as hydroxybutyrate or hydrox-
yvalerate into either homopolymers, such as PHB, or co-
polymers, such as poly(3-hydroxybutyrate-co-3-hydroxyval-
erate) (PHB/V). A wide range of archaeal and bacterial taxa
can accumulate PHAs via enzymes encoded by distinct, but
clearly homologous, sets of phaA, phaB and phaC genes
(Han et al. 2009, 2010a, b). For example, at least 15 genera of
the salt-tolerant Haloarchaea can accumulate PHAs via
variants of the type III PHA synthase found in bacteria
(Quillaguamán et al. 2006, 2008; Legat et al. 2010; Han et al.
2010a, b). However, no archaeal taxa have so far been found
to contain type I, II or IV phaC genes.

The close similarity of archaeal and bacterial type III PHA
synthase genes (Baliga et al. 2004; Bolhuis et al. 2006; Han et
al. 2007b, 2010a; Lu et al. 2008; Quillaguamán et al. 2010)
and the lack of other PHA gene types in archaea suggest that
archaeal PHAs originated from the horizontal transfer of an
ancestral type III gene from a bacterium (Kalia et al. 2007).
Such a suggestion is in line with findings that modern archaea
with non-extreme lifestyles have many other genes of diverse
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bacterial origins, indicating extensive horizontal acquisition
of genes from bacteria over the course of their evolution
(Galagan et al. 2002; Koonin 2003). During this time, the
original bacterial type III PHA synthase gene has diverged
into the distinctive type IIIA PHA synthase variants found in
many extant archaea (Kalia et al. 2007; Quillaguamán et al.
2010). The date of archaeal acquisition of PHA synthase
genes is unknown, but it has been suggested that it predated
the Permian Era and hence occurred over 300 Mya (Legat et
al. 2010). However, given that both groups of organisms have
been around for over three billion years, the archaeal
acquisition of PHA genes may be considerably more ancient.

The mechanism of PHA-accumulation in prokaryotes is
of considerable interest in view of its potential biotechno-
logical exploitation to produce biodegradable polymers as

industrial feedstocks. Such polymers have biocompatible
and thermoplastic features that make them suitable for use
in medical implants and as substitutes for petrochemical-
derived plastics (Grage et al. 2009; Quillaguamán et al.
2010). Large-scale culture of bioplastic-producing bacterial
species, such as Ralstonia eutropha (also known in the
literature as Alcaligenes eutropha, Wautersia eutropha or
Cupriavidus necator), has been attempted, but high costs
have meant that such products have so far only found small
niche markets (Steinbüchel and Füchtenbusch 1998),
although some progress in wider commercial manufacture
has been made more recently (Kim and Dale 2005; Dias et
al. 2006).

As an alternative to culturing PHA-producing bacteria,
the transfer of PHA-related genes to annual or perennial

Acetyl-CoA

ß-keto thiolase pha A 

Acetoacetyl-CoA

ß-keto acyl-CoA reductase phaB

(D)-3-hydroxybutyrate

PHA synthase phaC

Polyhydroxybutyrate 

Phasin

PHA depolymerase

Hydroxybutyryl-CoA

Carbon/energy

PHA 
granule

phaP

phaZ

phaR

Transcriptional 
activator

Fig. 1 Polyhydroxyalkanoate
metabolism in prokaryotes. In
several groups of bacteria and
archaea, PHAs can be synthe-
sized via ß-oxidation from acyl
substrates such as fatty acids or
can be formed de novo from
elongation of acetyl-CoA. Fatty
acid-derived ß-hydroxyalka-
noate monomers have chain
lengths of C6 to C16, whilst
monomers derived from acetyl-
CoA tend to be much shorter, i.e.
C4 to C5. Sequence similarity
between bacterial and archaeal
PHA synthases suggests that
achaea acquired the ability to
form PHA granules following
horizontal transfer of a bacterial
phaC gene and recruitment of an
endogenous phasin analog (see
text for further details)

544 D.J. Murphy



crop plants could potentially result in larger scale bioplastic
production at a significantly lower cost (Slater et al. 1999;
Snell and Peoples 2002; Dalton et al. 2011). However,
even here, several significant technical hurdles remain,
one of the most challenging of which is the cost-efficient
extraction of PHA granules from plant tissues such as
leaves or seeds (Mooney 2009; Murphy 2010). Another
promising approach is to develop archaeal species as
industrial-scale PHA producers. In particular, several
halophilic archaea have the advantages of utilizing much
cheaper carbon sources (including waste materials), as
well as having less strict sterilization requirements, plus
easier and more efficient methods for PHA extraction
(Lillo and Rodriguez-Valera 1990; Koller et al. 2007; Lu
et al. 2008; Hezayen et al. 2009).

The number and the size of PHB granules in cells vary
according to species and environmental conditions. Accu-
mulation of PHAs in R. eutropha results in the formation of
approximately 10 to 20 spheroidal cytosolic granules per
cell, with diameters ranging from 240 to 500 nm that can
amount to as much as 90% of the total cell dry weight
(Anderson and Dawes 1990). In contrast, Azotobacter
vinelandii can accumulate >40 granules per cell, with sizes
of 500–1400 nm (Page et al. 1995). A typical 500-nm
granule of PHA contains about 40,000 polymer molecules,
each of which is made up of about 30,000 PHA monomers.
These form a semi-solid lipidic core that is surrounded by a
phospholipid monolayer into which several specific
granule-binding proteins are embedded.

The major granule-binding proteins include two
enzymes of PHA metabolism, namely PHA synthase
(PhaC) and PHA depolymerase (PhaZ), a transcriptional
repressor (PhaR) and at least four different low-molecular-
weight structural proteins called phasins (PhaP). The
expression of the major phasin gene, phaP1, is regulated
by PhaR, which binds to its promoter and represses
transcription. During permissive conditions for PHA accu-
mulation, PhaR becomes bound to PHA granules, resulting
in a reduced titre of free PhaR and the de-repression of
phaP1 gene expression (Pötter et al. 2002, 2004). Genes
encoding phaP1 homologs have so far only been detected
in the ß-proteobacteria, although other proteins bound to
PHA granules have also been found in different branches of
the proteobacteria and in Gram-positive bacteria (Fukui et
al. 2001; Vazquez et al. 1996). PHA granules are mobilized
via the PHA depolymerase located on their surface
(Kobayashi et al. 2003; Uchino et al. 2008), which is
analogous to the roles of acyl lipases in eukaryotic LDs, as
discussed below.

Phasins are by far the most abundant proteins on PHA
granules and can form as much as 5% of the total cellular
protein (Schultheiss et al. 2005). Phasins are non-catalytic
structural proteins consisting of a granule-associated hy-

drophobic domain and a more polar cytosol-exposed
domain that stabilize PHA granules and prevent their
coalescence (Grage et al. 2009). Although all phasins
characterized to date are small amphipathic proteins of
11–25 kDa, phasins from different bacterial genera have no
sequence homology and appear to be phylogenetically
unrelated (Hanley et al. 1999). This suggests that phasins
are a diverse group of small polypeptides that, thanks to
their amphipathic properties, have been recruited to serve as
structural barriers around PHA granules on multiple
occasions during bacterial evolution. The overexpression
of endogenous phasin genes in R. eutropha resulted in the
formation of many small PHA granules, whilst deletion of
the phasin gene led to the accumulation of a single large
granule of <2,000 nm (Tessmer et al. 2007). Expression of
the R. eutropha H16 phasin PhaP1 in Rhodococcus opacus
PD630 and Mycobacterium smegmatis mc2155 led to its
targeting to TAG-rich LDs where the phasin also acted as
an anchor to bind other proteins (Hänisch et al. 2006).

Phasins appear to be restricted to PHA-accumulating
bacteria and are not present in any archaeal genome
sequenced to date. However, it is possible that proteins
with different annotations could carry out phasin-like roles
in archaea. For example, in recombinant Escherichia coli
(which cannot normally make PHAs) engineered to
synthesize PHAs, but not expressing phasin genes, large
amounts of the endogenous 16-kDa heat-shock protein,
HspA, were formed and attached to PHA granules (Tessmer
et al. 2007). This enabled recombinant E. coli cells to
accumulate numerous small, stable PHA granules. However,
when the phasin genes of R. eutropha (which can normally
make PHAs) were deleted, there was no compensatory
upregulation of Hsps and the overall amount of PHAs
was severely reduced. These data demonstrate that in
some species, but not all, HspA can functionally replace
phasins as a stabilizer of PHA granules. One could
speculate therefore that heat shock proteins or other
structurally suitable small polypeptides might stabilize
PHA granules in archaea in the absence of phasins. If
archaea were to use such ad hoc proteins to stabilize
their PHA granules, it may explain why there is such
wide variation in PHB granule number and size, for
example in some Halomonas spp. (Martinez-Canovas et
al. 2004; Quesada et al. 2004). Whilst Halomonas
boliviensis typically synthesizes one or two granules of
200–640 nm per cell, Halococcus morrhuae and Halo-
coccus salifodinae make several smaller granules of 50–
300 nm (Legat et al. 2010).

TAG/wax ester accumulators

Although the majority of bacteria, and many archaea, store
carbon in the form of PHAs, a subset of bacteria, primarily
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nocardioform actinomycetes, streptomyces and some
Gram-negative strains, are capable of storing carbon as
LDs enriched in TAGs (Alvarez and Steinbüchel 2002;
Wältermann and Steinbüchel 2005). The highest levels of
TAG accumulation have been reported mainly in nocardio-
forms such as the genera Mycobacterium, Nocardia,
Rhodococcus, Micromonospora, Dietzia and Gordonia
and in some streptomycetes (Kosa and Ragauskas 2011).
For example, in the well-studied Gram-positive, non-spore-
forming actinomycete, R. opacus PD630, grown in low
C/N media, LDs of 50- to 400-nm diameter may accumu-
late to form more than 75% of cellular dry weight (Alvarez
et al. 1996), with a potential daily TAG production from
organic wastes of almost 60 mg l−1 (Gouda 2008).
Spherical wax ester-rich droplets of about 200-nm diameter
have been reported in some Acinetobacter spp., although
other species accumulated rectangular or rod-shaped wax
ester structures (Wältermann and Steinbüchel 2005). Several
TAG-accumulating cyanobacteria, including Dunaliella
salina and Synechocystis spp, are currently being assessed
for their potential to act as solar-powered sources of
renewable hydrocarbons, especially in the context of the
so-called third-generation biofuels (Murphy 2008; Sheehan
2009; Stephens et al. 2010).

Several phylogenetically related marine γ-proteobacteria
can utilize petroleum hydrocarbons as energy sources and are
therefore of great interest for their potential in dealing with oil
spills (Harayama et al. 1999, 2004). Examples of these
so-called hydrocarbonoclastic bacteria include the genera
Alcanivorax, Cycloclasticus, Marinobacter, Neptunomonas,
Oleiphilus, Oleispira and Thalassolituus (Kalscheuer et al.
2007a, b; Steinbüchel 2007). Whilst only present in low
abundance in unpolluted water, species such as Alcanivorax
borkumensis can multiply rapidly in oil-polluted water where
they can eventually make up 80–90% of the entire microbial
community by mass (Harayama et al. 1999; Kasai et al.
2002). However, this rapid population growth is followed by
an equally dramatic crash once the hydrocarbons are used up.
During the extended periods when suitable growth substrates
are unavailable, hydrocarbonoclastic bacteria enter a dormant
phase where they live off their accumulated LD reserves that
consist of mixtures of TAGs and wax esters (WE; Kalscheuer
et al. 2007a, b).

The biosynthesis of WE and/or TAG is catalyzed by a
plasma membrane-associated multifunctional wax ester
synthetase/diacylglycerol acyltransferase (WS/DGAT) that
is found in many bacterial species (Kalscheuer 2010;
Manilla-Pérez et al. 2010; Wältermann et al. 2005). The
amino acid sequence of this bacterial enzyme is unrelated to
that of any previously identified WS or DGAT in animals,
fungi or plants (Kalscheuer and Steinbüchel 2003), which is
consistent with its origin after the divergence of prokaryotic
and eukaryotic lineages. Microscopic and biophysical

evidence suggests that each WS/DGAT enzyme might give
rise to a single microdroplet of about 60-nm diameter
(Wältermann et al. 2005). These droplets may then coalesce
into mature droplets of 300 nm in a process regulated by
the protein, TadA. In support of this model, TadA-deficient
cells accumulated 35% less TAG than wild-type cells, and
TadA-overexpressing cells accumulated very large LDs.
There are suggestions that there may be a further, as yet
uncharacterized, WS/DGAT-independent TAG biosynthesis
pathway in some bacteria. This follows observations that
following a double knockout of WS/DGAT genes in A.
borkumensis, cells were still capable of substantial TAG
formation in LDs (Kalscheuer et al. 2007a, b).

It has been difficult to characterize genuine LD-associated
proteins in TAG- or wax ester-accumulating prokaryotes due
to the prevalence of nonspecific protein binding to LDs during
their isolation. However, the product of the tadA (TAG
accumulation-deficient) gene of R. opacus PD630 has
recently been shown to be a droplet-associated protein
(MacEachran et al. 2010). The TadA protein sequence is
similar to the heparin-binding hemagglutinin (HbhA) family
from the genus Mycobacterium. In the absence of tadA, TAG
accumulation was decreased by 30-40%, whilst TadA in
vitro was able to both bind heparin and to aggregate LDs.
Therefore, TadA is hypothesized to mediate the aggregation
of the tiny lipid microdroplets that bud off the plasma
membrane and eventually coalesce to form larger mature
cytosolic LDs. Prokaryotic cells tend to accumulate either
PHAs or TAGs as their major lipidic energy store. However,
a few actinomycetes such as Rhodococcus ruber, are capable
of simultaneously synthesizing and accumulating similar
amounts of TAGs and the co-polyester, PHB/V, from
unrelated carbon sources such as glucose (Wältermann and
Steinbüchel 2005).

The formation of LDs and the accumulation of TAGs are
now known to play important roles in the metabolism of
several pathogenic bacteria, such as Mycobacterium tuber-
culosis and Mycobacterium bovis (Garton et al. 2002;
Daniel et al. 2004; D’Avila et al. 2006, 2007, 2008). In M.
tuberculosis and Mycobacterium leprae, the TadA homo-
log, HbhA, acts as a virulence factor that promotes the
spread of the pathogen during the early stages of infection
(Pethe et al. 2001; de Lima et al. 2009). The pathogenesis
of M. leprae, the causative agent of leprosy, is also linked
to the proliferation of LDs enriched in eicosanoid precur-
sors in a process involving Toll-like receptor organelles
(Mattos et al. 2010). Interestingly, M. tuberculosis has been
shown to accumulate TAG and store it in conspicuous
inclusion bodies, similar to those seen for Rhodococcus
(Garton et al. 2002, Garton et al. 2008; Deb et al. 2009). It
is possible that much like TadA in Rhodococcus, HbhA in
mycobacteria facilitates LD formation and maturation in
addition to its predicted role in cytoadherence and
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dissemination. Once it is present in its host and encounters
an immune response, M. tuberculosis begins to accumulate
LDs following the induction of TAG synthase genes
(Daniel et al. 2004). This enables the bacterium to enter a
non-replicative, drug-resistant, dormancy-like state within
the body of the host that can last for decades, during which
time the now cryptic pathogen survives on its TAG
reserves. The often crucial roles of LDs in several
mammalian host–pathogen interactions are discussed further
in “Mammals”.

Plants

All major groups of plants, from unicellular algae to the
most complex angiosperms, are able to produce cytosolic
LDs in at least some of their cells/tissues. As with animals,
plant LDs used to be regarded as relatively inert carbon
stores. In higher plants, the ability to accumulate cytosolic
LDs was originally thought to be confined to specific
tissues, such as oleogenic seeds or fruits. However,
evidence is now emerging that demonstrates the presence
of dynamic LDs in tissues that do not accumulate long-term
lipid stores. In most cases, cytosolic LDs in plants
accumulate TAGs, although at least one oilseed species,
jojoba or Simmondsia chinensis, accumulates fluid wax
esters instead (Ohlrogge et al. 1978). In addition to
cytosolic LDs, some plant cells accumulate LD-like
structures called plastoglobules in their plastid organelles.
The lipidic phase of plastoglobules can include TAGs,
sterol esters and various lipophilic pigments such as
carotenoids. Although there have been fewer studies into
plant LDs compared with their non-photosynthetic counter-
parts, a somewhat similar picture is emerging with regard to
the mechanism of LD formation on specific domains of
cytosolic endoplasmic reticulum (ER) or plastidial thyla-
koid membranes and the roles of LDs in several aspects of
plant development and function. Some key aspects of the
regulation of plant LD formation are summarized in Fig. 2.

Algae

Algae range from simple unicellular organisms to compar-
atively complex multicellular species such as seaweeds. As
with many other unicellular organisms, some algal species
accumulate large numbers of cytosolic TAG-rich LDs as
storage reserves in response to certain forms of nutrient
limitation or abiotic stress (Murphy 2001; Wang et al.
2009). In some cases, these LDs can make up as much as
86% of cell dry weight. Oleogenic marine microalgae are of
considerable biotechnological interest both for their ability
to synthesize large amounts of high-value lipids and for
their possible use as feedstocks for the production of

renewable biofuels (Courchesne et al. 2009). Commercially
useful lipids accumulated on algal cytosolic LDs or
plastoglobules include long-chain polyunsaturates such as
docosahexaenoic acid or pigments such as astaxanthin (Liu
and Lin 2001). Other novel lipids include very long-chain
polyunsaturated alkenones, alkenoates and alkenes (Eltgroth
et al. 2005).

Even under normal growth conditions, smaller amounts
of LD TAG may function as intermediates in membrane
lipid biosynthesis, and perhaps as short-term stores of acyl
chains that enable algae to respond to environmental
changes that might require the rapid formation of additional
membranes. In some cases, algal cells do not accumulate
cytosolic LDs, but instead form plastidial lipid deposits
termed plastoglobules. Plastoglobules are probably func-
tionally equivalent to cytosolic LDs, but differ in three
major respects. First, they are confined to the stroma, which
is the major aqueous phase of plastid organelles; second,
they can assume several different forms including rods, fibres
and globules; and third, they are bounded by a specific family
of proteins, variously termed plastoglobulins, plastid lipid-
associated proteins and fibrillins. There is a more detailed
discussion about these proteins in the section on higher plant
plastoglobules below.

The elucidation of algal LDs and plastoglobules has
benefited particularly from recent advances in cell biology
and genomics. For example, BODIPY 505/515, a green
lipophilic fluorescent dye, has been used as a vital stain for
LDs in a wide range of live algal cells (Cooper et al. 2010).
In addition, the analysis of several genome sequences has
helped considerably to fill in gaps in our understanding of
algal lipid metabolism (Khozin-Goldberg and Cohen 2011).
All algae and terrestrial plants contain plastids, which are
the major sites of de novo fatty acid biosynthesis. Newly
synthesized saturated or monounsaturated fatty acids must
be exported from plastids to the ER for subsequent
desaturation, often followed by their re-import to form the
photosynthetic membranes. It now seems unlikely that any
part of this extensive constitutive trafficking in acyl lipids
involves either plastoglobules or cytosolic LDs (Benning et
al. 2006). Instead, there appears to be a combination of
transporter proteins and vesicular mechanisms acting both
in the cytosol and plastids that enables the formation and
modification of membrane lipids (von Wettstein 2001:
Andersson and Sandelius 2004).

Although algae often accumulate cytosolic LDs, the
major class of exclusively LD-associated protein found in
plants, namely oleosins, is only found in multicellular
terrestrial plants. This implies that, as discussed in detail
below, oleosins are not essential for LD formation per se,
but may be part of the adaptive response of those plants that
have colonized the land (Huang et al. 2009). In contrast to
their lack of oleosins, however, algal genomes do encode
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another putative LD-associated protein, namely caleosins
(Partridge and Murphy 2009). At present, it is unclear
whether the products of the caleosin-like genes in algae
such as Chlamydomonas reinhardtii and Auxenochlorella
protothecoides are true LD-binding proteins or instead act
as stress-inducible, membrane-bound enzymes as in some
higher plants (see below). Interestingly, orthologs of algal
and land plant caleosin genes have been found in many
fungal genomes, whereas no such genes are present in any
metazoan lineages. This implies that caleosin genes may
have been transferred between basal algal and fungal
species at some point in the remote past (Partridge and
Murphy 2009).

A promising candidate for an authentic LD-associated
structural protein in algae is the recently reported major
lipid droplet protein (MLDP), a relatively hydrophobic 27-
kDa polypeptide that was the most abundant constituent of
the proteome of C. reinhardtii LDs (Moellering and
Benning 2010), plus a possible homolog from Haemato-
coccus pluvialis (Peled et al. 2011). Additional members of

the C. reinhardtii LD proteome include predicted lipid
metabolism enzymes and orthologs of various proteins also
found associated with animal LD proteomes. Examples
include predicted components of vesicular trafficking path-
ways, such as subunits of the COPI complex and its
putative regulator, ARF1a, as well as other small Rab-type
GTPases. This implies that the cytosolic LDs of even a
simple unicellular alga like C. reinhardtii may have similar
functional properties to the LDs of relatively complex
metazoans such as Drosophila and mammals. The partial
RNAi-mediated downregulation of MLDP (by <60%)
resulted in an increase of about 40% in LD diameter,
which is consistent with a structural role that may be
analogous to that of perlipin, adipophilin and TIP47 (PAT)/
Perilipin proteins in animals and the oleosins in land plants
(Moellering and Benning 2010). Although possible ortho-
logs of MLDP are present in other green algae such as
Chlorella vulgaris and Volvox carteri, no orthologs were
found in the genomes of diatoms, red algae or even in the
green algal Ostreococcus spp. This implies that MLDP has
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Fig. 2 Lipid droplet regulation
in plants. Cytosolic LDs in
plants are ER-derived with a
TAG core often stabilized by an
annulus of LD-binding proteins
such as oleosins and caleosins.
The presence or absence of
these proteins affects the size
and function of mature LDs.
TAG accumulation in LDs is
regulated by master switches
such as the transcription factor,
WRI1. Plastidial LDs (plasto-
globules) may contain a variety
of neutral lipids and often
maintain intimate contact with
the thylakoid membranes from
which they are derived. The
formation and turnover of
plastoglobules are regulated by
several physiological effectors,
among the most important of
which is the hormone, ABA
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arisen only in some green algal groups and was either
always absent from or was subsequently lost from the
lineage that produced land plants.

Land plants

The accumulation of cytosolic LDs in oleogenic tissues of
terrestrial plants has been comprehensively reviewed
previously (Murphy 2001, 2005; Herman 2008; He and
Wu 2009; Baud and Lepiniec 2010), as has the accumula-
tion of plastidial LDs, or plastoglobules, in many tissues
(Bréhélin et al. 2007). Cytosolic TAG-rich LDs have also
been detected in the leaf mesophyll cells of many
angiosperms, although much of this literature is rarely
cited, as discussed by Lersten et al. (2006). More recently,
the case for leaves as sites of LD accumulation has been
strengthened considerably. For example, Slocombe et al.
(2009) noted that constitutive levels of TAG accumulation
in leaves could be increased 10- to 20-fold following
manipulation of fatty acid breakdown and lipid synthesis
pathways. This indicates that, as in many other organisms,
cytosolic LDs in leaves can act as a buffer to take up and/or
release acyl moieties in order to maintain the optimal levels
of these potentially disruptive metabolites in cells. Progress
has also been made, thanks to technological advances such
as quantitative electron microscopy (Neuberger et al. 2008),
direct organelle mass spectrometry (Horn et al. 2011), and
recombinant methods such as the creation of poly-oleosin
fusion proteins (Scott et al. 2010) and the selective
knockout of different oleosin isoforms (Schmidt and Herman
2009; Wu et al. 2010).

The physical mechanism of cytosolic LD formation in
plant cells appears to be very similar to that of animals,
namely a localized accumulation of TAG in specialized ER
microdomains followed by the release of small LDs that
mature to larger droplets under the control of specific
proteins (Gidda et al. 2011). Other aspects of the roles of
the ER as a multi-domain organelle in plants have been
reviewed by Sparkes et al. (2009). There is probably a
dynamic two-way flow of lipids between the ER and LDs
in most plant cells whereby small numbers of LDs are
constantly being formed and then recycled back to the ER.
In order to increase the accumulation of LDs, their
recycling must be prevented, and this may be one of the
roles of the highly abundant LD-binding proteins such as
oleosin, and possibly caleosin. When oleosin production in
developing soybean seeds was suppressed using RNAi, the
formation of LDs was severely disrupted (Schmidt and
Herman 2009). Instead of producing normal mature LDs of
about 1-μm diameter, many small 50-nm LDs were formed,
some of which were recycled to the ER whilst others fused
to create giant irregular LDs. The presence of similar giant
LDs was also observed in an insertion mutant of Arabi-

dopsis (Rodrigo et al. 2006). In both cases, reduction of
oleosin formation led to cellular damage and decreased
seed viability.

The accumulation of LDs in plant cells is regulated at the
transcriptional level by a hierarchy of transcription factor
proteins, of which one of the most important is WRINKLED1
(WRI1), a member of the APETALA2⁄ETHYLENE-
RESPONSIVE ELEMENT BINDING (AP2⁄EREB) family
(Cernac and Benning 2004; Cernac et al. 2006; Sanjaya et al.
2011). Several recent studies have shown that WRI1 is one
of the key master switches that lead to TAG and cytosolic
LD accumulation in higher plants (Baud et al. 2007, 2009;
Maeo et al. 2009; Baud and Lepiniec 2010; Pouvreau et al.
2011; Tranbarger et al. 2011). Ectopic expression of WRI1 in
tissues that do not normally accumulate large amounts of
LDs, such as leaves, leads to the formation of numerous
TAG-rich oleosin-bound LDs in a manner that is normally
seen only in seeds (Liu et al. 2010; Shen et al. 2010).

It is now emerging that cytosolic LDs in many, but not
all, plant cells are bounded by oleosins. Oleosins have an
unusually hydrophobic central domain that mediates bind-
ing to LDs (Gohon et al. 2011; Li et al. 2002). Oleosins are
the major protein associated with LDs in desiccation-
tolerant seeds. In those mainly tropical oilseeds that do
not undergo desiccation as a normal part of maturation,
oleosins are much less abundant (Guilloteau et al. 2003), or
may be absent (Murphy 2001). There are several reports
that suggest roles for oleosins in the stabilization of LDs in
relation to desiccation and freezing tolerance (Leprince et
al. 1998; Shimada et al. 2008; Shimada and Nara-
Nishimura 2010). However, even the presence of oleosins
did not prevent freezing-induced LD fusion and consequent
cell disruption in Cuphea spp. seeds enriched in TAGs
containing crystallization-prone saturated acyl residues
(Crane et al. 2003, 2006; Volk et al. 2006). It has been
reported that oleosins are present in LD-enriched game-
tophytes and spores of the moss, Physcomitrella patens, but
are absent in algae (Huang et al. 2009). This is consistent
with the acquisition of oleosins by terrestrial plants as part
of their adaptation to life on dry land. All the cytosolic LDs
in P. patens cells appear to maintain physical continuity
with the ER, whereas the LDs in the seeds of higher plants
lose their connection with the ER following dehydration.
The role of oleosins in preventing LD fusion is supported
by the finding that oleosin-rich LDs in embryo, aleurone
and scutellum cells of oat grains remained small, whereas
oleosin-poor LDs in the endosperm cells of the same grains
underwent fusion to create much larger structures (Heneen
et al. 2008).

Recent findings suggest that the regulation of LD turnover
in plants may have significant similarities with comparable
processes in animals. As discussed in “Mammals”, Chanarin–
Dorfman syndrome in humans is a neutral lipid disorder
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characterized by the hyper-accumulation of LDs in ectopic
locations. This disease is caused by a malfunction in an α/ß-
hydrolase-5 (also called CGI-58) that reduces the ability of
cells to mobilize TAG in LDs. Disruption of a lipase-
encoding CGI-58 homolog in Arabidopsis led to a similar
pattern of LD accumulation in ectopic locations such as
leaves (James et al. 2010). These findings are consistent with
the notion that many, and maybe all, plant cells are able to
accumulate small amounts of TAG in cytosolic LDs as part of
constitutive acyl lipid trafficking (Murphy 2001; Wahlroos et
al. 2003), and possibly as part of various stress responses
(Coca and Segundo 2010). The small number of these rapidly
turning over LDs may render them difficult to detect in
normal non-lipid-accumulating cells. However, when their
mobilization is blocked by a malfunctioning CGI-58-like
lipase, LDs accumulate to relatively high levels. Similarly to
yeast and mammal models, plants appear to have several lipin
homologs, pah, that play important roles in membrane lipid
homeostasis. However, there are no reports to date that plant
PAH proteins are associated with LDs, although disruption of
the pah gene did result in the proliferation of ER membranes,
as also seen in yeast (Eastmond et al. 2010).

The involvement of LDs in stress responses has been
illustrated by reports that an LD-associated AtCPK1
calcium-dependent protein kinase mediates pathogen resis-
tance in Arabidopsis in various tissues, including roots
(Coca and Segundo 2010). Interestingly, AtCPK1 regulates
several Toll-like interleukin receptors, some of which can
trigger immune responses in plants (Ausubel 2005). As
noted in “Mammals”, bacterial infections in mammals can
trigger cytosolic LD formation via Toll-like receptors
(Pacheco et al. 2002; Mattos et al. 2010, 2011), which
might imply a similar LD-mediated role in pathogen
responses in plants and animals. As AtCPK1 can also co-
localize with peroxisomes (Dammann et al. 2003), it may
play a role in peroxisomal fatty acid ß-oxidation as well as
in the release of acyl lipid-derived mediators involved in
signalling processes associated with pathogen responses in
an analogous manner to those observed in animals (Liang et
al. 2003; Shah 2005; Shah and Chaturvedi 2008; Coca and
Segundo 2010). Calcium-dependent protein kinases have
also been reported on LDs in developing and germinating
seeds of sandalwood, Santalum album (Anil et al. 2000,
2003), and may be more widespread components of
cytosolic LDs in plants.

Mobilization of storage LDs in seeds after germination is
a highly regulated process that must occur rapidly in order
to supply sufficient energy and acyl chains to developing
seedlings. As part of this process, the major LD proteins,
oleosin and caleosin, undergo ubiquitination (Hsiao and
Tzen 2011), which tags them for proteolytic degradation
and thereby enables lipolytic enzymes such as TAG- and
PL-specific lipases to access the TAG-rich core of the LDs

(Vandana and Bhatla 2006; Quettier and Eastmond 2009;
Rudolph et al. 2011). Analysis of the proteome of LDs from
maize embryos undergoing post-germinative mobilization
revealed two proteins similar to known membrane transport
components from animals, namely karyopherin-beta-3
(Kap) and a stress-induced membrane pore protein (Tnani
et al. 2011). Kap proteins transport molecules through pores
of the nuclear envelope (Mosammaparast and Pemberton
2004), and Kap3 has been shown to be associated with LDs
in animals (Cermelli et al. 2006). Human Kap3 interacts
with a yeast apolipoproteinA-I (apoA-I), a secretion protein
with a primary function in cholesterol transport (Chung et
al. 2008). Seed LDs and oleosins are currently being used
for various biotechnological applications including the
production of recombinant human insulin in plants as well
as in cosmetic formulations such as topical creams and
lotions (Markley et al. 2006; Nykiforuk et al. 2006; Bhatla
et al. 2010; Bonsegna et al. 2011).

Roots and meristems

There are several reports of cytosolic LDs in different cell
types in roots (Murphy 2001). A common location is in
young roots emerging from seeds shortly after germination,
where LDs may be involved in the extensive lipid
trafficking required to support the rapid expansion of this
tissue. This is substantiated by reports that significant
amounts of oleosins and LD-binding caleosin isoforms can
be detected in the root tips of 2- to 3-day-old seedlings of
rapeseed and Arabidopsis (Naested et al. 2000; Hernández-
Pinzón et al. 2001). However, LDs may also play other
roles in roots. For example, during their initial period of
differentiation, root cap cells act as statocytes (gravity
sensors). In root cap statocytes of cress, LDs appear to
determine a preferential distribution of ER at the distal cell
pole and may be one component of the positive orthogravi-
tropic growth of roots (Hensel 1986). Caleosins are also
found in young root tips where they may be located either
on LDs or on the ER membrane (Hernández-Pinzón et al.
2001; Murphy et al. 2000; 2001). Cells from the shoot
apical meristem in birch reportedly contain organelles
similar to LDs, and the rearrangement of these structures
may be involved in the breakage of bud cell dormancy
(Rinne et al. 2002).

Cytosolic LDs may play important roles in meristematic
development in plants, as discussed by van der Schoot and
Rinne (2011). For example, the dormancy-release mecha-
nism involves the production of numerous LDs, which
appear in the cytosol of virtually all meristematic apical
cells, but particularly in the RM/RZ (rib meristem/rib zone)
and shoot apical meristem regions (Rinne et al. 2002). In
the meristematic apex, LDs remain intact throughout the
winter and assume peripheral positions where they associ-
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ate with the plasma membrane and plasmodesmata (Sargent
and Osborne 1980; Vigil et al. 1985; Pihakaski et al. 1987;
Rinne et al. 2002), as also occurs in dehydrating seeds
(Whitfield 1992; Cordova-Tellez and Burris 2002). This
coincides with a restoration of the functionality of plasmo-
desmata, and it is suggested that LDs may play a direct role
in this process (Rinne et al. 2002). These meristem LDs are
TAG-enriched and bounded by specific proteins including
oleosins, putative lipases and a putative 1,3-ß-D-glucanase.
Abundant LDs are also found in several meristematic
tissues in pine trees where they appear to function mainly
as a winter energy reserve (Jordy 2004). This kind of lipid
storage in overwintering tissues has also been found in
other gymnosperms such as Douglas fir (Krasowski and
Owens 1990) as well as in some deciduous tree species
(Catesson 1964; Cragg and Willison 1980).

Cytosolic LDs are highly upregulated as part of the
response of many plants to short day lengths. This may be
an early downstream effect of photoperiod signalling at the
ER where the ethylene receptor required for the timing of
dormancy is located (Ruonala et al. 2006; Grefen et al.
2008) and where the LDs are formed. It has also been
suggested that LDs may be involved in dormancy processes
in root nodules (Gurusamy et al. 2000). The linkage
between ethylene and LD induction is supported by the
co-expression of genes for ethylene biosynthesis with an
LD marker gene in aspen (Rinne et al. 2008). These and
other data suggest that the ER and ER-derived LDs might
play an important role in the processes that lead up to
abscisic acid (ABA)-regulated dormancy processes. As well
as inducing oleosin accumulation, ABA also regulates other
LD-attached proteins such as some members of the ß-1,
3-glucanase family (Leubner-Metzger and Meins 2000).
These finding are consistent with earlier reports that similar
LDs are produced during dormancy induction and function
primarily as storage organelles that are stimulated to
become mobilized by chilling during dormancy release
and the subsequent resumption of growth (Rinne et al.
1998; Farrar and Evert 1997; Riding and Little 1984).

Floral tissues

The major lipid-accumulating organs of flowers are the
anthers, which are responsible for the development and
release of pollen grains. As with seeds, pollen grains are
propagules that lead a brief independent existence before
germinating on a compatible floral stigma. In plants that
produce entomophilous (insect-borne) pollen grains, the
tapetal cells of the anther accumulate large amounts of
unusual cytosolic LDs (sometimes called tapetosomes).
These 1- to 5-μm diameter LDs are composite structures
made up of numerous small TAG-rich droplets interspersed
with membranous vesicles and tubules (Hsieh and Huang

2005). Associated with these composite LD structures is a
class of protein containing a domain with a striking
similarity to oleosins that have been termed oleo-pollenins
(Murphy 2005, 2006). These proteins are synthesized in
tapetal cells and probably bind to tapetal LDs via their
oleosin-like domains. However, when tapetal cells undergo
apoptosis as part of pollen maturation, the oleosin domains
are removed to leave a mature protein, pollenin, which is
transferred to the outer wall of the pollen grains (Murphy
and Ross 1998).

Pollenins are a diverse class of proteins made up of
repeating motifs, often glycine-rich, that resemble structural
proteins rather than enzymes. In Arabidopsis, pollenins are
required for the rapid hydration of pollen grains that is
needed for the successful fertilization of female flowers
(Mayfield and Preuss 2000). The exact role(s) of pollenins
have yet to be determined. They may be involved in pollen
rehydration, possibly by facilitating the creation of water
channels through the otherwise relatively impermeable
lipidic extracellular pollen coat. However, there are also
reports of the activation of a pollenin promoter following
nematode infection (Karimi et al. 2002). The pollenin genes
in some Brassicaceae are reportedly some of the most
rapidly evolving genes yet identified (Schein et al. 2004).
In addition to their extracellular LD-derived lipids and
proteins, pollen grains in many plant species accumulate
cytosolic LDs that are bounded by a group of pollen-
specific oleosins that are very similar to those expressed in
seeds (Kim et al. 2002). These LDs are rapidly mobilized
after pollen germination on the female stigma, and the acyl
groups contribute to the formation of the long pollen tube
that enables haploid pollen nuclei to travel to the ovary and
fertilize the female egg and polar nuclei (Murphy 2011).

Plastoglobules

Plants and algae contain an additional organelle that is not
present in animals and fungi, namely the plastid. Plastids
are the major sites of acyl lipid biosynthesis and the
location of the most abundant plant membrane system, the
photosynthetic thylakoids. Plastids also contain variable
numbers of LDs that are conventionally termed plastoglo-
bules (Bréhélin et al. 2007). As noted above for algae, the
plastoglobules of land plants can assume a variety of
shapes, including rods and fibres, but are most commonly
spherical. They may contain a variety of neutral lipids
including TAGs, sterol esters and lipophilic pigments. The
colours of most flower petals and other plant tissues are
often determined by the pigments contained in their
plastoglobules. The major lipid-binding proteins in plasto-
globules, the plastoglobulins, belong to a large group of
homologous proteins found throughout oxygenic photosyn-
thetic organisms from cyanobacteria to higher plants. This
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indicates that their origins may go back to the endosymbi-
otic bacterial precursors of plastids well over one billion
years ago (Kaneko et al. 1996; Hernández-Pinzón et al.
1999; Katz et al. 1995; Pozueta-Romero et al. 1997;
Vishnevetsky et al. 1996; Kim et al. 2001).

In addition to forming the major protein component of
TAG/pigment-rich fibrils and globules in coloured chromo-
plasts, plastoglobulins are present in other plastid types
such as elaioplasts and chloroplasts (Hernández-Pinzón et
al. 1999; Ting et al. 1998; Pozueta-Romero et al. 1997).
The plastoglobulins of elaioplasts are located on globular
LDs that resemble those of chromoplasts, except that their
lipid components are mainly sterol esters and fatty
aldehydes (Hernández-Pinzón et al. 1999). In contrast, the
plastoglobulins of chloroplasts are associated both with
plastoglobules and thylakoid membranes (Pozueta-Romero
et al. 1997; Pruvot et al. 1996a, b; Kessler et al. 1999).
Plastids from Brassica rapa may contain up to three
distinct plastoglobulin isoforms, each of which is associated
with globules containing a different mixture of neutral
lipids (Kim et al. 2001). Plastoglobulins have numerous
functions in addition to their structural role of providing a
stabilizing surface structure for plastoglobules (Deruere et
al. 1994). For example, plastoglobulin gene expression is
induced in response to environmental factors such as
drought stress, wounding or application of exogenous
ABA (Chen et al. 1998; Pruvot et al. 1996a).

Plastoglobulins probably have roles in the formation/
disassembly/turnover of plastid membrane complexes
(Chen et al. 1998) and in protection against stress-induced
uncoupling (Simkin et al. 2007). A plastoglobulin homolog
from potato is associated with photosystem II, which is one
of the major multi-subunit pigment–protein complexes of
thylakoid membranes (Monte et al. 1999). Antisense-
mediated reduction of plastoglobulin accumulation in
transgenic potato plants led to reduced photosynthetic
efficiency and stunted growth, which demonstrates their
important roles in plastid membranes and globules. It is
likely that there are several classes of plastoglobulins in
plants with varying locations in LDs and thylakoid mem-
branes and with varying functions ranging from purely
structural to more dynamic roles in protein trafficking and
stress responses. The permanent structural coupling between
plastoglobules and thylakoid membranes has been demon-
strated by high-pressure freezing/freeze substitution methods
combined with electron tomography (Austin et al. 2006). This
study suggests that the neutral lipids in plastoglobule cores,
including carotenoids, plastoquinone and tocopherols, are in
a dynamic equilibrium with those located within thylakoid
membranes.

As well as plastoglobulins, plastoglobules contain the
enzyme tocopherol cyclase (VTE1), which extends across
the surface monolayer into the interior of the globules. This

enzyme catalyzes the penultimate step of tocopherol
synthesis (Kanwischer et al. 2005). It has been shown that
tocopherol cyclase activity is increased during oxidative
stress, protecting thylakoid membranes and photosynthetic
proteins from damage caused by reactive oxygen species
(Porfirova et al. 2002; Kanwischer et al. 2005; Vidi et al.
2006). Substantial pools of some of the major lipophilic
components of the photosynthetic pigment–protein com-
plexes, such as phylloquinone, are located in plastoglobules
(Lohmann et al. 2006). This implies that plastoglobules act
as reservoirs to enable a rapid response to environmental
conditions by either increasing or decreasing the amounts
of such oxidation-prone compounds that in their active state
are located adjacent to the vulnerable photosystem proteins.

The plastoglobule proteome also contains several other
enzymes involved in lipid metabolism, including allene
oxide synthase and a neoxanthin cleavage enzyme
(NCED4/CDD4), plus several putative lipases, methyl-
transferases, steroid isomerases and four putative ABC1
kinases (Vidi et al. 2006; Ytterberg et al. 2006). During
senescence, plastoglobules play a final role in the life cycle
of the plastids of leaves (chloroplasts) by acting as
temporary stores for thylakoid membrane lipids as these
are broken down for eventual recycling back to the parent
plant before leaf dehiscence. A similar chain of events
occurs following the exposure of leaves to ozone, which is
a frequent constituent of photochemical pollutants. During
these processes, and under other stress conditions, plasto-
globulin genes are upregulated via ABA-related hormonal
signalling pathways (Pruvot et al. 1996a, b; Chen et al.
1998; Gillet et al. 1998; Manac’h and Kuntz 1999; Kim et
al. 2001; Langenkamper et al. 2001; Laizet et al. 2004;
Yang et al. 2006). In summary, as with other classes of
LDs, plastoglobules have recently emerged as dynamic
metabolic compartments that play key roles in a wide range
of physiological processes in photosynthetic organisms.
Finally, plastoglobules are being investigated as possible
targeting sites for the more efficient expression of recombi-
nant proteins (Vidi et al. 2007)

Caleosins

The caleosins are a group of calcium-binding proteins that are
probably ubiquitous in multicellular plants, green algae and
the true fungi (Naested et al. 2000; Murphy 2005; Partridge
and Murphy 2009). Caleosin proteins are characterized by a
single calcium-binding EF-hand motif, a putative membrane
bilayer spanning domain, plus several potential phosphory-
lation and haem-binding sites. Structural studies with
recombinant seed-specific caleosins indicate that the native
proteins are able to bind calcium (Chen et al. 1999;
Takahashi et al. 2000), phosphate (Purkrtova et al. 2007)
and heme (Hanano et al. 2006). Caleosins appear to be
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highly flexible proteins that can dramatically alter their
secondary structures in response to the polarity of the
medium in which they are embedded (Purkrtova et al.
2007). Heterologous expression of plant LD-binding caleosin
isoform in yeast led to the increased accumulation of cytosolic
LDs (Froissard et al. 2009), indicating that these proteins
might play a generic role in the stabilization of LDs and may
also impede their turnover.

Caleosins are frequently described in the literature as
LD-associated proteins that occur in storage tissues, such as
developing or germinated seeds or caryopses (Liu et al.
2005; Murphy 2005; Toorop et al. 2005) and in somatic
embryos (Che et al. 2006). Several caleosin isoforms are
also found in the LD proteome (Frandsen et al. 2001;
Katavic et al. 2006). However, more recent studies have
revealed that although some caleosin isoforms can bind
LDs, other isoforms are bilayer-associated enzymes that
may be involved in stress responses. Although caleosins
have a similar LD-binding proline-rich domain to oleosins,
unlike the latter, they appear capable of binding to bilayer
membranes as well as to LDs in a similar manner to many
animal LD-binding proteins such as the PAT/Perilipin
family. In Arabidopsis, even the LD-bound isoform, Clo-1,
has a calcium-dependent heme oxygenase activity that is
regulated by one or two conserved ferric-binding histidine
residues (Hanano et al. 2006). This kind of peroxygenase
activity may be involved in the formation of epoxy hydroxy
alcohols from fatty acid hydroperoxides. These and other
oxylipin metabolites play prominent roles in plant responses
to a range of biotic and abiotic stresses, from drought
tolerance to fungal infection. Similar oxylipins are involved
in fungal spore development, and those produced in plants
probably serve as antifungal compounds to deter the growth
of competing fungal species (Tsitsigiannis and Keller 2007).
Another Arabidopsis caleosin isoform, Clo-3, is involved in
stomatal control, transpiration, drought tolerance and fungal
resistance (Aubert et al. 2010), whilst Clo-4 can act as a
negative regulator of ABA responses (Kim et al. 2011).

Protists and fungi

This section covers eukaryotes except for the animals and
plants. It is mainly concerned with simple protists and with the
large group of fungi that range from the unicellular yeasts to
relatively complex and large multicellular organisms such as
Basidiomycetes. Most or all of these organisms are able to
accumulate cytosolic LDs, and one of the first indications that
intracellular TAG pools might be actively involved in
phospholipid metabolism came from studies of the ciliated
protozoan, Tetrahymena pyriformis, as long ago as 1976
(Borowitz and Blum 1976). In this study, it was found that T.
pyriformis contained a very labile TAG pool, separate from

other endogenous TAG pools, and that both the glycerol
backbone and the acyl groups of this labile pool served as
precursors for membrane phospholipid biosynthesis. These
early results already suggested the sort of intimate relation-
ship between TAG and phospholipid metabolism that has
subsequently been observed in many other organisms. For an
up-to-date account of the metabolic regulation of TAG
formation in heterotrophic microbes, see the review by Kosa
and Ragauskas (2011).

Many protists and fungi act as parasites or pathogens,
and the ability to accumulate cytosolic LDs is often a key
part of their success as infectious agents. Moreover, several
of these organisms are able to stimulate the formation of
LDs in host cells that are then mobilized as energy sources
by the parasite or pathogen. Some of the best studied
organisms are the apicomplexan parasites of the Plasmodium
and Toxoplasma genera (Vielemeyer et al. 2004; Coppens
and Vielemeyer 2005; Coppens 2005). In the case of the
malarial parasite, Plasmodium falciparum, an essential
factor for the proliferation of the parasite within infected
human erythrocytes is its ability to induce the accumula-
tion and subsequent mobilization of large amounts of TAG
(Palacpac et al. 2004). Whilst some of the derived acyl
groups are transferred to the parasite and accumulate in its
cytosol as TAGs, many are released into the infected
erythrocyte as the parasite reaches the schizont stage. This
sudden release of fatty acids may cause the membrane
lysis that leads to cell rupture and the release of merozites
(Palacpac et al. 2004). Therefore, in this case, host LDs
appear to function not just as a nutrient source for the
parasite but also as a cellulolytic mechanism to enable P.
falciparum cells to escape from host cells and enter the
next phase of their life cycle.

Other parasitic protozoans, such as Trypanosoma brucei
(the cause of human African trypanosomiasis), accumulate
large numbers of LDs during infection of their host.
Unusually, a novel protein kinase (LDK) in T. brucei has
been found to be an LD-binding protein, and its RNAi-
mediated knockdown resulted in a greatly reduced abun-
dance of LDs (Flaspohler et al. 2010). Whilst previous
studies had shown some association of mitogen-activated
protein kinases with leukocyte LDs (Yu et al. 1998), this
was the first report of a kinase that could strongly bind to
LDs and had an important role in their function. The exact
role of LDK in regulating LD function remains to be
determined, but it seems likely that it will involve the
phosphorylation of proteins involved in LD formation/
turnover.

There have been relatively few recent studies on the
occurrence and function of cytosolic LDs in free-living
protists, particularly in comparison with the much better
characterized prokaryotes, animals and plants. However, it
now appears likely that protists share a common mode
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of LD regulation with all other Unikonts. The Unikonts
are a supergroup that includes Amoebozoa (e.g. slime
moulds), Metazoa (multicellular animals), and Fungi (includ-
ing secondarily reduced Microsporidia; Keeling et al. 2000;
Keeling and Fast 2002; Lee et al. 2008; Koonin 2010). The
emerging evidence of a common method of LD regulation

comes mainly from comparative genomics, which has
revealed the occurrence of PAT/perilipin-like genes in
members of each of these very diverse groups of Unikont
organisms. In much of the literature after 2000, the term
‘PAT proteins’ was commonly used, but this has now been
superseded by Perilipin, as described in the box below.

Fungi

Cytosolic LDs can be found in the majority of fungal cells
where their functions may vary according to the species,
developmental stage and/or environmental conditions. For
example, cytosolic LD formation commonly occurs during
vegetative growth in saprophytic fungi, but LD numbers
also increase markedly during the formation of resting and
reproductive structures (Murphy 2005). The pathogenic
fungus, Plasmodiophora brassicae, inserts itself into the
cytosol of its Brassica plant host, whereupon it rapidly
accumulates LDs in its own cytosol (Lösel and Sancholle
1996); these lipids are temporary carbon stores synthesized

from precursors extracted from the host plant. An unusual
function of fungal LDs is found in sporangiophores of the
unicellular fungus, Phycomyces blakesleeanus, which contain
aggregates of several dozen 1- to 2-μm diameter LDs,
possibly tethered by microfilaments, which may play a role
in gravity sensing (Schimek et al. 1999). Fungal LDs appear
to arise from the ER in a similar manner to other eukaryotes
(Schneider and Seaman 1977).

Some fungi, such as the ascomycete, Metarhizium aniso-
pliae, contain a single PAT/Perilipin gene corresponding to
Plin1, which encodes an LD-associated protein with a role in
TAG storage (Wang and St Leger 2007). More recently, the
strong coupling of LD formation and function with the ER

Perilipins (PAT proteins) – the major LD proteins in Unikonts 

In this article, the recently proposed nomenclature for PAT proteins (Kimmel et al.
2010) will be adopted. According to this system, all PAT proteins are now called 
perilipin, or Plin, followed by a number, as follows: 

Plin 1 corresponds to Perilipin/LSD1

Plin 2 is ADRP/adipophilin/fatvg/LSD2

Plin 3 is TIP 47/PP17

Plin 4 is S3-12 

Plin 5 is MLDP/OXPAT/LDSP5 

The PAT/Perilipin group of proteins was first described in mammals and is known to 
be involved in many aspects of LD organization and function (Greenberg et al. 1991; 
Brasaemle et al. 1997). More recently, the occurrence of PAT-like genes in all 
Unikonts (although some of these genes have yet to be correctly annotated) has 
provided evidence that a PAT protein-based mechanism for LD function originally 
evolved in the common ancestor of extant Unikonts, from slime molds to humans 
(Miura et al. 2002; Bickel et al. 2009; Kimmel et al. 2010). The genomes of all non-
mammals, such as insects, analyzed to date only contain Plin1 and Plin2 orthlogs, 
which implies that Plin3-5 may be unique to mammals. In some mammalian genomes, 
the Plin 3, 4, and 5 genes are adjacent and probably arose due to duplication of a 
primordial Plin3 gene. Perilipin 5 is the most recently established family member and 
its function has yet to be determined. In mice Plin5 mRNA expression is restricted to 
oxidative tissues, such as heart, slow-twitch fibers of skeletal muscle, brown adipose 
tissue, and liver and the gene is strongly induced by fasting (Dalen et al. 2007; Wolins 
et al. 2006; Wang and Sztalryd, 2011).
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has been investigated in more detail, and it has been shown
that in cells that lack LDs, proteins normally associated with
LDs are instead evenly distributed in the ER membrane
(Jacquier et al. 2011). These studies show that transcriptional
induction of the diacylglycerol (DAG) acyltransferase, Lro1,
is sufficient to drive LD formation on ER membranes where
nascent LDs become decorated by marker proteins. When LD
formation is induced by the expression of a second DAG
acyltransferase, Dga1, this enzyme moves from the ER
membrane to LDs as they bud off and move into the cytosol.
Photobleaching studies indicate that the movement of proteins
from the ER to LDs is independent of temperature and energy,
and thus not mediated by classical vesicular transport routes.
In some cases, LD-localized proteins can relocate back to the
ER, indicating that some continuity between the two
organelles is maintained, even if only transiently, in a way
that allows the two-way partitioning of proteins between the
two compartments.

A novel aspect of LDs in some mycorrhizal fungi is their
role as long-range transportable food reserves. Whilst most
fungi translocate simple carbohydrates, in some species,
such as Glomus intraradices and Glomus margarita, the
majority of carbon is translocated as LDs that can comprise
as much as 16% of the hyphal volume. Time-lapse
micrographs show translocated LDs moving along specific
tracks within the hyphal cells at speeds of up to 11 μm s−1

(Bago et al. 2002). It is calculated that for each of the
principal fungal hyphae, as much as 1.3 μg h−1 TAG is
transported in this way. The movement of the LDs along
specific tracks, independently of cytoplasmic streaming,
suggests an organized transport system, possibly via
cytoskeletal elements, as found for some LDs in animal
cells (Murphy 2001).

Many pathogenic fungi use specialized structures, termed
appressoria, to break through the tough surfaces of their hosts.
Lipid droplets appear to be crucial for appressorium function
and especially in the production of the high turgor pressure
that is required for virulence (Thines et al. 2000; Wang and St
Leger 2007). In the rice blast fungus Magnaporthe grisea
(Thines et al. 2000) and the insect pathogen M. anisopliae
(Wang and St Leger 2007), lipid droplets originate in fungal
spores and redistribute to the incipient appressorium. Whilst
the underlying mechanism is unknown, several kinases are
implicated (Thines et al. 2000). LDs also play roles in
colonization and sexual development in other fungi, includ-
ing the wheat pathogen, Fusarium graminearum (Guenther
et al. 2009), and Aspergillus nidulans (Tsitsigiannis et al.
2004), which is a soil-dwelling fungus and an opportunistic
human pathogen.

A. nidulans can produce either sexual or asexual spores
according to environmentally determined hormone-like
signals generated from oxylipins. A putative fatty acid
dioxygenase involved in the biosynthesis of oxylipins from

linoleic acid, PpoA, has been shown to be an LD protein
(Tsitsigiannis et al. 2004). The deletion of this protein
resulted in reduced oxylipin levels and a sixfold decrease in
the ratio of asexual to sexual spores. This suggests that the
formation of oxylipins may occur at the surface of cytosolic
LDs, which are abundant in spore-producing fruiting bodies
of most fungi. LDs also play a role in virulence in the
human pathogen, Candida parapsilosis, as shown when the
gene encoding the LD-associated Fat storage-Inducing
Transmembrane (FIT2) protein was disrupted (Nguyen et
al. 2011). Mutated cells showed greatly reduced TAG and
LD accumulation, lower growth rates in nutrient-rich media
and a much attenuated pathogenicity in murine infection
models. In C. parapsilosis, the accumulation of LDs
protects cells against glucotoxicity- or lipotoxicity-induced
by exposure to elevated levels of glucose or fatty acids in
growth media in a process that also involves acyl
desaturases (Nguyen and Nosanchuk 2011).

The yeast model, Saccharomyces cerevisiae

Due to its ease of cultivation, the brewers’ yeast, Saccha-
romyces cerevisiae, is one of the best characterized model
eukaryotes. Recent studies have demonstrated that this
relatively simple organism shares many features of LD
organization and function found in much more complex
animals such as insects and mammals. Some yeast LDs
contain only either TAGs or sterol esters (SEs; Ducharme
and Bickel 2008; Horn et al. 2011), whilst others have a
mixed composition (Czabany et al. 2008). Evidence from
physical probes of LDs isolated from mutants unable to
synthesize TAGs or sterol esters SEs suggests that these
two lipid classes are partially segregated within the LD
core, with thin shells of SEs forming concentric hollow
spheres around an inner core composed principally of
TAGs. Further evidence that LDs may not always contain a
homogeneous core of mixed neutral lipids undergoing
isotropic motion has come from the observation that they
sometimes contain electron-dense material within their
cores (Czabany et al. 2008). These so-called gnarls consist
of tangles of elongated and curled tubules of diameter about
10–30 nm, and it was speculated that they might be lipid
metabolites, such as free fatty acids, that had demixed or
phase-separated from the isotropic TAG/SE-rich core. Similar
observations relating to the possibly non-homogeneous
structure of some LD cores have also been reported in
mammalian systems (Robenek et al. 2004, 2005a, b; see also
“Mammals”).

Analyses of the proteomes of yeast LDs and peroxi-
somes, as verified by microscopic immunodetection, have
revealed the presence of numerous lipid metabolism and
ER-related proteins (Athenstaedt et al. 1999; Binns et al.
2006). One notable absence is of any PAT/Perilipin
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homologs, in contrast to their presence in ascomycete fungi
such as M. anisopliae. Among the most abundant LD
proteins in yeast are three enzymes involved in the
synthesis of its major neutral lipid component, ergosterol,
namely sterol Δ24-methyltransferase, squalene epoxidase
and lanosterol synthetase, as well as three enzymes of long-
chain fatty acid activation. The yeast LD proteome also
contains several peroxisomal and mitochondrial proteins as
well as membrane-trafficking proteins, nuclear proteins,
chaperones, enzymes and plasma membrane-associated
proteins. The presence of peroxisomal proteins is consistent
with the observed close physical association between LDs
and peroxisomes in yeast, where the latter have been found
to extend tubular projections called ‘pexopodia’ into
adjacent LDs (Binns et al. 2006). The involvement of yeast
LDs with ER function has been underscored by the reported
association with the LD phospholipid monolayer of three
proteins that are functionally linked to ER-associated
degradation (ERAD) proteins, namely UBXD8 (Zehmer et
al. 2009a), AUP1 and UBE2G2 (Spandl et al. 2011).
However, another recent report suggests that LD formation
is not essential for ERAD in yeast (Olzmann and Kopito
2011). Although the yeast genome does not have any
orthologs of the abundant fugal and plant LD-binding
protein, caleosin, the expression of a plant caleosin isoform
in yeast cells led to the much increased accumulation of
cytosolic LDs (Froissard et al. 2009). Therefore, the mere
presence of this foreign protein caused yeast cells to
overaccumulate LDs. The absence of caleosin genes in
the yeasts, but their presence in the filamentous fungi and
plants, may be due to the selective loss of these genes from
yeasts at some point during their evolution.

Yeast cells are able to take up free fatty acids, which are
activated to acyl-CoAs and either catabolized via ß-
oxidation or converted to complex lipids. In the yeast,
Yarrowia lipolytica, the synthesis of TAG and the formation
of LDs are regulated in part by acyl-CoA oxidases
(Mlícková et al. 2004a, b), although it is not known
whether this applies to other species as well. If LD
formation is blocked in yeasts, as in the S. cerevisiae
quadruple mutant strain, dga1:lro1:are1:are2, exogenous
fatty acids become toxic when they are taken up by cells
(Lockshon et al. 2007; Petschnigg et al. 2009). This
indicates that one of the constitutive functions of LDs is
to maintain intracellular lipid homeostasis, and especially to
minimize the risk of fatty acid toxicity by serving as a
reservoir for the sequestration of excess acyl groups.
However, unlike many animal cell lines, yeast cells are
able to adapt to the presence of high levels of exogenous
fatty acids even if LD formation is blocked (Connerth et al.
2010). In this case, it was observed that yeast was instead
able to hyper-accumulate membrane lipids, mainly by
proliferation of the ER network. Some exogenous fatty

acids also altered the composition of LDs in yeast; hence,
oleate feeding led to a 16:1 ratio of TAG/SE, whilst this
ratio was near the wild-type value of 1:1 in the presence of
palmitate (Connerth et al. 2010). This was probably due to
the need to balance excessive membrane fluidity caused by
high levels of oleate by suppressing SE formation so that
relatively rigid free sterols could be incorporated into
membranes. In this case, the LDs are playing an indirect
role in the maintenance of optimal membrane fluidity in the
face of environmental challenges caused by different types
of exogenous lipid substrate.

Further parallels between yeast and mammals are shown
by the presence in yeast of homologs of LD-associated
proteins involved in lipodystrophy in humans, such as
seipin (Fei et al. 2008, 2011a) and lipin (Han et al. 2006;
Adeyo et al. 2011). As discussed in “Mammals”, mutations
in these genes in humans can result in defective adipo-
genesis with often severe clinical outcomes (Agarwal and
Garg 2006). In yeast, a functional homolog of human
seipin, Fld1p, regulates the LD size (Fei et al. 2008), which
is consistent with its proposed role in humans in the
assembly and maintenance of LDs (Binns et al. 2010). The
yeast ortholog of lipin, Pah1p, is a phosphatidate phospha-
tase responsible for DAG formation. Whilst DAG produced
by Pah1p is one source of TAG for LD formation, there are
alternative pathways for TAG production in yeast (Murphy
2001). Deletion of Pah1p in yeast reduced but did not
abolish TAG formation, and the cells responded by
synthesizing more SE in order to maintain normal amounts
of LDs and neutral lipids (Adeyo et al. 2011). In some
cases, yeast Pah1 mutants also hyper-accumulated mem-
branes of their ER-nuclear envelope networks (Han et al.
2006, 2007a; Santos-Rosa et al. 2005). However, when
both Pah1p and the sterol acyltransferases Are1p and Are2p
were deleted, no LDs were formed even though some TAG
was still available. It is proposed that Pah1p-derived DAG
plays a key role together with Are1p and Are2p in the
formation of LDs on the ER membrane, as depicted in
Fig. 3 (Adeyo et al. 2011).

The role of the seipin homolog in yeast, Fld1p, was
confirmed by a recent screen of mutants that accumulate
‘supersized’ LDs, which are generally about 50-fold larger
in volume than wild-type LDs (Fei et al. 2011b). In this
study, ten mutant lines were found with ‘supersized’ LDs
and the causal genetic lesions identified. One of the
mutated genes encoded Fld1p, but another five genes
(CDS1, INO2, INO4, CHO2 and OPI3) encoded known
enzymes of phospholipid metabolism, whilst two genes
(CKB1 and CKB2) encoded subunits of the casein kinase 2.
A common feature of these mutants was their increased
levels of phosphatidic acid that were shown to facilitate the
coalescence of LDs into much larger structures that were
more difficult for lipases to access. Fld1p is not an enzyme
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of lipid metabolism, and the mechanism by which it
regulates LD size has yet to be determined, although its
homolog in Drosophila may have a role in phosphatidic
acid metabolism (Tian et al. 2011).

The overall process of LD turnover in yeast has clear
similarities with that in mammals. This is seen by the
presence of very similar enzymes of TAG breakdown and
the conservation of mechanisms for lipolysis between yeast
and mammals (Kurat et al. 2006, 2009). These observations
are important because the hyper-accumulation of LDs and
the proliferation of adipose tissue are key aspects involved
in human obesity, and yeast could be a valuable model
system for studying the cellular basis of this dysfunction.
The process of LD lipolysis in yeast has been linked to cell
cycle progression via a common Cdk1/cdc28 activation
mechanism (Kurat et al. 2009), whilst a novel lipid
hydrolase with esterase and TAG lipase activities has been
shown to be involved in the overall cellular lipid homeo-
stasis (Debelyy et al. 2011). Other studies have implicated
LD dynamics and their interactions with peroxisomes and
ER in the ageing process in yeast (Goldberg et al. 2009) in
an analogous manner to that proposed for multicellular
organisms, including mammals (Haemmerle et al. 2006).

The proposal from these and other studies is that LDs in
yeast cells function as a hub in a regulatory network that
modulates TAG and SE formation in the ER and fatty acid
oxidation in peroxisomes. When yeast cells are exposed to a
calorie-rich diet, it is proposed that the resultant accumulation
of ethanol represses the peroxisomal oxidation of free fatty
acids that originate from TAGs synthesized in the ER and
deposited within LDs. The free fatty acids will then build up

inside LDs to form the ‘gnarl’ structures discussed above. The
presence of gnarls then initiates several negative feedback
loops, resulting in the hyper-accumulation of TAGs in LDs
and of DAGs and free fatty acids in the ER. As discussed by
Goldberg et al. (2009), this can potentially lead to a cascade
of metabolic and physiological events as follows: (1) loss of
peroxisome function triggering necrosis; (2) lipoapoptosis
induced by free fatty acids and DAG (a caspase- and
mitochondria-independent form of programmed cell death);
and (3) the triggering by DAG of a protein kinase
C-dependent signal transduction network affecting multiple
stress response- and longevity-related processes. Therefore,
the ingestion of a calorie-rich diet by yeast cells may
considerably shorten their life span due to LD-associated
metabolic changes in a manner that has many analogies with
similar processes in animals, including humans, where
caloric restriction is correlated with increased longevity
(Bordone and Guarente 2005; Feng et al. 2007; Puigserver
and Kahn 2008).

As with several other efficient producers of LDs, some
yeast species are being used for biotechnological purposes
such as the breakdown and utilization of hydrophobic
substrates (Kosa and Ragauskas 2011). Some species can
accumulate lipids to as much as 70% of their biomass. One
of the most promising of these lipogenic systems is Y.
lipolytica whose potential role as a model for bio-oil
production has recently been reviewed (Beopoulos et al.
2009). Other yeasts being used or investigated for commer-
cial lipid production from organic wastes or simple low-cost
substrates include Candida spp, Cryptococcus curvatus,
Lipomyces starkeyi, Rhodotorula spp. and Trichosporon
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Fig. 3 Model for lipid droplet formation in yeast. In this theoretical
model, sterol ester-enriched LDs are formed via the action of the
enzyme, Are1/2p, which esterifies ER-located sterol precursors.
Alternatively, TAG-enriched LDs are formed from PA, via DAG, by
the acyltransferases, Pah1p and Nem1p. In both cases, the curvature of
the outer bilayer leaflet of the ER that is required for directional
budding of the nascent LD towards the cytosol may be facilitated by

the localized accumulation of non-bilayer-forming lipid intermediates
such as PA, DAG, and SE as well as the action of the transbilayer
proteins in blocking lateral diffusion of lipid intermediates away from
the site of LD formation. Most yeast LDs contain either SE or TAG
cores (yellow) rather than a mixed composition. However, mixtures of
SE and TAG are frequently found in LDs of higher animals and plants.
Figure adapted from Adeyo et al. (2011)
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spp., whilst filamentous fungi also in use include Aspergillus
oryzae, Mortierella spp. and Rhizopus spp. (Kosa and
Ragauskas 2011). The most efficient commercial yeasts, C.
curvatus and L. starkeyi, produce slightly higher lipid yields
than the best bacterial systems, which are Rhodosporidium
toruloides and R. opacus PD630 (see “Prokaryotes”).

Lower animals

All metazoans are able to accumulate cytosolic LDs
containing TAG and/or SE in most or all of their cells.
For example, LDs are ubiquitous organelles throughout the
body of the nematode worm, Caenorhabditis elegans,
although they are especially abundant in the fat-storing
cells of the gut epithelium (Zhang et al. 2010b). As also
described above for yeast, LDs in C. elegans play an
important role in its longevity (Feng et al. 2007; Wang et al.
2008). Hence, mutants with impaired peroxisome function
will hyper-accumulate LDs, leading to developmental
abnormalities (Zhang et al. 2010a). As with the fungi, LD
function in animals is tightly coupled with cycles of
biosynthesis and lipolysis involving the ER and perox-
isomes, with PAT/Perilipin proteins playing key roles in
these processes. In recent years it has become apparent that
not all LDs within a given cell are identical. For example,
some LDs in the same cell may carry different proteins
(Beller et al. 2010a; Wolins et al. 2006a, b; Beller et al.
2006; Ozeki et al. 2005), whilst some LDs in the same cell
can also carry different lipid cargoes (Czabany et al. 2008).

The insect model, Drosophila melanogaster

The vast majority of research relating to invertebrate LDs
has been done using the model fruit fly, Drosophila
melanogaster. The importance of LDs in the overall
function of Drosophila has been demonstrated by data
from two RNAi screens that uncovered a large and diverse
array of proteins and organelles that participate in LD
physiology. It was found that as much as 1.5% of the
expressed genome is implicated in LD function, totaling
approx. 370 genes (Beller et al. 2008; Guo et al. 2008). The
important and increasing contribution of the Drosophila
model to wider LD research has been reviewed by
Kühnlein (2011).

Early-stage Drosophila embryos were one of the first
systems where it was shown that cytosolic LDs are able to
move bidirectionally within cells in association with dynein, a
motor protein that can move along microtubules whilst
carrying a cargo (Gross et al. 2000). More recently, it has
been shown that kinesin-1 also participates as a motor protein
to drive LDs along microtubules (Shubeita et al. 2008).
During Drosophila oogenesis, LDs and most other oocyte

contents are first formed in nurse cells and then transferred
through cytoplasmic bridges to the oocyte. This process
involves actin-based cytoplasmic streaming (Gutzeit 1986)
and active transport along microtubules (Gross et al. 2000).
As nurse cell components arrive in the oocyte, they are
thoroughly mixed via large-scale, microtubule motor-driven
cytosolic streaming. Although most oocyte LDs are carried
passively by the bulk flow of streaming, a subset moves
actively and bidirectionally along microtubules (Gaspar and
Szabad 2009). In early embryos, virtually all LDs move
bidirectionally along radially organized microtubules.
Embryos may be able to compensate for abnormal LD
distribution since embryos with defects in various aspects of
LD orientation appear to develop normally (Welte et al.
2005). In addition to dynein, Drosophila LDs bind the
Klarsicht (Klar) protein, which, as its name suggests, was
originally identified in photoreceptors where it functions as a
nuclear envelope-located motor regulator. However, other
isoforms of Klar are targeted to LDs in embryos, ovaries and
several somatic tissues where they regulate the bidirectional
motion of LDs via both dynein and kinesin-1 (Yu et al. 2011).

The most common neutral lipid in insect LDs is TAG,
although SEs may be present in some tissues. As in
nematodes, insect LDs appear to be ubiquitous throughout
the body, but accumulate to very high levels in specialized
storage tissues such as the fat body, as reviewed by Arrese
and Soulages (2010). Despite its name, the insect fat body
is a complex multifunctional organ involved in the
coordination of growth with metamorphosis and reproduc-
tion. Its main function is to store and release compounds
that play important roles in these processes. For example, in
Aedes aegypti females, the fat body synthesizes vitellogenin
in a transcriptionally mediated process that responds to the
ingestion of a blood meal (Park et al. 2006). By far, the
most common cells in fat bodies are the highly LD-enriched
cells termed adipocytes. However, as they contain numer-
ous small LDs, these insect cells are more similar to
mammalian brown adipocytes rather than the far commoner
white adipocytes where most mammalian storage lipid is
deposited (see “Mammals”). Insects that fly for extended
periods, such as during migrations, are able to use LDs
directly to power their flight muscles. In such cases, LD
TAG is converted into DAG and secreted into the
hemolymph from where it is transported to flight muscles
via the lipid carrier protein, lipophorin (Arrese and
Soulages 2010).

The proteome of Drosophila LDs is similar to other
animals in containing PAT/Perilipin family proteins, although
only Plin1 and Plin2 are present, with Plin3–5 apparently
restricted to vertebrates. The important roles of the PAT/
Perilipin family proteins in Drosophila have been shown by
abnormalities in LD formation and function that are found in
mutants (Grönke et al. 2003; Teixeira et al. 2003). A role for
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Plin1 in LD homeostasis is suggested by the finding that it is
downregulated in starvation (Grönke et al. 2005). More
recently, it has been shown that the Plin1 homolog in
Drosophila regulates LD structure and the access of other
proteins to the LD surface (Beller et al. 2010a). In particular,
some Plin1-deficient mutants had much larger LDs than
wild-types, and in some cases, fat body cells were dominated
by a single giant LD reminiscent of mammalian white
adipocytes. These mutants were also characterized by an
obesity phenotype that was clearly related to LD dysfunction
and suggests that LD status can determine feeding behaviour,
possibly via an adipokine or other signal from fat bodies
(Grönke et al. 2007; Beller et al. 2010a). However, a
knockout of both Plin1 and Plin2 only resulted in reduced
fat body stores and reduced ability to mobilize these upon
starvation. These results, and the fact that Plin homologs are
absent from yeasts and C. elegans, show that Plin proteins
are not essential for LD formation or survival of the
organism, especially under favourable feeding conditions.
However, they do appear to play key roles as potentiators of
lipid metabolism and may have particular selective advan-
tages under conditions of limited or varied access to food
(Beller et al. 2010a).

Similar to fungi and mammals, Drosophila LDs contain
homologs of the protein, Seipin, and knockout of the Seipin
gene results in a much reduced accumulation of LDs in the fat
body and their presence in ectopic locations such as salivary
glands (Tian et al. 2011). The reduction in LD size and
numbers was due to the lower rates of TAG formation rather
than increased lipolysis. Genetic evidence suggests that
aberrant forms of Seipin may cause a reduction in the activity
of TAG biosynthetic enzymes, leading to lower levels of LD
production. Another novel LD-associated protein recently
found in Drosophila is the conserved metalloprotease,
invadolysin (Cobbe et al. 2009). Invadolysin is a member of
the M8 family of metzincin metalloproteinases (Gomis-Rüth
2003). Homologs of invadolysin are found in many different
organisms and probably regulate the function of other proteins
by cleaving them to generate active forms. In several
protozoan parasites, invadolysin homologs are important in
conferring virulence, whilst invadolysin mutants of Drosoph-
ila die in late larval stages (McHugh et al. 2004). Larvae of
mutants in which invadolysin was undetectable had reduced
fat bodies and lower TAG levels in a similar manner to that
seen in PAT/Perilipin deficient mutants (Grönke et al. 2003;
Teixeira et al. 2003).

Several studies of the Drosophila LD proteome at
different developmental stages have shown the presence
of expected components such as the PAT/Perilipin group,
lipid metabolism enzymes and intracellular transport pro-
teins, but also less predictable components such as storage
proteins and histones (Beller et al. 2006; Cermelli et al.
2006). Further studies have demonstrated that these

unexpected proteins have a genuine association with LDs
in vivo. It is proposed that proteins such as histones are
sequestered on LDs in embryonic cells to provide a readily
accessible store that can be used at short notice. It may be
necessary to sequester highly regulated proteins such as
histones in this way in order to shield them from the
efficient surveillance mechanisms that normally detect and
destroy surplus, damaged or misplaced proteins (Gunjan
and Verreault 2003). Similar roles for LDs as protein
storage/recycling sites have been proposed in mammalian
systems (Fujimoto and Parton 2010). In other cases, LDs
may act as long-distance carriers of large protein cargoes
along the cytoskeletal network. This mechanism may be
particularly relevant during early embryo development when
there is a great deal of directional movement of cellular
components (Cermelli et al. 2006). The LD proteome from
third-instar fat body cells did not include histones, but
several storage proteins were present instead, as well as
chaperones, including three heat shock proteins (Beller et al.
2006). In general, the Drosophila LD proteome is strikingly
similar to that of mammals, which indicates both their
evolutionarily conserved functions and the potential utility of
Drosophila as a model to investigate LD malfunction in
serious human pathologies such as metabolic syndrome and
lipodystrophy.

An example of the utility of Drosophila as a model for
studying LD function and regulation comes from studies
that have elucidated the role of the coat protein I (COPI)
complex as a regulator of lipid homeostasis (Beller et al.
2008). COPI and COPII vesicles are essential components
of the trafficking system between the ER and Golgi (Lee et
al. 2004). COPI vesicles mediate retrograde cargo transport
from the Golgi back to the ER, including escaped
ER-resident proteins. The anterograde counterpart, COPII,
mediates the transport of proteins and lipids from the ER to
the Golgi. If either COPI or COPII complexes are
disrupted, the Golgi function is abolished, but only COPI
is required for LD mobilization. In the absence of COPI
function, LDs accumulate to abnormal levels. COPI
components changed the LD protein coat composition,
particularly by removing Plin3 and hence promoting lipase
binding and the initiation of TAG hydrolysis. Following
preliminary experiments in Drosophila, studies in mamma-
lian cell lines demonstrated that COPI-mediated regulation
of LD turnover is a general mechanism common to all
animals (Beller et al. 2008).

Mammals

There have been numerous recent reviews focusing on
mammalian LDs (Ducharme and Bickel 2008; Fujimoto et
al. 2008; Goodman 2008; Thiele and Spandl 2008; Walther
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and Farese 2009; Bickel et al. 2009; Farese and Walther
2009; Guo et al. 2009; Murphy et al. 2009; Ohsaki et al.
2009; Olofsson et al. 2009; Zehmer et al. 2009b; Beller et
al. 2010b; Bozza and Viola 2010; Fujimoto and Parton
2010; Kalantari et al. 2010; Greenberg et al. 2011; Hapala
et al. 2011), plus several useful pictorial overviews of lipid
trafficking in the mammalian cell (Krahmer et al. 2009;
van Meer and de Kroon 2011). The roles of cytosolic LDs
in the assembly and turnover of the various classes of
secreted lipoproteins in mammals have been described
elsewhere and will not be discussed further here (Olofsson
and Boren 2005; Shelness and Ledford 2005; Ohsaki et al.
2006, 2008, 2009; Olofsson et al. 2009).

The emerging picture is that mammalian cells have the
same basic LD system as other animal groups, such as the
insects that are described above. However, in mammals,
these basic LD mechanisms are supplemented by additional
layers of complexity and functional redundancy that have
been adaptive during the evolution of this group of
relatively large and long-lived eukaryotes. For example,
mammalian cells appear to have several distinct global
mechanisms for the formation and turnover of LDs that are
regulated by different effectors and/or are active in different
tissues. Even at the metabolic level, mammals tend to have
more forms of key enzymes, such as DAG acyltransferase
(for LD formation; Harris et al. 2011) or lipases (for LD
turnover; Osuga et al. 2000; Jenkins et al. 2004; Villena et
al. 2004; Zimmermann et al. 2004; Quiroga and Lehner
2011). This means that multiple gene knockouts are
frequently required to halt such processes. The LD
population of individual mammalian cells can be heteroge-
neous, as demonstrated in isolated 3T3-L1 adipocytes
which contained small LDs mainly loaded with Plin3/4,
intermediate-sized LDs mainly loaded with Plin2 and large
LDs mainly loaded with Plin1 (Wolins et al. 2005).

The composition and structure of the core of mature LDs
in mammals has been the subject of some discussion in the
literature. It was originally believed that all LDs had a
relatively simple structure made up of an isotropic core of
neutral lipid surrounded by a phospholipid monolayer and
various coat proteins (Murphy and Vance 1999). However,
there is increasing evidence that in some mammalian cells,
normally soluble or amphipathic proteins (Dvorak et al.
1994; Bozza et al. 1997; Robenek et al. 2005a, b, 2006),
and even entire ribosome-bound membranes (Wan et al.
2007), may sometimes partition into supposedly hydropho-
bic LD cores (Ohsaki et al. 2009). In particular, there have
been several reports of the presence of caveolin-1 in LD
cores, which is puzzling because caveolins are believed to
be transferred to the LD surface either via lateral diffusion
from the ER membrane or from the plasma membrane via
the endocytic pathway (Fujimoto et al. 2001; Pol et al.
2001; Ostermeyer et al. 2001, 2004; Le Lay et al. 2006).

Several lines of ultrastructural evidence from the group of
Robenek et al. (2004, 2005a, b, 2011) are consistent with
the presence of LD coat proteins, such as Plin1 and Plin2,
as well as caveolin-1, within LD cores. Given recent
evidence of the possible existence of distinct lipid domains,
such as the fatty acid ‘gnarls’ found in yeast LD cores
(Czabany et al. 2008), it is clear that the nature of LD cores
in mammals and in other organisms requires further
research.

Heterogeneity of mammalian LDs

The morphology and function of mammalian LDs tend to
be more variable than those of other organisms. For
example, mammals have two broad types of highly LD-
enriched storage cells, namely white and brown adipocytes,
which have very different LD structures and physiological
functions. In mammals, cytosolic LDs are also prominent
constituents of steroidogenic cells in the adrenal gland or
reproductive organs (for steroid hormone synthesis), mam-
mary gland epithelial cells (for milk fat synthesis),
hepatocytes and enterocytes (for lipid metabolism and
lipoprotein formation), and leukocytes (for synthesis of
eicosenoid mediators; Murphy 2001). All of these roles are
in addition to those of the constitutive LDs that are present
in all cells and now known to have a dynamic involvement
in lipid trafficking in all eukaryotes. More recently, the list
of processes involving LDs in mammalian cells has
expanded considerably, as has the number of proteins that
are bound to or otherwise associated with these organelles
(Beller et al. 2010b; Itabe 2010).

For example, multifunctional LDs are required in different
cell types to store and release acyl groups that have been
tailored to accommodate cell-specific requirements and
functions (Wang and Sztalryd 2011). Such functions include
rapid fatty acid storage/release from or into blood by white
adipocytes (Ahmadian et al. 2010), mitochondrial fatty acid
oxidation for thermal regulation by brown adipocytes
(Ricquier 2010), fatty acid oxidation for long-term mobility
demands by slow-twitch fibres in skeletal muscles (Moro et
al. 2008), lipidation of very low-density lipoprotein produc-
tion and mitochondrial ß-oxidation (Olofsson et al. 2009),
milk production in mammary epithelial cells (Keenan and
Mather 2006; Chong et al. 2011a, b) and surfactant
production in type II alveolar pneumatocytes in the lung
(Magra et al. 2006). Mammalian LDs have been implicated
in acyl lipid turnover (Smirnova et al. 2006), cholesterol
homeostasis (Naslavsky et al. 2007), hepatitis C infection
(Miyanari et al. 2007), proteasomal and lysosomal degrada-
tion of apolipoprotein B (Ohsaki et al. 2006), and protein
phosphorylation and GTP-mediated protein trafficking (Bartz
et al. 2007c; Hommel et al. 2010). It is also now clear that
brown adipocytes with their small and readily accessible LDs
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have roles in energy homeostasis in human adults, in addition
to their well-known thermogenic roles in foetuses and
neonates (Cypess and Kahn 2010).

As in other animals, the major group of LD-associated
proteins in mammals is the PAT/Perilipin family, but the
remainder of the mammalian LD proteome tends to be more
variable and considerably larger than in non-mammals such
as Drosophila (Hodges and Wu 2010). In addition, the LD
proteome can vary significantly according to tissue,
developmental stage and physiological status, and the list
of novel LD-associated proteins only found in mammals
continues to grow. Similar to other animals, the abundant
LD-binding phosphoprotein, Plin1, has a major role in
regulating LD size and access by lipases (Brasaemle 2007;
Tansey et al. 2001), whilst Plin2/Adipophilin acts as the
major LD coat protein that is especially important in the de
novo formation of LDs and their maturation after release
from the ER (Chang and Chan 2007; Bickel et al. 2009). In
addition to these two basic members of the PAT/Perilipin
family that are common to all animals, mammals have three
additional members, Plin3-5, that act as regulators of LD
formation/turnover (Wolins et al. 2006a, b) and may be
capable of functionally substituting for Plin 1 (Sztalryd et
al. 2006). A very basic overview of the regulation of LD
formation/turnover in mammals is shown in Fig. 4.

Mammals also have an additional protein family, the
Cidea group (cell death-inducing DNA fragmentation
factor-like effector), which has a similar function to some
Plin isoforms. One member of the Cidea group, Fsp27,
promotes the formation of the large unilocular LDs that are
characteristic of white adipocytes, and knockouts of the
fsp27 gene resulted in smaller LD size and increased rates
of lipolysis (Puri and Czech 2008; Nishino et al. 2008). In
general, Cidea-deficient mutants have similar lean pheno-
types to Plin1 mutants and may be part of a redundant and
therefore more resilient network of lipid regulation in
mammals (Zhou et al. 2003; Christianson et al. 2010). In
mice, the white adipocytes of Fsp27-deficient mutants also
accumulated numerous small LDs and had elevated
mitochondrial activity that is more characteristic of brown
adipocytes (Toh et al. 2008). This implies that Fsp27 plays
a role in promoting TAG biosynthesis and LD maturation
directed towards the formation of large unilocular organ-
elles that have a mainly storage function. In the absence of
Fsp27 function, the default pathway, even in white
adipocytes, appears to accumulate smaller LDs that can be
more rapidly mobilized. In humans, Fsp27 is also an LD-
bound protein that is associated with insulin sensitivity
(Puri et al. 2007, 2008). Analysis of the proteome of LDs
from rat hepatocytes revealed a novel protein termed
‘Associated with LD protein 1’, or ALD1 (Turró et al.
2006). As with many other LD proteins, ALD1 was initially
found on the ER, but then became associated with nascent

LDs where it appeared to be considerably more mobile than
other LD protein components such as Plin2. The precise
function of ALD1 has yet to be determined, but as the
corresponding gene is only expressed in liver and kidney
tissues, it may regulate specific forms of hepatic and
nephritic LD behaviour that are distinct from LD behaviour
in adipocytes.

Some additional roles of mammalian LDs

In addition to their well-known roles in neutral lipid
biosynthesis, mammalian LDs can act as a second site (in
addition to the ER) for the biosynthesis of the major membrane
phospholipid, phosphatidylcholine (PC; Moessinger et al.
2011). Several other proteins that regulate various aspects of
LD formation have recently been identified. These include
PLD1 and ERK2 (Andersson et al. 2006), the BARS protein
(Bartz et al. 2007b), Fsp27 (Puri et al. 2007), Prp19p (Cho et
al. 2007) and FIT1/2 (Kadereit et al. 2008). Numerous lines
of evidence point to an interaction of LDs with other
subcellular compartments (Olofsson et al. 2008). Examples
include the ER (Wu et al. 2000), ribosomes (Wan et al. 2007),
endosomes (Liu et al. 2007), mitochondria (Jägerström et al.
2009) and peroxisomes (Binns et al. 2006). LDs also function
as transient components of the membrane trafficking system,
as short-term metabolic reservoirs for membrane acyl groups
(Bartz et al. 2007a; Zehmer et al. 2009b), in signal
transduction (Granneman and Moore 2008) and as rapidly
turning over sites of protein storage and trafficking (Hodges
and Wu 2010). Lipidomic studies are also consistent with
roles for LDs in the trafficking of both phospholipids and
ether lipids (Wu et al. 2000; Bartz et al. 2007a). As with
Drosophila LDs (see “Lower animals”), mammalian LDs
appear to act as storage sites for various hydrophobic proteins
that may disrupt cell function if allowed to aggregate freely in
the cytosol (Fujimoto and Parton 2010). Examples include
apolipoprotein B-100 (Ohsaki et al. 2006, 2008) and
α-synuclein (Cole et al. 2002; Webb et al. 2003).

The role of LDs in a range of caveolin-mediated
intracellular transport processes has been demonstrated,
and caveolins are a prominent and dynamic constituent of
the mammalian LD proteome (Ostermeyer et al. 2001,
2004; Pol et al. 2001; Liu et al. 2004; Robenek et al. 2004;
Martin and Parton 2005; Le Lay et al. 2009). Caveolins are
named after caveolae, which are caveolin-enriched lipid
raft-like structures found as 50- to 100-nm disk-shaped pits,
or invaginations, in the plasma membrane of many
mammalian cells. Caveolae give rise to a class of non-
clathrin-coated vesicles that are involved in receptor-
mediated endocytosis, cholesterol transport, TAG synthesis
and signal transduction (Oh et al. 1998; Fujimoto et al.
2000, 2004; Nabi and Le 2003; Öst et al. 2005). Caveolin 2
is also associated with lipid rafts and ER-associated LDs
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that bind σ-1 receptors; these receptors in turn bind lipidic
neurosteroids and psychotropic drugs, including neuro-
leptics and cocaine, which also demonstrates the trafficking
role of LDs (Hayashi and Su 2003). Caveolin trafficking is
regulated by cholesterol and fatty acids and involves the
Golgi, plasma membrane and LDs (Pol et al. 2005).
Clearly, caveolins have a more complex and wider ranging
role beyond acting as components of caveolae, and LDs are
intimately involved in at least some of these additional
functions (Parton and Simons 2007). Other proteins
implicated in the trafficking of the aqueous-cored vesicles

that are sometimes associated with LDs include numerous
small G-proteins, EHD2, α-SNAP and Sec22 (Brasaemle et
al. 2004; Liu et al. 2004), stomatin, which is additionally
associated with lipid rafts and transport vesicles (Umlauf et
al. 2004), and cavins, which are essential for the formation
of caveolae as well as being implicated in LD function in
mice (Liu et al. 2008), humans (Hayashi et al. 2009; Rajab
et al. 2010) and cultured adipocytes (Aboulaich et al. 2006).

In addition to conventional TAG- or SE-rich LDs, some
mammalian cells accumulate more specialized neutral
lipids. For example, pigmented epithelial cells in the

Cidea
Fsp1

HSL
ATGL
CES

AADA

Inflammatory 
mediators

NCEH1

ER

Retinol                  Retinol 
esters

Cholesterol                   SE

PA          DAG          TAG

PAP DGAT

LCAT

LRAT

GOLGI

COPI

COPII

Caveolin2, Cavin
Raft proteins, 
EHD2, Sec22, 
FIT1/2, Seipin Syntaxin-5

VAMP4
SNAP23

Dynein
ERK2

Kinesin1
Klar

Plin3
Plin4

µLD

Plin1

Plin1

Plin1

Giant LD
TAG

SE
Spartin

GLYOXYSOME

DAG
FA

Cholesterol

+

1

2

3

4

5

Plin2
sLD

Plin2
sLD

Plin2
sLD

Fig. 4 Simplified overview of lipid droplet regulation in mammals.
This is a brief summary of some of the major processes, components
and organelles involved in the regulation of LD formation, maturation
and turnover in mammalian cells. However, it should be stressed that
these processes can vary considerably in different tissues and cell
types, as well as being modified by numerous environmental factors
including diet, stress, pathogen attack and ageing. The take-home
message is that mammalian LD regulation is a highly complex process
that plays a key role in cellular homeostasis and that its dysfunction is
implicated in a host of pathological processes ranging from some

forms of cancer to obesity and coronary heart disease. 1 Neutral lipid
esters are released from the ER as μLDs in a process regulated by
various proteins including caveolin2, seipin, cavin, etc. 2 In most
cells, μLDs fuse to produce mature 0.5- to 2-μm LDs via a SNARE-
mediated process. 3 In adipocytes, Cidea and Fsp1 stimulate small
LDs to fuse further to giant 50- to 200-μm LDs. 4 In most cells, LDs
are able to move along the cytoskeletal network via proteins such as
Dynein and ERK2. 5 Mobilization of LDs is regulated via several
hormones and protein factors such as Spartin
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mammalian retina and hepatic stellate cells both contain
retinyl ester-enriched LDs termed retinosomes (Blaner et al.
2009; Orban et al. 2011). These esters are mobilized to
replenish the visual chromophore, 11-cis-retinal, and their
storage ensures proper visual function despite fluctuations
in dietary vitamin A intake. Retinosomes also contain TAG,
SE and typical LD-binding proteins such as Plin1-3 and
Rab proteins such as CGI-58, whilst their formation is
regulated by the enzyme lecithin:retinol acyltransferase
(Orban et al. 2011).

Because mammalian LDs are dynamic and rapidly
turning over organelles, the process of lipolysis in highly
regulated via several different and overlapping signalling
networks. It was originally believed that lipolysis of LD
core lipids was catalyzed by a single enzyme, hormone-
sensitive lipase (HSL). However, HSL knockouts were still
capable of some lipolysis in white adipocytes (Osuga et al.
2000). In 2004, three laboratories independently character-
ized a novel TAG lipase, variously termed adipose
triglyceride lipase (Zimmermann et al. 2004), desnutrin
(Villena et al. 2004) and phospholipase A2ζ (Jenkins et al.
2004). Recent studies may provide evidence for yet more
neutral lipid hydrolases (reviewed in Quiroga and Lehner
2011). These include some members of the carboxylester-
ase [Ces (mouse) or CES (human)] family [mouse Ces3/
triglyceride hydrolase (TGH); its human ortholog CES1/
CEH/TGH; mouse CesML1/TGH2; mouse Ces1/Es-x and
Es22/egasyn; and arylacetamide deacetylase (AADA or
AADAC) plus an AADA homolog KIAA1363, also named
neutral cholesteryl ester hydrolase 1 (NCEH1) or arylace-
tamide deacetylase-like 1 (AADACL1)]. Puzzlingly, how-
ever, these enzymes are ER-associated glycoproteins with
lumen-facing active sites, which is unexpected if their
physiological substrates really are cytosolic LDs; more
research is clearly needed to clarify their function. The
process of lipolysis in adipocytes is also mediated by the
GTPase, Rab18, which is recruited to the LD surface
following insulin induction of a phosphatidylinositol 3-
kinase (Pulido et al. 2011)

In mice, LD formation and lipolysis are both regulated
by the ADP ribosylation factor (ARF)-like GTPase,
ARFRP1, which is a molecular switch involved in Golgi
function (Kahn et al. 2006). The deletion of this GTPase
results in the activation of adipocyte TAG lipase and the
disruption of LD maturation, leading to the virtual
abolition of TAG accumulation in both white and brown
adipocytes (Hommel et al. 2010). In addition to direct
lipase-mediated breakdown, animal LDs can be degraded
after incorporation, together with lysosomes, into so-
called autolysosomes (Dong and Czaja 2011). The roles
of lipases and other LD-associated proteins in LD
mobilization as investigated using transgenic mice have
recently been reviewed (Girousse and Langin 2011).

Another example of global transcription factors regulating
LD formation is the induction of the dehydrogenase/
reductase, Dhrs3, by the stress-responsive transcription
factor, p53 (Deisenroth et al. 2011). In addition to its roles
in stress, p53 is now known to regulate cell metabolism
under non-stressed conditions, and one of these roles is to
induce Dhrs3 synthesis and accumulation at ER domains
where TAG or retinol are being synthesized, which leads
to the budding of Dhrs3-bound LDs.

In mammals, the enzymes that catalyze phosphatidic
acid phosphatase activity (which produces DAG) are
encoded by a family of genes originally named lipins.
Because they control the cellular concentration of the
bioactive lipids, phosphatidic acid and DAG, lipins are
key regulatory enzymes of lipid metabolism and many
signalling pathways. A role in neutral lipid homeostasis has
been shown by the effects of lipin-1 overexpression in
mice leading to obesity, whilst lipin-1 knockouts lack
adipose tissue (Péterfy et al. 2001; Phan and Reue 2005).
Lipin proteins are associated with several subcellular
locations and can rapidly move within the cell where they
may also act as transcriptional regulatory proteins in the
nucleus (Gropler et al. 2009; Harris and Finck 2011). It
has recently been reported that in human macrophages,
lipin-1 is an LD-bound protein that regulates the activation
of cytosolic group IVA phospholipase A2α, which is a
pro-inflammatory enzyme that is involved in the release of
LD-located arachidonic acid in order to form eicosanoid
signalling mediators (Valdearcos et al. 2011). The wider
roles of leukocyte LDs in inflammatory responses are
reviewed by Bozza et al. (2009b, 2011), Bozza and Viola
(2010) and Melo et al. (2011), whilst the nature of lipid
signalling in disease has been reviewed by Wymann and
Schneiter (2008).

The toxicity of some lipophilic environmental pollutants
may involve LDs. For example, combustion-derived hydro-
carbons, including carcinogenic components of cigarette
smoke, are taken up into human bronchoepithelial cells and
alveolar macrophages where they become localized on
cytosolic LDs (Murphy et al. 2008). These toxins can also
be taken up by adipocytes where the LDs could potentially
act as long-term stores of carcinogenic toxins. If such
accumulated toxins were released en masse once the LDs
are mobilized, they could potentially have localized onco-
genic effects.

Roles of LDs in disease

It is evident that mammalian cells have developed precise
homeostatic mechanisms to regulate lipid uptake, synthesis,
storage and usage (Horton et al. 2002; Coleman et al.
2000). In recent years, a great deal of mammalian lipid
research has focused on metabolic dysfunctions whereby
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either too much or too little lipid is stored in cytosolic LDs
(Agarwal and Garg 2006). In humans, too little LD
production results in lipodystrophy, which is a relatively
rare and normally genetically related condition (Vigouroux
et al. 2011). The most severe form of human lipodystrophy
is Berardinelli–Seip congenital lipodystrophy, which is
caused by mutations either in a TAG biosynthesis gene or
in the LD-binding protein, seipin (Magré et al. 2001;
Agarwal et al. 2002; Payne et al. 2008; Chen et al. 2009;
Garg and Agarwal 2009). The study of seipin-defective
mutations in humans and in various model organisms has
revealedmuch useful information about the role of this protein
(Fei et al. 2011a, b). For example, seipin deficiency leads to
altered Δ9 fatty acid desaturase function as well as alterations
in LD morphology (Boutet et al. 2009; Szymanski et al.
2007). It has been suggested that seipin may play a role in
LD assembly by forming a collar at the ER–LD interface or
by preventing LDs from being released into the ER lumen
instead of the cytosol. However, further evidence is required
to verify such a structural role because apparently normal
cytosolic LDs were still observed in yeast and mammalian
cells in the absence of Fld1p/seipin (Binns et al. 2010).
Another type of lipodystrophy, autosomal dominant partial
lipodystrophy, is caused by Plin1 deficiency, leading to a
failure to accumulate LDs in white adipocytes (Gandotra et
al. 2011). The human phenotype in this case is similar to that
of Plin1 knockouts in some animal models (Grönke et al.
2007; Beller et al. 2010a).

In contrast to lipodystrophies where there is too little LD
accumulation, the overproduction and ectopic appearance
of LDs is associated with one of the most common
metabolic malfunctions in human populations in the
twenty-first century, namely obesity. Obesity (i.e. body
mass index >30) affects 20–40% of the adult population of
developed countries, and its prevalence has increased three
to fourfold since the 1980s (Canoy and Buchan 2007). In
terms of overall lipid mass, the bulk of LDs in normal adult
mammals is present in white adipose tissue. White
adipocytes differentiate from mesenchymal stem cells to
preadipocytes and then to mature adipocytes, which are
dominated by a single, giant unilocular LD that occupies
over 90% of the cytosol (Rosen and MacDougald 2006).
Obesity is characterized by the hyper-accumulation of LD-
loaded white adipocytes and their ectopic proliferation in
non-adipose tissues. Obesity-related lipid dysfunctions are
implicated in several serious clinical conditions including
metabolic syndrome, type 2 diabetes, hypertension, cardio-
vascular disease, osteoarthritis and cancer. For example, the
LD-binding proteins, Plin2 and Plin5, are involved in
ectopic LD accumulation in the skeletal muscle of both
rats and humans (Minnaard et al. 2009), whilst Plin2 is also
involved in diabetes (Mishra et al. 2004). The more general
roles of LD dysfunction in some of these disease conditions

have been reviewed by Le Lay and Dugail (2009), Meex et
al. (2009) and Greenberg et al. (2011).

In order to understand the nature of obesity and to
develop possible treatments, it is important to elucidate the
molecular mechanisms of white adipocyte differentiation
and the cellular dynamics (biogenesis, size, distribution and
interaction with other organelles) of their cytosolic LDs.
Equally, it is important to understand why some non-
adipocyte cells, such as hepatocytes, cardiomyocytes and
skeletal myocytes, appear to enter an adipocyte-like
developmental programme and hyper-accumulate LDs.
Such ectopic formation of LDs in non-adipocyte cells is
correlated with metabolic syndrome and insulin resistance
in most individuals in a process often termed ‘lipotoxicity’
(Unger 2002; van Herpen and Schrauwen-Hinderling 2008;
Unger and Scherer 2010). Also, the hyper-accumulation of
cholesterol ester-laden LDs in foam cells is a key stage in
the development of arterial plaques and atherosclerosis.
Indeed, some LD-associated proteins, such as Plin2, may
have direct roles in atherogenesis (Larigauderie et al. 2004;
Buers et al. 2011). Interestingly, however, there are a few
exceptions to the rule that the presence of ectopic LDs lead
to disease. For example, in the ‘athlete’s paradox’, highly
trained elite athletes are able to accumulate high levels of
TAG-rich LDs in skeletal muscle without developing
dysfunctions such as insulin sensitivity (Goodpaster et al.
2001; Russell 2004).

Abnormalities in the function of LDs and/or LD-
associated proteins have been found in several degenerative
conditions including Parkinson’s and Altzheimer’s diseases
(Bozza and Viola 2010). For example, the normally soluble
Parkinson’s disease protein, σ-synuclein, becomes bound to
LDs in affected patients, suggesting that relocation to LDs
may be an early and important stage in the onset of this
disease (Cole et al. 2002; Scherzer and Feany 2004).
Another protein, called Nir2, which is essential for the
proper function of the retina, can, upon phosphorylation,
become relocated to LDs (Litvak et al. 2002). The resulting
disruption of intracellular lipid trafficking may be involved
in the degeneration of retinal function. The hereditary
spastic paraplegias are a heterogeneous group of neurode-
generative disorders characterized by progressive lower
limb spastic paralysis that are caused by mutations in a
wide range of genes. One of these mutations that is also the
cause of Troyer syndrome occurs in the gene encoding the
recently characterized LD-associated protein, spartin. In
normal individuals, spartin recruits and activates the
ubiquitin ligase, AlP4, onto LDs, where it mediates their
turnover by promoting ubiquitination of the major resident
LD protein, Plin2 (Hooper et al. 2010). When spartin is
absent or defective as in Troyer syndrome, LDs tend to
accumulate to abnormal levels (Alberts and Rotin 2010).
For some as yet unknown reason, in this case, the resulting
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LD accumulation specifically affects neurons and leads
to the progressive degeneration of motor neurons. In
mice, a mutation of the AUP1 gene results in a lethal
neuromuscular disorder, and the gene product, ancient
ubiquitous protein 1 (AUP1), is mostly bound to LDs where
it binds E2 ubiquitin conjugases (Spandl et al. 2011). This
demonstrates another direct molecular link between LDs and
the ubiquitination machinery in mammalian cells.

Several forms of degenerative liver disease involve
hepatic steatosis, or the hyper-accumulation of LDs in
hepatocytes. In many cases, hepatic steatosis is induced by
chronic alcohol intake (French 1989), and in a mouse
model, enlarged Plin1-coated LDs were selectively induced
by a high alcohol diet (Orlicky et al. 2011). Hepatic
steatosis is also found in about half of all individuals who
are chronically infected with the hepatitis C virus (Castera
et al. 2005; Boulant et al. 2006, 2007, 2008). Although
lipid accumulation was long thought of as a mere by-
product of viral infection, recent work suggests that the
viral life cycle is closely connected with liver lipid
metabolism (Herker and Ott 2011). The major cause of
LD accumulation in hepatocytes infected with the hepatitis
C virus appears to be the action of one of the viral core
proteins, which mimics the role of some of the endogenous
Plin proteins of the host by directing the formation of LDs
from the ER and then stabilizing the LDs by shielding them
from lipolysis (Boulant et al. 2006; Roingeard et al. 2008).
Recent work suggests that the LD production system of
liver cells is essential for hepatitis C virus replication
(Herker et al. 2010). The interferon-induced antiviral
protein, viperin, which is induced by hepatitis C virus
infection, is targeted to ER and LDs, possibly via an α-
helical domain that competes for binding sites with the viral
core protein (Hinson and Cresswell 2009). Other viral
proteins are also able to subvert the LD trafficking system
of their host cells in order to escape from the ER lumen
(Ploegh 2007), whilst the dengue virus capsid protein
hijacks LDs for viral particle formation (Samsa et al. 2009).
Also, several human adenoviruses have been shown to act
as stimulators of adipogenesis, both in vivo and in vitro
(Whigham et al. 2005).

Abnormal functioning of LDs is associated with
several forms of cancer (Menendez and Lupu 2007). A
regular feature of some early stages of cancerous trans-
formations is the appearance of putative microdomains of
TAG within the lipid bilayer of cell membranes (Murphy
2001). Whilst aspects of these microdomains and their
oncogenic significance remain controversial, they may
have roles in abnormal LD formation and could be useful
diagnostic tools for early-stage cancer detection (Khandelia et
al. 2010; Delikatny et al. 2011). In neoplastic colon
cancer cells, LDs proliferate and act as reservoirs of
cyclooxygenase-2 and sites of prostaglandin-E2 synthesis

(Accioly et al. 2008). In contrast, during the early stages of
renal cell carcinoma, Plin2 (adipophilin) expression is
upregulated, but then becomes gradually downregulated
during subsequent stages of tumorigenesis and metastasis,
with corresponding alterations in LD function (Yao et al.
2007). Finally, the major LD protein, Plin3 (TIP47), is
involved in apoptotic and the differentiation processes of
human epithelial cervical carcinoma cells (Than et al. 2003).
In some forms of cancer, such as pancreatic and gastric
cancers, and in some chronic infections, such as tuberculosis
and AIDS, patients suffer from a progressive wasting
condition called cachexia, which involves symptoms such
as kidney and pulmonary disease and heart failure. Cachexia
is the immediate cause of death in an estimated 15% of all
cancer patients and appears to be the consequence of
excessive lipase activity whereby LDs in adipocytes are
broken down, resulting in the dramatic depletion in
adipocyte size (Das et al. 2011). This is followed by muscle
wasting due to fat and overall tissue loss that may be a
secondary effect of lipid breakdown products such as
cytokines, although this has yet to be tested experimentally
(Arner 2011). The role of LDs in modulating the wide range
of physiological and pathological stresses perceived by the ER
network has been reviewed by Hapala et al. (2011).

Interactions of pathogens with LDs

As outlined in “Prokaryotes” and “Protists and fungi”, the
LDs of several pathogens that affect mammals are known to
play important roles in their respective infection processes.
However, as with the viruses discussed above, numerous
microbial pathogens are also able to subvert the LD systems
of their hosts for various purposes ranging from simply
providing the pathogen with a food source to more
sophisticated manipulations such as the induction of lipid
mediators or the induction of specific sets of genes (Bozza
et al. 2009a). Among the many examples of eukaryotic
pathogens/parasites that disrupt LDs are the malarial agent,
P. falciparum, which induces LD synthesis, storage and
trafficking during its intraerythrocytic stages (Palacpac et
al. 2004; Vielemeyer et al. 2004). The pathogen, Trypano-
soma cruzi, which causes Chagas disease, induces LD
formation in host macrophages and the generation of
eicosenoids (Melo et al. 2003). Infections by several
opportunist human pathogens that disrupt LD systems have
become more common due the greater numbers of
immunocompromised individuals with chronic HIV-1
infections. For example, the dimorphic fungus, Histo-
plasma capsulatum, causes a broad spectrum of diseases
that can progress to life-threatening systemic infections.
This fungus induces LD formation in host leukocytes by
means of a secreted cell wall ß-glucan that interacts with
host cell CD18, TLR2 and Dectin-1 receptors, resulting in
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the generation of the signalling molecule, leukotriene B4
(Sorgi et al. 2009).

Several bacterial pathogens are also able to subvert
the LD and lipid trafficking systems of their host cells.
For example, many bacterial pathogens find it difficult to
gain access to intracellular iron stores, but M. tubercu-
losis has evolved a strategy to accomplish this using host
cell LDs as carriers (Luo et al. 2005). It is possible that
mammalian LDs are normally involved in iron mobiliza-
tion, in which case all the pathogen needs to do is to
redirect iron-laden LDs towards the phagosome compart-
ment in which it resides. The obligate intracellular
pathogen Chlamydia trachomatis, is able to redirect
endogenous cytosolic LDs within the cells of its host into
the lumen of the parasitophorous vacuole (Cocchiaro et al.
2008). This is achieved by the secretion of Lda3 proteins
from the pathogen into the host cell where they tag and
capture cytosolic LDs that are then delivered to the
inclusion lumen, from where they can be directly accessed
by the pathogen for lipolysis. The related bacterium and cause
of leprosy, M. leprae, is able to induce LD formation in
macrophages via Toll-like receptors in order to generate
eicosanoids required for pathogenesis (Mattos et al. 2010),
whilst in host Schwann cells, the induction of LD formation
may play a role in the survival of bacteria within
phagosomes (Mattos et al. 2011).

One of the mechanisms of LD induction in macrophages
during mycobacterial infections is via the activation of the
ligand-dependent transcription factor, peroxisome
proliferator-activated receptor γ (PPARγ; Almeida et al.
2009). This results in the proliferation of LDs and a reduced
capacity for macrophages to attack the pathogen. In
contrast, exposure to non-pathogenic M. smegmatis failed
to trigger PPARγ expression in macrophages. On the other
hand, if macrophage LD accumulation is decreased, the
macrophages have an enhanced ability to kill infecting
mycobacteria. This suggests that LDs play an important,
albeit negative, role in the mounting of a successful anti-
pathogen response in mammalian macrophages. PPARγ
also plays a central role in adipocyte differentiation
where it is regulated by various lipidic metabolites (Goto
et al. 2011). Several other PPAR variants are involved in
various aspects of normal LD function, such as PPAR∂ as
a sensor of very low-density lipoproteins in macrophages
(Chawla et al. 2003) and PPARα as an inducer of TAG
and Plin2 protein formation in hepatocytes (Edvardsson et
al. 2006).

In summary, mammalian cytosolic LDs have now
emerged as integral components that are involved in an
ever-growing list of subcellular processes in both health
and disease. The correct functioning of LDs is crucial to
many aspects of constitutive cellular homeostasis, and they
often also play specialized roles in particular tissues or

organs, ranging from the retina to the lung. However, one
of the most interesting aspects of LD studies in recent years
relates to the central roles that these organelles appear to
play in several serious disease and degenerative conditions
in humans, including those involved in major public health
issues such as obesity/metabolic syndrome and cardiovas-
cular disease. As discussed in previous sections, research in
non-mammalian model systems has greatly improved our
understanding of LD behaviour under a range of normal
and pathological conditions. In the future, it will be
important for mammalian LD researchers to be aware of
and exploit the immense potential of these model systems
to underpin further advances in LD-related studies in
humans.

Mechanisms for the biogenesis and maturation of LDs

Many aspects of fundamental cellular processes, such as
cell division and protein synthesis, are highly conserved in
biological organisms, and this probably applies to such a
widespread and important phenomenon as the formation
and maturation of LDs. The physical processes involved in
LD formation and release from cell membranes, and the
continuing exchange of components between mature LDs
and bilayer membranes, have yet to be explained in detail.
In particular, there are very few thermodynamically
rigorous models to account for how rapidly diffusing
neutral lipid molecules such as TAGs and SEs are con-
strained to form swellings within membrane bilayers
(Zanghellini et al. 2010a, b). Nor are there satisfactory
explanations of how nascent droplets are able to bud off
from or reattach to intact bilayer membranes. Although
most textbooks and reviews (including those of the author)
tend to depict the accumulation of TAGs as occurring in
bulges or blisters within the ER bilayer, such structures are
unlikely to arise spontaneously in a conventional planar
bilayer membrane. This is because: (1) newly formed TAG/
SE molecules would tend to disperse rapidly within the
lateral plane of the bilayer and (2) the tight curvature
around a small TAG/SE blister is thermodynamically
unfavourable for most bilayer lipids, and especially the
major ER lipid, PC. Therefore, how is it possible for
localized TAG/SE inclusions to form inside a phospholipid
bilayer? There are several possible mechanisms that might
operate in LD-forming organisms, two of which are
highlighted here.

Firstly, nascent TAG/SE molecules may be constrained
from lateral diffusion by physical barriers, such as
transmembrane proteins that can effectively pen in the
TAGs so that they forced to form a bulge in the bilayer (see
Fig. 5). Lipid rafts provide a mechanism to generate lateral
heterogeneity in membranes (Jacobson et al. 2007), and
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specific transmembrane proteins could be recruited into
localized lipid raft domains that are enriched in TAG/SE
biosynthetic enzymes. It is known that LD formation occurs
on membrane microdomains in both prokaryotes and
eukaryotes, and these are probably related to lipid rafts
(Browman et al. 2007). For example, some lipid raft
proteins with characteristic SPFH (stomatin/prohibitin/flo-
tillin/HflK) domains, such as Flotillin-1 and Flotillin-2 and
stomatin, co-localize on various cellular membranes and on
LDs (Rajendran et al. 2007). In particular, Flotillin-1
appears to specifically associate with nascent LDs, and it
has been proposed that it could induce vesiculation at the
ER or plasma membrane following loading of the bilayer
with neutral lipids. Flotillin-1 has recently been described
as a determinant of a clathrin-independent endocytic
pathway in mammalian cells, which implicates this protein
in vesicular trafficking (Glebov et al. 2006), whilst its
expression in insect cells can induce the formation of
caveolae-like vesicles (Volonte et al. 1999).

Secondly, the increased membrane curvature around
growing TAG/SE blisters can be stabilized by phospholipid
demixing (Mukherjee and Maxfield 2004; Zanghellini et al.
2010a, b; van Meer et al. 2008; van Meer and de Kroon
2011). Simulations using grained molecular dynamics have
shown that lipid bilayers can accommodate 17-nm diameter
TAG-rich domains, and these may be the precursors of LDs
as well as providing diagnostic evidence of early malig-
nancy in certain cancers (Khandelia et al. 2010). The
demixing of bilayer phospholipids can be generated by the
selective biosynthesis of cone-shaped lipids in TAG/SE-rich
regions of the ER. Such lipids have headgroups with
relatively small cross-sectional areas and larger acyl chains.
The importance of conical lipids in the stabilization of
curved bilayer regions has been demonstrated for plant
membrane systems (Murphy 1982). Two of the most
common conical lipids capable of stabilizing regions of
highly negative membrane curvature are phosphatidyletha-
nolamine (PE) and DAG (Mukherjee and Maxfield 2004;
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Fig. 5 Model of lipid droplet
formation on the ER membrane.
a LD formation occurs in dis-
crete ER microdomains that are
enriched in enzymes of neutral
lipid ester (e.g. TAG) and non-
planar bilayer lipid (e.g. PE)
biosynthesis, plus LD coat pro-
teins such as Plin or oleosin.
Lateral diffusion of the TAG and
PE products is physically re-
stricted by a ring of transbilayer
proteins around their site of
formation. b The accumulating
TAG (yellow rectangles) within
the ER bilayer is forced into a
cytosol-facing bulge that is sta-
bilized at its concave neck by
localized domains enriched in
PE (black wedges) and by coat
proteins that are recruited into
the bulge, possibly thanks to the
favourable free energy transition
conferred by moving from a
monolayer (pink rectangles) to a
bilayer (pink wedges) environ-
ment. c As more TAG enters the
bulge and its neck is increas-
ingly constrained, it begins to
assume a spherical shape. The
final excision of the neck to
release a nascent μLD may be
facilitated by a SNARE
complex, as shown in Fig. 7

Roles of intracellular lipid droplets: from archaea to mammals 567



Dowhan et al. 2008). In addition, signalling events can lead
to the localized accumulation of highly charged lipids such
as phosphorylated phosphoinositides or phosphatidic acid
(PA) and lyso-PA on one bilayer leaflet (Jenkins and Frohman
2005). Such lipids can themselves induce curvature and/or
recruit specific proteins to such localized domains that then
influence curvature. Current concepts of the energetic
implications of membrane curvature and the roles of lipids
and proteins in generating such curvature are based on the
theory of membrane bending elasticity as proposed originally
by Helfrich (1973), and discussed and extended more
recently by Zimmerberg and Kozlov (2006).

Recently, it has been shown that in mammalian systems,
PE may play a key role in stabilizing the tightly curved TAG
blisters and micro-LDs required for LD formation (Hörl et al.
2011). Although the most common lipid component of the
ER membrane is PC, during LD formation, there is an
upregulation of enzymes involved in the conversion of PC to
PE (Vance and Vance 2008). The localized high concentra-
tion of PE in the vicinity of TAG formation may stabilize
TAG blisters within the ER bilayer and may also promote
their evagination as micro-LDs. These results are consistent
with the observation in plants that plastid LDs, or plastoglo-
bules, are associated with the tightly curved margins of
thylakoid membranes (Austin et al. 2006). We have
previously shown that thylakoid margins are enriched in
and stabilized by cone-shaped monogalactolipids (Murphy
and Woodrow 1983). As shown in Fig. 5, the directionality
of LD release could be promoted by the selective accumu-
lation of PE on the cytosolic monolayer of TAG/SE-
producing ER domains. Providing the TAG/SE and PE
molecules in such domains were constrained from lateral
diffusion within the bilayer, as discussed above, the presence
of localized PE clusters could facilitate an outward, cytosol-
facing bulge in the ER that could then be stabilized by the
recruitment of structural LD-binding proteins such as Plin2
(in Unikonts) or oleosin (in plants).

This process would result in the formation of a large
cytosol-facing bulge enriched in neutral lipids and
enclosed/stabilized by a phospholipid/protein coat. It is
possible that in some cells, these LD bulges stay attached to
the ER via a narrow neck stabilized by lipids such as PE
and specialized proteins such as SNAREs. This would
enable their contents to remain in dynamic equilibrium with
metabolite pools within the ER. For example, cytosolic LDs
in the moss, P. patens, appear to maintain physical
continuity with the ER, whereas the LDs in the seeds of
higher plants lose their connection with the ER as they
mature (Huang et al. 2009). As shown in Fig. 6 and
reported by us previously (Piffanelli et al. 1997), there are
very close associations between LDs and ER membranes in
certain plant cells, and in many cases, LDs appear to be
partially or completely encircled by closely appressed ER

sheets or tubules. Similar findings have been reported from
other plant and animal systems (Fisher et al. 1968; Jensen et
al. 1968; Wetzel and Jensen 1992; Targett-Adams et al.
2003; Robenek et al. 2005a, b; Bozza et al. 2007). In the
analogous process of plastoglobule formation in plant
plastids, there is evidence that at least some plastoglobules
remain in direct contact with the thylakoid membranes from
which they were formed (Austin et al. 2006).

The process of LD formation is separate from TAG
biosynthesis and requires the presence of additional
proteins. The best known of these are LD coat proteins
such as Plin2, oleosin or phasins, but other ER-resident
proteins are now known to be essential to LD formation and
release. One example is the family of fat-inducing transcript
(FIT) proteins found in most, and perhaps all, Unikonts
(Kadereit et al. 2008). Confusingly, these FIT proteins are
completely unrelated to the similarly named fungal LD
proteins where FIT stands for fat storage-inducing trans-
membrane (Nguyen et al. 2011). We (Abell et al. 1997;
Sarmiento et al. 1997) and others (Abell et al. 2002, 2004)
have previously suggested that LD-associated proteins
might facilitate LD formation by assuming a lower energy
conformation on a budding LD monolayer compared to
their conformation on or within the cytosolic face of the ER
bilayer. This would provide a thermodynamic driver for the
partitioning of such proteins onto the LD surface and could
facilitate the formation of a cytosol-facing bulge in the ER
bilayer. Such a tightly curved bulge in the outer face of the ER
bilayer would be additionally stabilized by the demixing of
conical phospholipids, as discussed above. Meanwhile, the
lateral escape of neutral lipids from the incipient LD would be
further constrained by the presence of transmembrane
proteins, possibly including seipin (Binns et al. 2010), which
could form an ever-diminishing collar around the neck of the
LD (see Fig. 5).

Whilst some LDs remain physically and/or functionally
connected with the ER, others (perhaps the majority in most
cells) may be released into the cytosol as microdroplets
(μLD) of about 50- to 60-nm diameter, although a recent
theoretical model predicts that the earliest nascent μLDs
may be as small as 12 nm in diameter (Zanghellini et al.
2010a, b). It seems likely that a similar process occurs
during PHA granule formation in prokaryotes, although in
this case the granules bud off from the plasma membrane
(Wältermann and Steinbüchel 2005). These various types of
μLD probably then undergo fusion via highly regulated
processes in order to produce the small LDs (sLD) of about
500- to 2,000-nm diameter, as found in the mature LD
populations of most cell types in most organisms. In
mammalian cells, it was observed that spontaneous fusion of
LDs was relatively slow under normal growth conditions, but
was promoted by several pharmacological fusogenic agents
(Murphy et al. 2010).
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When two spheres fuse, the surface area/volume ratio of
the new larger sphere is smaller than the sum of the two
original spheres (see Fig. 7). As the internal volume of
fused LD spheres is conserved, some of the surface PL and/
or protein components (about 20%) must be removed
rapidly in order to stabilize each newly enlarged LD
(Ohsaki et al. 2009; Murphy et al. 2010). It is estimated
that the surface PL content of a mature adipocyte giant
unilocular LD (gLD) is only one tenth of the PL content of
all the μLDs that originally fused to produce it (Zanghellini

et al. 2010a, b). During LD growth, membrane curvature
decreases substantially, and, as expected if PE tends to
stabilize μLDs, LD maturation has been found to be
correlated with the conversion of PE back to PC (Hörl et
al. 2011). Whilst many models of LD maturation involve
fusion of smaller LDs and the consequent generation of
surplus phospholipids and coat proteins (Boström et al.
2005, 2007), other models posit the growth of LDs via the
gradual accretion of neutral lipids, as occurs in caveolae
(Uittenbogaard et al. 2002; Kuerschner et al. 2008; Yen et

Lipid 
droplet

ER-LD 
network

Fig. 6 ER–lipid droplet associa-
tions in plants. Cytosolic lipid
droplets in developing micro-
spores in the plant, Brassica
napus. Note the close association
between the lipid droplets and
the ER membrane system, which
in many cases appears to enfold
the droplets. Similar ER–LD
associations are found in animals
and other eukaryotes. Bar,
0.5 μm
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al. 2008; Cheng et al. 2009). In contrast with LD fusion, the
accretion mechanism would require the recruitment of
additional PLs and LD coat proteins in order to stabilize
the growing LDs (Fujimoto et al. 2008).

In most mammalian cells, the accumulation of a small
number of sLDs appears to be the default mechanism.
However, in a very small number of cell types, most
notably white adipocytes, small numbers of sLDs are not
the mature state. Instead, sLDs continue to fuse with each
other until the cell is almost entirely filled with a single
giant unilocular LD. This process is mediated by LD
maturation genes, such as fsp27, and lesions in such genes
can result in the failure of sLDs to fuse into gLD in white
adipocytes (Le Lay and Dugail 2009). In contrast, the
default LD maturation pathway in some cells in Drosophila
appears to be the formation of a unilocular gLD, but this is
normally prevented by the action of Plin1 to promote

lipolysis (Beller et al. 2010a). Therefore, Plin1 deficiency
in Drosophila often leads to a unilocular LD phenotype,
whereas in humans, it results in a complete failure to
accumulate LDs in white adipocytes (Gandotra et al. 2011).
In addition to regulatory proteins such as Fsp27, LD fusion
in adipocytes involves microtubule and SNARE proteins,
and the latter are implicated in insulin sensitivity (Boström
et al. 2005, 2007). These proteins, which also play roles in
vesicle budding and fusion, probably facilitate the fusion of
LDs. In mammals, LD fusion may also be promoted by the
recruitment by Arf1-type GTPases of phospholipase D,
resulting in the generation of localized accumulations of the
non-planar bilayer lipid, PA (Nakamura et al. 2005;
Andersson et al. 2006; Walther and Farese 2009).

The importance of LD fusion can be appreciated from
the calculation that it requires about 1,000 μLDs to fuse in
order to produce a typical mature unilocular LD in a white

SNARE fusion 
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20% surplus LD 
coat components
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Plin 
proteins
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proteins

Fig. 7 Model for lipid droplet
fusion in mammals. a In this
model, two equal-sized lipid
droplets become tethered together
via a SNARE fusion complex
consisting of a four-helix bundle
formed between Syntaxin-5,
SNAP23 and VAMP4. b The
SNARE complex forces the two
lipid monolayers together until
they fuse, which enables the
neutral lipid cores to combine
into a single larger droplet. The
resulting droplet will be about
26% larger in diameter than each
original droplet and will have a
20% excess of phospholipid/pro-
tein surface area that will require
removal or recycling. See text for
further details. Adapted from
Olofsson et al. (2009)
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adipocyte. It has been proposed that LD fusion occurs via a
simplified version of SNARE-mediated bilayer vesicle
fusion (Boström et al. 2007 et al.; Olofsson et al. 2009).
According to this model, two small LDs approach and are
tethered together via a SNARE complex that consists of a
four-helix bundle between Syntaxin-5, SNAP23 and
VAMP4. As shown in Fig. 7, this SNARE complex pulls
the two adjacent monolayers towards each other, eventually
forcing them to fuse into a single monolayer that now
encloses the combined contents of both original LDs.
Following LD fusion, the four-helix bundle is recognized
by α-SNAP, which, together with the ATPase, NSF,
unwraps the bundle, thus enabling new fusions to be
initiated. It is likely that additional proteins, such as
members of the Plin family, then either stabilize the new
enlarged LD or facilitate its continued fusion to create even
larger LDs. As noted above, individual mammalian cells
can contain several size classes of LD, each stabilized and
regulated by different groups of Plin proteins. It is likely
that these LD size populations are dynamic, shifting
towards larger LD sizes when lipid storage is favoured
and to smaller sizes when LD turnover and mobilization are
required. The disruption of this dynamic process appears to
be a central event in the interrelated pathologies of
metabolic syndrome, obesity and insulin sensitivity.

Concluding remarks

The past decade has witnessed a transformation in our
knowledge of the roles of LDs in cellular function across
the full range of biological organisms. We are beginning to
uncover the true extent of the function of LDs in highly
dynamic short-term processes such as signalling, as well as
in longer-term processes such as energy storage. In the
higher multicellular eukaryotes, LDs also have roles in
developmental processes, environmental responses, patho-
genesis and ageing that are often manifest at the whole
organism level. In particular, LD dysfunction in humans is
now implicated in some of the most serious contemporary
public health concerns, including obesity, insulin-resistant
diabetes and coronary heart disease. In the coming years,
the elucidation of the precise roles of LDs in health and
disease in a range of model organisms, from yeast to mice,
will doubtless greatly extend our understanding of human
LD dysfunction and hopefully will enable new methods of
prevention and treatment to be devised.

There has also been much progress in the harnessing of
LDs as feedstocks for the production of renewable biofuels,
e.g. in microalgae, and a broad range of renewable and
biodegradable industrial materials, including biopolymers
and oleochemicals. Finally, the fats and oils derived from
plant and animal LDs provide the second most important

source of dietary calories to human societies across the
world. The task of increasing global food supplies has
become increasingly urgent in this era of food insecurity
and climate change. In the future, the emerging ability to
engineer ectopic LD formation in little-used crop tissues,
such as leaves and roots, has the potential to greatly
increase our supply of lipids that could be used for food,
fuel and chemical production. In short, the study of LDs has
now emerged fully from its previous ‘Cinderella’ status to
become one of the central themes of modern cell biology.
Moreover, continuing advances in analytic techniques and
genomics give the prospect of continued advances in this
exciting area for many years to come.
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