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Abstract Waterlogging usually results from overuse and/or
poor management of irrigation water and is a serious
constraint with damaging effects. The rapidly depleting
oxygen from submerged root zone is sensed and plant
adjusts expressing anaerobic proteins. Plant cells shift their
metabolism towards low energy yielding anaerobic fermen-
tation pathways in the absence of oxygen. Structural
modifications are also induced as aerenchyma formation
and adventitious rootings, etc. Studies at molecular and
biochemical levels to facilitate early perception and
subsequent responses have also been worked out to produce
resistant transgenic plants. This review explores the
sequential changes of plant responses at different levels
regarding their defense strategies and efforts made to
enhance them, tailoring crucial regulators so that they can
withstand waterlogging stress.
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Abbreviations
O2− Superoxide
RNS Reactive nitrogen species
ANPs Anaerobically induced polypeptides
ACC 1-Aminoacyl cyclopropane-1-carboxylic acid
Ci Internal carbon dioxide

CER CO2 exchange rate
SuSy Sucrose synthase
CAT Catalase
POX Peroxidase
SOD Superoxide dismutase
PM-NR Plasma membrane–nitrate reductase
cNR Cytosolic nitrate reductase
ADH Alcohol dehydrogenase
Hb Hemoglobin
xet-1 Xyloglucan endotransglycosylase-1
PGA 3-Phosphoglycerate

Introduction

The soil water content of surface layer whenever exceeds at
least 20% higher than field's carrying capacity it leads to free
standing water on soil surface (Aggarwal et al. 2006; Nilsen
and Orcutt 1996). This condition imposes severe constraints
on crop growth and productivity (Jackson and Colmer 2005).
Waterlogging stress may develop due to several direct
(improper irrigation practices) and indirect (global warming)
anthropogenic and natural consequences (meteorological)
leading to altered plant metabolism, architecture and eco-
geographical distribution depending upon plant responses.
Alarmingly changing earths' average temperature (IPPC
2001) is predicted to exaggerate the problem in near future.
The erratic rainfall, rise in sea level due to increasingly
melting glaciers and shift in native climate-spectrum will
pose selection pressure on agricultural crops. Therefore,
highly resistant plants mingled with desired agronomical
traits will be the demand of future crops. Rice, the global
staple crop feeding above the half of the globe, has secured
its growth in different climatic regimes accompanied by
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genotype selection. The other economic cereals (as Triticum,
Pennisitum and Zea mays, etc.) however, do not appear to
this fortunate overriding the detriment of waterlogging for
their survival. Also rice, however, cultivated on flooded
anaerobic soils (Swaminathan 1993), when submerged
completely; seedlings suffer oxygen deficiency as is the case
in Southeast Asia (Jackson and Ram 2003).

Flooding generates hypoxic stress in plants

Land plants are strictly aerobes receiving freely diffusing
molecular oxygen from aerial even underground tissues.
Oxygen deficiency (hypoxia) or its complete absence
(anoxia) damages most often the roots and seeds under
transient or sustained flooded soil in various countries
(Maltby 1991). Excess water produces anoxic soil within a
few hours (Gambrell and Patrick 1978). The slow diffusion
rate (10−4 fold), low solubility (Ponnamperuma 1984;
Gambrell et al. 1991) and increased microbial activity not
only reduces the soil oxygen content, but also latter adds
the toxic organic and inorganic compounds in the soil
(Ponnamperuma 1984; Gambrell et al. 1991). The condition
deteriorates during high temperature and in night, when
root respiration increases with simultaneous increase of
microbial activities. This rapidly depletes oxygen from soil
rendering it with reduced inorganic forms of Fe3+, S2− and
carboxylic acids, etc. Redox sensing of O2 induces various
biochemical, and therefore physiological changes in roots
and shoots of several dicots, such as, in Lycopersicon
esculentum (Jackson and Campbell 1976; Bradford and
Yang 1981; Bradford and Hsiao 1982), Solanum tuber-
osum, legumes, Nicotiana tobaccum, Ipomoea batatas,
Cucumis sativus, and monocots as in Oryza sativa
(Vartapetian et al. 2003; Perata et al. 1992), Triticum
aestivum, Z. mays (Saglio et al. 1988), and Arabidopsis
thaliana (Trevaskis et al. 1997; Wang et al. 2000). A short
spell of flood, however, may spare some moderately
tolerant crops with the induction/up-regulation of counter-
acting genes to reverse the damages accompanied, at the
cost of de-repression of certain other genes required for
growth acceleration. A slow diffusion rate of O2 under
water pushes the plant (especially roots) towards more
anaerobic biochemical acclimation (Armstrong 1978). Thus
plants shift their metabolism at basal metabolic rate (BMR)
to sustain their survival under low energy economy.
Moreover, stagnate flooded water in lowland with added
high precipitation climates may lead to sustained partial or
complete waterlogging (submergence) may lethally push
plant metabolism beyond BMR, where it my die ultimately.
Therefore, the duration of waterlogging and genotype has
critical relevance in stress defense. The mass destruction of
crops causes a large reduction of global productivity every

year. Reduced supply of adenylate pool set back the plant
metabolism to anaerobiosis, by finely modulating the tissue
based biochemical set up. However, rice employs this
strategy at its initial level of seed germination avoiding
hypoxia by extensing coleoptile to reconcile with air
(Jackson and Pearse 1991) and transporting oxygen from
aerial part to hypoxic/anoxic roots indicating spatial and
temporal pattern of the two strategies (true tolerance and
avoidance, respectively) balancing under different growth
and climatic conditions. Upsurge in massive literature in
recent past regarding the defense strategies elicited by rice
under flooding and related phenomena is indicative that rice
has been at the center of researches. Since waterlogging is
soon followed by hypoxia, rice switches towards anaerobic
metabolism particularly in roots. This condition hastens the
aerobic mode of energy production with decline in
adenylate pool.

Waterlogging upregulates ACC in root tips as primary
signal

Under abiotic stress conditions the reduced plant growth is
noticed first. Since roots are the anchoring and absorptive
system of plants associated with mineral and water
absorption, microbial interactions and various other signal-
ing events, these are crucial for sensing several environ-
mental (edaphic) cues. The transition to hypoxia generates
the reactive oxygen species (ROS) in roots with the
concomitant production of H2O2, a well known signaling
molecule. Plant life had evolved 460 million years ago in
excess water conditions (Beerling 2007). Roots possess the
most important tissues ascertaining the aerial life of plants
on land. Roots of aerial plants are composed of tightly
packed tissues with very little intercellular spaces allowing
slow diffusion of gases (Geigenberger 2003). On the other
hand, aquatic or semi-aquatic/amphibious plants have
several air chambers in their root anatomical structures.
Waterlogging in mesophytes, severely slow down (10−4

fold) the rate of oxygen diffusion in root tissues. Unavail-
ability of oxygen induces ANPs including the induction of
ACC, a precursor of ethylene biosynthesis. ACC is well
known to be produced under anaerobic and/or anoxic
conditions. This signal is transported to aerial parts of
shoot. ACC in the presence of O2 and ACC-oxidase forms
ethylene. The conversion of ACC to ethylene could be
assumed as a major determining factor in achieving
resistance, facilitating various regulatory functions in
plants. Induction of apoptosis in selected tissues/cells
(Subbaiah and Sachs 2003), nodal adventitious rooting,
formation of air chambers, and metabolic changes under
anaerobiosis and several other functions were attributed to
be regulated by the ethylene, which is synthesized from its
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precursor ACC transported from roots. Initial PCD events
sometimes are considered to be survival strategies.

Waterlogging stimulates root tip death

Meristems are the first target of stresses as dispensable tissues.
Besides the ceased growth of shoot apical meristems, root tips
are more sensitive to water borne hypoxia in soil particularly in
mesophytes. Maize root tips were shown to progressively
accelerate towards PCD as waterlogging/anoxia persists. A
considerable attention has been paid to strategies/mechanisms
that prolong the anoxia tolerance to the primary root tip in
young maize seedlings (Drew et al. 1994). The maize root tips
that are not hypoxically acclimated are very sensitive to
anoxia and die within few hours (Roberts et al. 1984; Johnson
et al. 1989). While in some maize genotypes accelerated PCD
appears to be genetically controlled tolerance mechanism
(Zeng et al. 1999). Induced mRNA expression of xyloglucan
endotransglycosylase-1 (xet-1), a putative cell-wall-loosening
enzyme (Peschke and Sachs 1994; Saab and Sachs 1995,
1996) in maize root tip indicate its involvement in root tip
death. The induction of xet-1 appears to be specific to O2

deprivation (Peschke and Sachs 1994).

Flooding and induction of aerenchyma formation

As this signal (ACC) progresses towards more aerobic shoots,
its conversion to ethylene by ACC oxidase (Voesenek et al.
1993) induces auxin-mediated aerenchyma formation in the
region just below the root tip (Drew et al. 1981) in number
of crop species viz. rice (Justin and Armstrong 1991), wheat
(Watkin et al. 1998), maize (Gunaverdena et al. 2001), barley
(Arikado and Adachi 1955), and soybean (Bucanamwo and
Purcell 1999), etc. These cortical air spaces facilitate aeration
and assure prolonged survival (Drew et al. 2000). The
enzymes like cellulases (Drew 1992; Grineva and Bragina
1993; He et al. 1994) alongwith other degrading enzymes
(Campbell and Drew 1983; He et al. 1994) viz. xyloglucan
endotransglycosylase-1 (xet-1) (Peschke and Sachs 1994;
Saab and Sachs 1995, 1996), expansins (Voesenek et al.
2003; Vriezen et al. 2003), and pectinases are likely to be
involved in lysigenic aerenchyma formation. Investigations
are also going on the illusive role of NO concerning with
PCD and aerenchyma formation.

The epidermal and exodermal barriers formed in roots
facilitate oxygen (Aschi-Smiti et al. 2004; Colmer 2003) and
ethylene entrapment. The lysigenous aerenchyma formation
by ethylene is mediated by expressing several apoptosis
related ANPs, xet-1, proteases, death inducing factors
(Subbaiah and Sachs 2003). Growth is redirected as vertical
extension of shoot at the cost of sacrificed compact tissues in

certain cases, which are more habituated to submergence (as
Potamogeton pectinatin, wheat, rice, etc.) to shorten the total
submergence and reuniting the shoots with air (Voesenek et
al. 2003) even in complete absence of oxygen and
independently of ethylene (Visser et al. 2003). This strategy
appears to be providing resistance to withstand flash-flood to
those previously experienced mild dose of waterlogging or
those partially adapted to flood. Such changes may also be
supported by the auxin favored expression of expansins
(Voesenek et al. 2003; Vriezen et al. 2003), xet-1 and
pectinases when pH is lowered due to accumulation of
lactate, organic acids etc. under anaerobiosis.

Waterlogging-mediated epidermal cell-death facilitates
emergence of adventitious roots at nodes

Programmed cell death (PCD) is a part of development, has
been studied by a number of researchers at different stages
of growth viz. gametophyte (Buckner et al. 1998), embryo
development (Marubashi et al. 1999) and germination
(Wang et al. 1996a, b; Fath et al. 1999), xylogenesis
(Groover and Jones 1999), root-cap formation, senescence,
plant defense strategies (Dangl et al. 1996), and in
adaptation to low oxygen stress when cortical cells are
sacrificed to form aerenchyma (He et al. 1996; Kawai et al.
1998; Samarajeewa et al. 1999). In nodal tissue also,
adventitious root initials remain covered by the epidermis
until the proper signal induces them to accelerate their
growth rate and to emerge. They are formed early in the
development (Lorbiecke and Sauter 1999). During flood
when ethylene accumulates at nodes, it causes death of
epidermal cell covering the tip of primordia facilitating
emergence of root (Mergemann and Sauter 2000) at water
surface and providing aerenchyma ample of oxygen in deep
water (rice). The interaction of auxins and ethylene is
important for the induction of adventitious root formation
(McNamara and Mitchell 1989, 1991).

Submergence affects leaf-gas exchange

Submergence when inundates shoots as well as roots
sufficiently, it prevents the aerial influx of CO2 and light
decreasing the photosynthesis largely. However, a sustained
partial submergence could also affect leaf gas exchange in
photosynthetic aerial parts.It has been reported that flood-
ing cause stomatal closure directly, without influencing the
photosynthetic capacity, in Vaccinium ashei (Davies and
Flore 1986a, b), therefore decreasing Ci (Liao and Lin
2001). The systemic signal for this is assumed to be
translocated from roots to leaves. Ethylene regulates the
expression (and activity) of ABA in mesophylls. The
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increase in foliar ABA content in peas when subjected to
soil flooding was accompanied by closure of stomata
(Jackson and Hall 1987). Similar results have been
observed in tomato (Jackson 1991). In most of the flood-
intolerant plants, flood cause a significant decrease in foliar
gas exchange capacity, for instance, wheat (Trought and
Drew 1982), tomato (Bradford 1983), Pisum sativum
(Jackson and Kowalewska 1983), Citrus sp. (Phung and
Knipling 1976), etc. However, some flood-tolerant plants
have developed adaptive mechanisms so as to maintain
better photosynthetic capacity (Sena Gomes and Kozlowski
1980; Topa and Cheesemann 1992). Leaf gas exchange is
directly related to the photosynthetic capacity of plants. As
flood inundates plant internal CO2 concentration (Ci)
increases linearly despite of reduction of stomatal conduc-
tance. A decrease of stomatal conductance was found to be
correlated with an increase of leaf water potential in flooded
bitter melon (Liao and Lin 1994). It can be hypothesized
that stomatal closure slows the rate of transpiration, thus
preventing leaf dehydration (Bradford and Hsiao 1982). In
control and flooded plant, stomatal conductance was shown
to be correlated with CO2 exchange rate (CER) (Smith and
Ager 1988; Vu and Yelenosky 1991; Liao and Lin 1994).
These results imply that stomatal aperture is a limiting
factor for CER. Despite the reduced CER, foliar Ci was
reported sufficiently high as compared with plants that had
not been subjected to flooding. The observations suggest
that stomatal aperture is not the only limiting factor for
CER but is partly responsible for the decrease in the
photosynthetic capacity of mesophyll tissue. Also rate of
respiration sufficiently increases during flooding stress.
Following factors could be suggested for elevated Ci, (1)
reduced photosynthetic capacity (2) increased respiration
rate, and (3) decreased stomatal conductance.

Physiological changes under flooding

Submergence reduces activity of Rubisco
and photosynthetic capacity of mesophyll cells

The activation level of Rubisco in flooded bitter melon
increased above the control value after 1 day of flooding
and subsequently declined to a lower level (Liao and Lin
1994). Change in the level of activation of Rubisco reflects
the level of carbamylation of Rubisco (Miziorko and
Lorimer 1983), which in turn is regulated by Ci and light
intensity (Sage et al. 1990). In general, the activation level
of Rubisco generally declines as Ci increases (von
Caemmerer and Edmondson 1986; Sage et al. 1988,
1990). The activity of Rubisco increases initially with
increase in Ci then declines as Ci further increases (Liao
and Lin 1994). Under elevated Ci, the pool size of RuBP

was found to decline and the level of PGA to increase in three
different plant systems (Badger et al. 1984; von Caemmerer
and Edmondson 1986; Sage et al. 1988). (Sage 1990)
suggested that excessive consumption of RuBP may switch
off the active site of Rubisco, thus maintaining a balance
between RuBP consumption and its regeneration, and
regulating the activation of Rubisco. It has been established
that the carbamylation/decarbamylation equilibrium of
Rubisco involves reversible active enzyme-CO2-Mg2+ com-
plex formation. Formation of this complex is pH dependent
and has been observed in leaf homogenates (Lorimer et al.
1976) and isolated chloroplasts (Bahr and Jensen 1978). At a
concentration of 0.2 M Mg2+, optimal Rubisco activity was
found to be between pH 8.5 to 10, whereas 90% of the
enzyme activity was lost when the pH was lowered to 7.0
(Lorimer et al. 1976). Andrews and Lorimer (1987)
postulated that a high level of CO2 favors overproduction
of PGA and leads to acidification of the stromal phase, thus
reducing the carbamylation level of Rubisco. Since Rubisco
catalyzes the initial reaction during the assimilation of
atmospheric CO2 (Andrews and Lorimer 1987), the activa-
tion level of Rubisco should be positively correlated with the
rate of photosynthesis. Reduced quantity of Rubisco protein
as well as reduced activity of existing enzymes may cause
Rubisco activity to decline during flooding. Furthermore, it
was reported that phloem transport of photosynthates was
blocked (Saglio 1985), and that the demand for sucrose
loading was lowered. This may lead to an accumulation of
starch in the chloroplasts (Wample and Davis 1983; Liao and
Lin 1994). It can, thus, be suggested that feedback inhibition
of starch accumulation may result in a reduction of CER in
flooded plants. The many physiological responses observed
indicate that both stomatal and metabolic factors are
responsible for the reduction of CER during flooding stress.

Waterlogging cause reduction in leaf-water-potential

Inhibition of aerobic respiration with concomitant loss of
ATP synthesis in roots ceases the ion uptake and transport
(Huang et al. 2003; Vartapetian et al. 2003) through fueled
channels. This disturbs the water potential across the cells
in root tissues, thus lead to breakdown of homeostasis.
Localization of ABA causes various effects viz. increased
ion flux (K+ outflow), stomatal closure (Davies and Zhang
1991), and cell growth inhibition. ABA-mediated increased
hydraulic conductivity across the membrane appears to be
due to its altered properties (Van Steveninck and Van
Steveninck 1983). Loss of ATP perhaps fails to maintain
membrane potential and loss of ions alongwith ABA-
mediated K+ outflow causes collapse of guard cells. The
turgor loss ultimately results in plant wilting within hours to
days of flood (Jackson and Drew 1984).The ethylene and
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ABA-mediated curvature of leaves occurs due to reduced
abaxial growth of petiole. A differential cell growth causes
epinasty in leaves and loss of turgor, the leaf wilting. Since
ABA is well known as a Ca2+ antagonist, the inhibition of
(IAA and cytokinin mediated) growth may be due to
interference with Ca2+ metabolism.

Waterlogging mediated reduced translocation checks
the localization of photosynthates

Accumulation of starch has been reported in leaves of
various flooded plants, e.g., Helianthus annuus (Wample
and Davis 1983), Citrus sinensis grafted onto rough lemon
and sour orange rootstocks (Vu and Yelenosky 1991),
Pinus serotina (Topa and Cheesemann 1992), M. char-
antia (Liao and Lin 1994), L. cylindrical (Su and Lin
1998) and S. samarangense (Hsu et al. 1999; Wample and
Davis 1983). It could be assumed theoretically that if the
translocation path was blocked, assimilates in leaves
would not be able to reach the roots, resulting in a sugar
deficiency in the roots. However, the sugar level in
flooded roots of certain plants was found to be higher
than that in the unflooded control, as in bitter melon (Su
and Lin 1998). The successful germination of seeds under
anoxia is found to be dependent on successful induction of
α-amylase, the enzyme responsible for the degradation of
reserved starch in seed endosperms (Perata et al. 1992).
Studies showing decline in starch level and initial rise in
soluble sugars (Barta 1988 and Castonguay et al. 1993; Su
and Lin 1998) as sucrose and hexoses (glucose and
fructose) during early flooding period followed by a fall
culminating to like those of controls. It indicates that
starch reserves in roots are mobilized and can readily
provide sugars for anaerobic metabolism in flooded roots
(Perata et al. 1992). A long term flooding, however, leads
to eventual necrosis of flood intolerant cultivars and death
ultimately (Liao and Lin 1995; Su and Lin 1998).
Continuous supply of fermentable sugars to roots is
considered to be critical for long term survival of peas,
pumpkin, and several herbaceous plants under anoxia/
flooding (Jackson and Drew 1984; Saglio et al. 1980;
Webb and Armstrong 1983).

The total nitrogen content in plant tissue has been
reported to decrease under flooding stress in various fruit
species, such as citrus (Labanauskas et al. 1972), apple
(Olien 1989), avocado (Slowick et al. 1979), and blueberry
(Herath and Eaton 1968). In the wax-apple tree, the total
nitrogen in the leaves was found to be significantly lower
after 35 days of flooding treatment compared with the
unflooded control while the total amount of carbohydrates
increased, resulting in a significant increase in C/N ratio
(total carbohydrate/total nitrogen) (Hsu et al. 1999). The

carbohydrate–nitrogen ratio in fruit trees has often been
related to bud formation, flowering, and fruiting, but this
relationship also varies with the species (Goldschinidt
1982; Scholefield et al. 1985; Smith et al. 1986).

It has been reported that SuSy has a critical role in
sucrose hydrolysis in anoxic tolerance of maize roots
(Recard et al. 1998) using double mutant sh1 sus1. (Zeng
et al. 1999) reported in hypoxic maize seedlings that of the
two enzymes involved in sucrose hydrolysis, the activity of
invertase is down regulated while that of sucrose synthase
is upregulated. (Aschi-smiti et al. 2004) reported that
30-day-old plants of T. subterranium 15 days of hypoxia
showed induction of sucrose synthase, fructose kinase
lactate dehydrogenase enhanced-ethanol production and
improved energy charge in association with hemoglobin
induction. Content of reducing sugar increases under
waterlogging and was parallel to SuSy activity (Sairam et
al. 2008). Since roots and rhizome are essentially aerobic
organs, the consequences can be fatal, as aerobic respiration
ceases, level of energy rich adenylates drop rapidly, causing
a drastic decline in ion uptake and transport (Huang et al.
2003; Vartapetian et al. 2003).

Phytohormones regulate plant modifications under
flooding stress

Phytohormones are integrating metabolites instead of
controlling agents therefore, often regarded as growth
regulators (Jain et al. 2006). Thus response elicited by
them is not amount based rather based on sensitivity of
tissue (Moore et al. 1995). ACC is primary root signal
transported from roots to aerial parts under very early
stages of hypoxia (Bradford and Yang 1980), therefore,
appears to have critical role providing resistance in rice
cultivars. ACC oxidase requires the exposure of molecular
oxygen for the biosynthesis of ethylene (Bleecker and
Kende 2000). Ethylene production is slowed by partial
oxygen shortage (Raskin and Kende 1984) favoring the
accumulation of ACC. ACC is supposed to antagonize the
polar transmission of auxins hampering the elongation of
shoot. Flooding induced compromised lengthening (Jackson
2008; Braendle and Crawford 1999) could be attributed to
inability to conversion of ACC to ethylene due to absence
of O2. However, when it is converted to ethylene (may be
due to conservative use of oxygen stored in air chambers
or bind with Hb), it is known to interplay with auxins
facilitating escape elongation of rice to access oxygen. The
tissue compactness may be loosened to facilitate extended
growth accompanying selected tissue sacrifice, e.g.,
lysigenous aerenchyma formation. Ishizawa and Esashi
(1984) suggested interaction of ethylene and IAA as
increased level of IAA has been found in elongating rice
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coleoptile (Pegoraro et al. 1988). A lower ABA synthesis
under anoxia (Hoffmann-Benning and Kende 1992) may
aid extension to avoid its negative effects (Mapelli et al.
1995). Ethylene plays a vital role under hypoxia in escape
elongation of rice to access oxygen, CO2, and light
(Jackson and Pearse 1991; Jackson 2008). However in
sensitive varieties or other species, polar transmission of
auxins when checked (may be due to the antagonistic
effect of ACC), result in hampered shoot growth. This
could be correlated with ceased hydraulic conductivity or
water transport through shoot. Ethylene accumulates in
submerged plant parts higher than normal concentrations
(Musagrave et al. 1972) due to ten times slower release
into water (rather soil air) from root (Stunzi and Kende
1989) and increased synthesis (Jackson 1985). The
interaction of auxin and ethylene is important for the
induction of adventitious root formation (McNamara and
Mitchell 1989) too. Soluble sugars are rapidly channeled
to fermentative metabolism when the oxygen level falls.
This limited amount of soluble sugars is utilized conser-
vatively under finely tuned interactive regulation of
phytohormones with sugar signals (Loreti et al. 2003).
Swelling of base and growth retardation is well known
functions mediated by ethylene under hypoxia.

NO at low concentration has been found to be
involved in regulation of diverse biochemical and
physiological processes in plants viz. seed germination,
hypocotyl growth, defense responses, stomatal closure,
and apoptosis (Giba et al. 1998; Beligni and Lamattina
2000; Koprya and Gwozdz 2003; Delledonne et al. 1998;
Durner et al. 1998; Kim et al. 1998; Neill et al. 2003). NO
might be playing a crucial role in signal transduction and
PCD during aerenchyma formation. Ethylene enhances
water transport in hypoxic Aspen (Kamaluddin and
Zwiazek. 2002). Ethylene induces activity of hydrolytic
enzymes in adventitious maize roots, under the conditions
of advancing flooding (Peschke and Sachs 1994; Saab and
Sachs 1996). Stomatal resistance is further associated with
induction of ABA synthesis and its localization. ABA and
ethylene both are regarded accelerating senescence inde-
pendently (Zacarias and Reid 1990). ABA appears to
initiate while ethylene appears to exert its effects at a later
stage (Gepstein and Thimann 1981).

Biochemical changes under flooding stress

Production of ethanol and lactic acid though well-known
fermentation pathways, is one mechanism that organisms
use to provide glycolytic substrate oxidation and ATP
synthesis, maintaining short term cell viability under
hypoxic conditions. The substrates to feed these pathways
are also increased by increasing the flux of glycolysis. ATP

synthesis required to maintain plant growth and viability
in an aerobic environment is achieved by the oxidation
of carbon sources using oxygen as an electron acceptor.
Under conditions that limit oxygen availability complete
substrate oxidation is restricted by the lack of an electron
acceptor. Two pathways are put forth yet so far operating
under hypoxia, (1) anaerobic fermentation pathways and
(2) alternative pathways, e.g., Hb–NO cycle (Sairam et
al. 2009).

Anaerobic fermentation pathways under waterlogging
generate hypoxia

Protein profile is changed under anoxia and specific
proteins are synthesized called ANPs (anaerobic poly-
peptides) (Sachs and Ho 1986). Most of the ANPs are
glycolytic enzymes (Miernyk 1990; Mujer et al. 1993).
Anoxic condition replaces mitochondrial oxidative phos-
phorylation with that of anaerobic fermentation to meet
the cellular energy demand (Davies 1980). The predom-
inance of ADH (Sachs et al. 1980) and its isozymes
(Harberd and Edwards 1983; Liao and Lin 1995) are also
reported. ADH is the key regulator to let glycolysis run by
supplementing depleting demand of NAD+ (Saglio et al.
1980). The ADH induction with concomitant production
of ethanol is well studied by McManmon and Crawford
1971; Avdhani et al. 1978; Chirkova 1978; Smith and
Rees 1979; Tripepi and Mitchell 1984. Crawford (1967)
proposed the “metabolic theory” indicating that plant
achieves anoxia tolerance by minimizing the ethanol
production re-routing the ethanol fermentation to malate
synthesis (Crawford 1967; McManmon and Crawford
1971). Alternatively, (Vanlerberghe et al. 1990), preferred
succinate over malate, as an end product of fermentation
wherein partial TCA form fumarate via oxalo-acetate and
malate regenerates NAD+. Davies (1980) proposed “pH-
stat hypothesis” wherein he explained that short term
tolerance of flood favours ethanol instead of lactate, as
later elevates cytoplasmic acidosis (Roberts et al. 1984).
Latter on this notion was further supported by (Vartapetian
et al. 2003) and it was concluded that actually, plant cell
increases the ethanol production to achieve hypoxic
tolerance under prevailing conditions of waterlogging
(Vartapetian 2005, 2006). The switch that occurs from
the aerobic TCA cycle to fermentation pathways forming
lactate and ethanol under hypoxic and anoxic conditions is
accompanied by a decline in pH due to ATP hydrolysis
and lactate accumulation (may not occur in some hypoxic
tissues) (Saint-Ges et al. 1991; Kennedy and Rumpho
1992; Ratcliffe 1995; Gout et al. 2001; Ooume et al.
2009). Furthermore, lower activity of pyruvate decarbox-
ylase (PDC) suggest it to be rate limiting for ethanol
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production rather ADH itself in flooded roots. Accumula-
tion of ethanol, however, has not been reported to be
directly involved in the growth suppression, though
decrease ATP and increased pH of apoplastic solution
may directly be involved in growth suppression (Ooume et
al. 2009). The decline in pH slows the rate of lactate
formation and activates PDC diverting glycolytic carbon
flow to ethanol formation. Activity of lactate dehydroge-
nase (LDH) increases 20-fold during prolonged hypoxia,
which may be an important factor contributing to long-term
adaptation to hypoxia (Hoffman et al. 1986). Investigations
also revealed the induction of transcriptional activation of
glycolytic and ethanol fermentation enzymes viz. PDC
(Kelley 1989; Peschke and Sachs 1993), ADH (Gerlach et
al. 1982; Rowland and Strommer. 1986; Andrews et al.
1994), glucose peroxidase isomerase (Kelley and Freeling
1984a), aldolase (Kelley and Freeling 1984b), and glucose
peroxidase dehydrogenase (Martinez et al. 1989; Russel and
Sachs 1989).

Under waterlogging osmotic concentration of the cell
sap substantially decreases via decreased concentration of
organic compounds as sugars, amino acids etc. (Ooume
et al. 2009). Increased secondary metabolism is also
reported under waterlogging stress with the upregulation
of concerned enzymes viz. phenylalanine ammonia lyase
(PAL), tyrosine ammonia lyase (Alla et al. 2002; Ahsan et
al. 2007), flavanone 3-hydroxylase (Ahsan et al. 2007).
The increased production of phenols (benzoic, 2-
hydroxybenzoic and 4-hydroxybenzoic acids) and mono-
carboxylic acids (formic, acetic, and propionic acids)
caused a substantial shift towards steady K+ efflux,
accompanied by an immediate net influx of H+ is reported
in sensitive varieties (Pang et al. 2007).

Waterlogging and role of Hb/NO cycle

Nitrate reductase plays a very crucial role reducing nitrate to
nitrite. Enzymes linked to nitrate reduction pathway synthe-
sized de novo (Mattana et al. 1994) and suggested the link
with concomitant prevention of acidification during hypoxia
(Steffen et al. 2001). Among two types of NR reported (cNR
and PM-NR), two third of root nitrate reduction can be
attributed to PM-NR (Gojon et al. 1986). NR activity is
tightly regulated by the phosphorylation/de-phosphorylation,
substrate and co-factor feed back and enzyme degradation.
The phosphorylated form is inactivated with 14-3-3 protein
and activated again by cNR phosphorylase. Hypoxial
activation of NR is about 2.5 fold greater at acidic external
pH (4.8) (Botrel and Kaiser 1997).

Huffaker's group initially demonstrated PM-NR activity
and is present only in root tissue with optimum activity
during night (Stohr and Mack 2001). Since succinate is a

preferred electron donor over NAD(P)H and it hyper-
accumulates during hypoxia (Fan et al. 2003), it possibly
can play role in nitrate reduction at plasma membrane.
Fumarate may reduce back to succinate by succinate
dehydrogenase using complex I and reduced ubiquinone
(Cecchini 2003) under hypoxia.

When nitrate supplied exogenously as N15O3
−, radioactive

N15 appears in amino acids in rice (Reggiani et al. 1993; Fan
et al. 1997). Alanine formation is strictly induced during
hypoxia (Magneschi and Perata 2009). Furthermore, 70%
excess NADH under alanine synthesis might have been
recycled via NO3

− reduction to ammonium (Gibbs and
Greenway 2003). NH4

+ ion produced can be incorporated
into glutamate via glutamine synthetase-glutamate synthase
(GS-GOGAT) enzyme system using NADPH and ATP or via
reverse glutamate dehydrogenase using NAD(P)H (Gibbs
and Greenway 2003). A part of glutamate may facilitate pH
regulation by conversion into gamma amino butyric acid. A
partial TCA cycle may maintain 2-oxoglutarate (Igamberdiev
and Gardestrom 2003). However, it should be noted that
nitrite reductase; a key branch to alanine production is
inhibited under hypoxia (Botrel et al. 1996), also alanine
does not accumulate in sufficient amount. (Fan et al. 1997)
reported a lower rate of ethanol production in rice coleoptiles
supplied with NO3- in comparison with those supplied with
NH4

+. This data indicates, a plausible diversion from nitrite
reduction, strengthening NO to be considered as a possible
product.

Nitrite-NO reductase bound to plasma membrane
could be considered as a putative candidate for the
reduction of NO2 to NO, formed by PM-NR (Stohr et al.
2001). However, physiological electron donor could here
be either Hb or cytochrome other than cytochrome c (NO
is a potent inhibitor of cyt-c oxidase) (Zottini et al. 2002).
A heme protein oxidized during the reaction can be
reduced by a protein with cyt-reductase activity. (Hill
1998) reported the existence of nonsymbiotic (class II) Hb
induced under low ATP level of cell (Nie and Hill 1997)
or increasing sucrose in Arabidopsis (Trevaskis et al.
1997). It maintains the cell energy state under hypoxia in
maize cell lines (Sowa et al. 1998). The hypoxia induced
increase of Hb level in Arabidopsis under elevated nitrate
supply modulates NO level (Wang et al. 2000) and also
regulates the generation of NAD+ (Hill 1998). (Sowa et al.
1998) observed reduced CO2 production and ADH
activity in transformed maize cell lines. Hypoxic con-
ditions also provide optimum pH (6.1) for Ni-NOR for its
activity. It has been shown that it can utilize even 100 μM
concentration of nitrite, showing its higher Vmax (Stohr et
al. 2001). Class I Hb may also have possible role in
maintaining lower NAD(P)H/NADP ratio under anaerobiosis
(Igamberdiev et al. 2004b). An oxy-hemoglobin would
donate negatively charged di-oxygen to NO forming NO3

-
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and met-hemoglobin (Di Iorio 1981). In nodule of
leguminous plants met-hemoglobin reductase has been
demonstrated (Topunov et al. 1980) to reduce met-
hemoglobin to hemoglobin. Besides these, Cyt-b5 reductase
of endoplasmic reticulum (Hagler et al. 1979) and dihydro-
lipoxide dehydrogenase (Moran et al. 2002; Igamberdiev et
al. 2004a) were also reported to possess met-hemoglobin
reductase activity.

Hypoxia induces nitrate respiration

Evidence has been accumulating of a putative “nitrate
respiratory pathway” capable of generating a proton motive
force in bacteria (Jormakka et al. 2003). The presence of
such a pathway in plants potentially generating ATP under
anoxia more efficiently might explain less carbon flow
under nitrate supplement than under ammonium (Fan et al.
1997). However, no ATP synthase has been identified in
eukaryotic plasma membranes and those which are present
(P-type ATPases), are unable to synthesize ATP. Recently,
Igamberdiev and Hill (2009) put forth evidence that nitrite
can substitute from oxygen at the terminal cytochrome
oxidase step thereby allowing it electron transport to
proceed, to a degree, anaerobically.

Perhaps nitrate is the second abundant molecule eco-
nomically available that cell can use to substitute O2 to
receive electron in electron-transport-pathway; when O2 is
depleted. Under anaerobiosis, number of mitochondria
decreases in cell. Cytoplasmic acidosis could not be
tolerated for long time as most of the anaerobic enzymes
are cytosolic. The H+ is sequestered either to vacuole or out
of plasma membrane. There must be activation of specific
type ATPases functioning as ATP synthases to break this
gradient to couple with ATP synthesis. Since P-type
ATPases of plasma membrane are precluded for their role
as ATP synthesis, tonoplast might be speculated to perform
this responsibility in plants.

Role of antioxidant system under waterlogging stress

Reactive oxygen species are produced at the transition
when plant or its any part either enters to hypoxia/anoxia
from normoxic conditions or it return to aerobic environ-
ment. In natural course ROS including O2

−, H2O2, OH
−

(Asada 1999; Dat et al. 2000), and NO (Wink and Mitchell
1998; Lamattina et al. 2003) are produced or leaked
excessively under stress. In germinating seedlings also,
ROS production was reported (Bailly 2004; Bouteau and
Bailly 2008). After waterlogging, sub-terrestrial organs like
roots and rhizomes are more prone to oxidative shock under
such conditions.

These ROS if generated in larger quantity may oxidize
proteins, lipids and nucleic acid and leading to even
mutation (Halliwell and Gutteridge 1999). However to
neutralize the toxicity of ROS plants have evolved an
endogenous system of enzymes (e.g., catalase, peroxidase,
SOD, etc.) and metabolites (e.g., ascorbate, glutathione,
Tocopherol, and proline) to operate it, if exposed to stress
(Apel and Hirt 2004). A fine tuning between ROS and
scavenging molecules monitors the growth and cellular
expression under normal conditions. However, their
production is more often obvious during resetting the
biochemical set up during stress, where plant compro-
mises growth to redirect these molecules for new
functions. Therefore, in the interim between return to
aerobiosis and reactivation of electron transport chain
favors the ROS production. Imbalance between scaveng-
ing and production of ROS due to alteration in biochem-
ical set-up under stress may leak excess ROS. Altered
membrane properties in leaves fails to sustain turgidity
may cause osmotic stress favored by reduced water
transport, which in turn presumably decrease SOD and
CAT activity and overproducing O2

− as reported in wheat
leaves. This in turn causes exacerbation of lipid perox-
idation and depression of photosynthesis. The steady state
level of ROS in different cellular compartments is
determined by interplay between multiple ROS producing
pathways and ROS scavenging mechanisms. They are
controlled by the ROS signal transduction pathway and
believed to run a “ROS-cycle”.

Recent findings of new roles of such species (ROS
and free radicals) are attributed to control and regulate
various biological processes viz. PCD, hormonal signal-
ing, stress responses, and development. The burst of
ROS is reported during various defense mechanisms in
biotic stresses (causing localized necrosis and/or PCD) or
in intense abiotic stresses. In cell(s)/tissue (s), there
appears an adjustment (when stress accelerates) between
PCD and necrosis till the death; dispensable tissues/
organs are sacrificed first. New centers of origin of ROS
production recently identified include NADPH oxidases,
amine oxidases, and cell-wall-bound peroxidases etc. NO
acts as an inter/intra-cellular signaling plant growth
regulator (Beligni and Lamattina 2000) that mainly acts
against the oxidative stress (Neill et al. 2002). However, at
higher concentrations NO may prove to be potentially
toxic to the plant systems (Lamattina et al. 2003). NO at
elevated concentrations has an effect synergistic with that
of ROS (Beligni and Lamattina 1999a, b).

As an important member of ROS, O2
− has been shown

to directly react with protein at Fe-S clusters, heme groups
or S-S bonds and oxidize them (Thompson et al. 1987).
Therefore O2

− is devastating to electron transfer in
photosynthesis. In the stroma of chloroplasts, the key
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enzyme of carbon metabolism, Rubisco is very sensitive to
oxidative stress, causes cross-linking of large subunits at
S-S (Mehta et al. 1992). O2

− presumably mediates cell
death symptoms (-apoptosis) including lipid peroxidation
and subsequent membrane damage (Baker and Orlandi
1995). Metal ion sequestration as Fe and Cu by ferritin and
Cu-binding proteins is thought to be important to prevent
the formation of highly toxic OH− via metal dependent
Haber Weiss or Fenton reactions. Some of the highly toxic
species' formation is prevented either through elevated
expression of quenchers (reduced glutathione, ascorbic
acid, proline etc.) or antioxidant enzymes (CAT, POX,
SOD) viz. OH-, singlet oxygen (1O2) etc. Anoxic stress
leads to H2O2 formation plants cells. The level of H2O2 and
O2

- is maintained at steady state level through SOD,
ascorbate peroxidase (APX), and/or CAT, since beyond
their threshold they are toxic.

Hypoxic signals, perception and gene regulation

No oxygen sensor has yet been clearly identified in
plants (Magneschi and Perata 2009). The expected
candidates are haem or protein with haem cofactors
(reviewed by Dat et al. 2004; Sairam et al. 2009). Class I
hemoglobins (Hbs) maintain the low oxygen environment
by tightly binding to the O2 molecule. These non-symbiotic
Hbs have been reported to be induced under hypoxia (Hunt
et al. 2002) and shown to regulate the release of NO,
therefore detoxifying their excess concentration. Recent
proteomic and microarray analyses revealed the expression
of more ANPs expressed temporally under various regimes
of deprived O2 in tomato, rice and A. thaliana. These
include heat shock factors, ethylene responsive binding
proteins (ERBP), MADS-box proteins, AP2 domain,
leucine zipper, zinc finger, WRKY factors (Loreti et al.
2005; Lasanthi-Kudahettige et al. 2007), NIM1-like protein2,
DWARF1 protein (BR biosynthesis), PAL, flavanone-3-
hydroxylase (secondary metabolism), glutamyl t-RNA re-
ductase1(porphyrin synthesis encoded by heme A gene;
Tanaka et al. 1996), mtATPase α-subunit (Ahsan et al. 2007)
alongwith several other well known ANPs belonging to
enzymes of carbohydrate metabolism, glycolytic and fer-
mentation pathways and aerenchyma formation.

How plant (roots) sense depleting oxygen, is yet not
clear. The role of ethylene in early singling is also elusive.
However, efforts at molecular level revealed the identifica-
tion of new cis-binding elements at promotor sequences and
several trans-acting proteins. The work is still fragmentary
and requires further investigations to resolve role of early
signaling molecules and their working at initial level under
influence of which roots switch to anaerobiosis. Recently
identified ROP (Rho of Plants) G-proteins act as a

molecular switch under hypoxic signaling (Fig. 1). ROP-
GAP4 (ROP GTPase activating protein4) is a negative
regulator of ROP signaling. ROPs is a GTP binding protein,
promoted by hypoxia. The active ROP-GTP induces the
expression and accumulation of mRNA encoding adh and
ROPGAP4. Further the mutants defective in regulating the
anaerobic induction of adh gene (aar1-1, aar1-2, and aar2-1)
were identified. The formation of ROS has been noted in
germinating rice seeds during normoxia and in A. thaliana
and rice under hypoxia. ROS may secondarily produce H2O2

or other free radicals. Mutant study of ROP signaling
indicated that H2O2 acts as both, positive and negative
regulator. (Baxter-Burrell et al. 2002) proposed that produc-
tion of signaling-competent ROS is mediated by ROP
rheostat may provide tolerance to low oxygen management
by regulating release of ROS and consumption of sugars
(Fig. 1).

Also in part, the role of ethylene signaling in the hypoxic
induction of adh was shown in Arabidopsis (Peng et al.
2001). However, proteomic analysis at early waterlogging
sensing show expression of certain transcription factors may
provide clues of promotor binding proteins up/down regu-
lating the key enzymes of anaerobic pathways. Recently,
several workers identified a new lot of ANPs with altered
expression during early hypoxic conditions (Ahsan et al.
2007; Agarwal and Grover 2006). Some of these are even
novel proteins, indicating their plausible roles in several
other unknown mechanisms of defense operating at tissue
specific manner.

Concluding remarks

The stress, in physiological sense; is state function, an
altered condition caused by external factor(s) that tend to
alter the equilibrium (Nilsen and Orcutt 1996) in plant.
External cues plants may perceive as tissue specific manner.
The sensitivity of sensing tissue determines the plant initial
response to timely regulate its metabolism by the acclima-
tion induction, up- or down-regulation of the expression of
concerned genes/enzymes and their activity providing the
ultimate resistance. The emergence of protein expression
analyses spotted up-regulation of several ANPs during
oxygen tension in the primary sensing tissues viz. germi-
nating seeds, elongating coleoptiles, roots of seedlings and
the root tips. Most of the up-regulated/induced proteins of
ANPs, as shown, belong to the enzymes of carbohydrate
metabolism (α-amylase, SuSy), glycolysis pathway (hexo-
kinase, enolase, glyceraldehyde-3-phosphate dehydroge-
nase, phosphofructokinase, aldolase), (alcohol, lactic acid
and alanine) fermentation pathways, nitrogen metabolism
(GS, NR, NiR) with the additional proteins belonging to
signaling (DWARF1, ACC synthase, ACC oxidase, NOS,
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CDPK), redox sensing (Hb, AsA, GSSG, POX, AOX,
vacuolar and mtATPases), apoptosis (xet1,cys proteases),
secondary metabolites (PAL, flavanone-3-hydroxylase), and
transcription factors (WRKY, AtMyb2, MYB7) etc., while
some others are suppressed (LDH, SAM, cys-desulfurase,
PDH and BTF3 like transcription factors). Efforts to
produce transgenic plants with upregulated expression
of one or more of such key regulatory enzymes have
been failed mostly. Researches switched over the regu-
lation mechanisms of these enzymes at the conserved
sequences of the promotors of abovementioned enzymes
sharing the homology. The work on trans-acting binding
factors revealed the role of ROP signaling and AtMyb
transcription factor in regulating the battery of anaerobic
genes under hypoxic conditions. The constitutive expres-
sion of AtMyb transcription factor, however, does not

come up with success suggesting the constraints in the
normal cellular metabolism by the constitutive induction
of anaerobic genes under normoxia. A time-lapse study
of expressions of ANPs, the analyses of involved
transcription factors and their binding elements with
sharing homologies with the promotor sequences of other
ANPs will definitely add new insights understanding the
gradual acclimation of root/plant under prevailing hyp-
oxic/anoxic conditions. The over expression of early
regulators (transcription factors) regulating recruitment/
alteration of protein profile under hypoxia in transgenic
plants with increased “copy number” under control of
inducible promotor (instead of constitutive promotor)
may lessen the metabolic constraint under normal
oxygen/growth conditions but with added resistance,
sensing upcoming oxygen stress.
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