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Abstract We analyzed the production of reactive oxygen
species (ROS) and of detoxifying enzymes and enzymes of
the ascorbate (ASC) acid cycle in avocado fruit (Pesea
Americana Mill cv Hass) in response to wounding. The
levels of superoxide anion (O2

−), hydroxyl radicals (OH.)
and hydrogen peroxide (H2O2) increased at 15 min and 2
and 15 h post-wounding. Peroxidase (POD) activity had
increased to high levels 24 h after wounding; in contrast,
catalase and superoxide dismutase (SOD) levels hat
decreased significantly at 24 h post-treatment. Basic POD
was the major POD form induced, and the levels of at least
three apoplastic POD isozymes –increased following
wounding. Using specific inhibitors, we characterized one
MnSOD and two CuZnSOD isozymes. CuZnSOD activities
decreased notably 12 h after treatment. The activities of
dehydroascorbate reductase and glutathione reductase in-
creased dramatically following the wounding treatment,
possibly as a means to compensate for the redox changes
due to ROS production.
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Introduction

Post-harvest losses in avocado resulting from mechanical
injuries, such as bruising and cutting, are enormous, and the
consumer is frequently unaware of these injuries at the time

the food is purchased since bruised tissue is not visible until
the fruit is peeled. Enzymatic darkening, which occurs
following bruising, markedly reduces the acceptability of
fresh avocadoes since it not only results in the formation of
undesirable dark tissues but may also reduce nutritive
values (Hofman et al. 2002). Most internal disorders
involve flesh browning that is, at least partl,y catalyzed by
polyphenol oxidase (Bower and Cutting 1988).

Wounding produced as a result of abiotic stress factors,
such as wind, rain, and hail, and biotic factors, especially
insect feeding, is also a potential infection site for
pathogens. Consequently, the responses activated at the
wound site are a barrier against opportunistic microorgan-
isms (Cheong et al. 2002).

Responses to wounding have been extensively studied in
plants, and such responses may elicit pathways that interact
with pathogen resistance and possibly other signaling
pathways. A long list of molecules, such as peptides,
hormones, and reactive oxygen species (ROS), have been
implicated in wound responses (Ryan 2000; Leon et al.
2001). Plants respond to pathogen infection and mechanical
or herbivore-induced wounding (Yahraus et al. 1995;
Orozco-Cárdenas et al. 2001) by the localized production
of ROS, a phenomenon often referred to as the “oxidative
burst”. The ROS formed in these reactions are involved in
defense responses (e.g., direct effects on the pathogen,
increased oxidative cross-linking of cell-wall polymers,
induction of pathogen response expression (Rustérucci et
al. 2001; Shah 2003).

The major enzyme families of the defense system,
which are capable of removing ROS directly, are the
superoxide dismutases (SOD; Kliebenstein et al. 1998),
catalases (CAT; Loprasert et al. 1996) and ascorbate
peroxidases (Kvaratskhelia et al. 1999), whereas antiox-
idants such as ascorbic acid and glutathione (GSH) are
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involved in the neutralization of secondary products of
ROS reactions (Noctor and Foyer 1998; Conklin et al.
2000). During prolonged periods of oxidative stress,
however, these detoxification systems become overwhelmed
and tissue damage results.

The aim of the study reported here was to better
understand how avocado responds to mechanical wounding
and how the antioxidative mechanisms are regulated by this
stress.

Materials and methods

Plant material

Fresh unripe avocado fruits (Persea americanaMill. cv Hass)
were purchased at a local market and used immediately.

Wounding treatment

Avocado fruits were longitudinally wounded with a sterile
blade and incubated for 24 h at 25°C. We then removed
0.5 g of tissue at distances of 1, 2, and 2 cm, respectively,
from the wound and used these tissue samples in various
assays.

Avocado fruits also were halved longitudinally, and each
half cut along its length into 3-mm-thick slices. These slices
were then punched, yielding discs 14 mm in diameter. A
total of 50 discs were obtained per fruit, depending on its
size. Discs from all fruit were incubated at 25°C for various
lenghts of time. After incubation, the slices were immedi-
ately frozen in liquid nitrogen and stored at −80°C until the
assay were to be carried out.

In vivo detection of ROS

The production of O2
− was analyzed by the method

described by Doke (1983). Five green fruit discs were
immersed in 10 ml 0.01 M potassium phosphate buffer (pH
7.8) containing 0.05% nitroblue tetrazolium (NBT) (Sigma,
St. Louis, MO) for 1 h. Stained discs were cleared by
boiling in acetic:glycerol:ethanol (1:1:3, v/v/v) solution
before photographs were taken.

Hydrogen peroxide (H2O2) was visually detected in green
fruit discs using 3,3-diaminobenzidine (DAB) (Sigma) as
substrate by the method described by Orozco-Cárdenas and
Ryan (1999). Five green fruit discs were placed in 10-cm-
diameter petri dishes containing DAB solution (1 mg/ml, pH
3.8) for 2 h under light at 25°C. The assay was based on the
instant polymerization of DAB (to form a reddish-brown
complex that is stable in most solvents) when it comes into
contact with H2O2 in the presence of peroxidases. To enable
H2O2 accumulation or peroxidase activity to be recognized,

we also stained the samples in the presence of different
concentration of n-propyl gallate, an guaiacol-dependent
peroxidase activity inhibitor (Mika and Luthje 2003), or
catalase (Sigma–Aldrich, St Louis, MO). The experiment
was terminated by immersing the discs in boiling ethanol
(96%) for 20 min. After cooling, the discs were photo-
graphed and preserved at room temperature in ethanol.

The level of lipid peroxidation was measured in terms of
malondialdehyde (MDA) according to the protocol pro-
posed by Rustérucci et al. (1996). Fruit tissue samples were
ground in liquid N2 and homogenized in 1 ml of 20% (w/v)
trichloroacetic acid (TCA). The mixture was then centri-
fuged for 20 min at 10,000 g, and the pellet was discarded.
A 200-µL aliquot of the extract was mixed with 300 µL of
TCA (20%) and 500 µL of thiobarbituric cid (TBA)
(0.67%) and heated in boiling water bath for 15 min,
cooled and centrifuged at 3000 g for 10 min. Absorbances
were read at 532 and 600 nm. The concentration of lipid
peroxides was expressed as the amount of MDA formed.

Enzyme activity assays

Green avocado tissue was homogenized on ice in 0.1 M K-
phosphate buffer, pH 7.0, containing 1% polyvinyl poly-
pyrrolidone in a ratio of 1:4 (w/v). Homogenates were
centrifuged, and the cleared supernatant was used immedi-
ately as the enzyme source.

Spectrophotometric determination of ascorbate (ASC)
redox enzymes was assayed by using a Beckman (Fullerton,
CA, USA) DU 680 spectrophotometer.

Dehydroascorbate reductase (DHAR) (EC 1.8.5.1) ac-
tivity was assayed following the increase in absorbance at
265 nm owing to the GSH-dependent production of ASC
(Arrigoni et al. 1997). The reaction mixture contained
0.1 M phosphate buffer, pH 6.2, mM GSH, and 50–100 µg
protein. The reaction was started upon the addition of 1 mM
DHA, and the rate of non-enzymatic DHA reduction was
substracted (extinction coefficient 14 mM−1 cm−1).

Glutathione reductase (GR) (EC 1.6.4.2) activity was
determined as described previously (Foyer and Halliwell
1976). The oxidized glutathione (GSSG)-dependent oxi-
dation of NADPH was followed at 340 nm in a 1-ml
reaction mixture containing 100 mM sodium phosphate
buffer, pH 7.8, 0.5 mM GSSG, 50 µl extract, and 0.1 mM
NADPH.

Ascorbate oxidase (AO) (EC 1.10.3.3) activity was
assayed as described by García-Pineda et al. (2004). The
oxidation of ascorbate to dehydroascorbate was followed at
265 nm. The reaction mixture (1 ml) consisted of 935 µl of
buffer (0.025 M citrate, 0.05 M phosphate, pH 5.6), 30 µl of
substrate solution (0.15 mM L-ascorbic acid, 0.5 mM
neutralized disodium EDTA), and 15 µl 1% bovine serum
albumin (BSA) solution.
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The CAT (EC 1.11.1.6) activity assay was performed
according to De Gara et al. (2000) by following the H2O2

dismutation at 240 nm in a reaction mixture composed of
0.1 M phosphate buffer, pH 7.0, 50–100 µg protein, and
18 mM H2O2 (extinction coefficient 23.5 mM−1 cm−1).

Soluble peroxidase (POD) (EC 1.11.1.7) activity was
analyzed by following the formation of tetraguaiacol in a
Beckman (Fullerton, CA, USA) DU 680 spectrophotometer
(Hammerschmidt et al. 1982). Each reaction mixture (1 ml)
consisted of 10 µL enzyme extract and 990 µL guaiacol
solution containing 0.25% guaiacol (v/v) in 10 mmol/L
sodium phosphate buffer, pH 6.0, and 0.125% H2O2 (v/v).
The POD activity in the extracts was measured as an
increase in absorbance at 470 nm. For POD electrofocus-
ing, proteins (50 µg) were focused ( 4°C, 60 min, 0.125 W
cm−2) in wide range, non-denaturing isoelectric-focusing
polyacrylamide gels (PAGs) containing ampholines in the
pH range 3.5–9.5 (Amersham, Piscataway, NJ). After
focusing, the gels were soaked for 30 min in 10 mM Na-
phosphate, pH 6.0, to remove the ampholines and equalize
the pH throughout the gel. A protein standard mixture
(Isoelectric focusing calibration kit; Pharmacia, GE Health-
care, Uppsala, Sweden) was included in each electro-
focusing experiment for determination of the isoelectric
points.

Apoplastic fluid was obtained to assay POD activity in
the avocado mesocarp following wounding (Córdoba-
Pedregosa et al. 2005). Briefly, apoplastic soluble compo-
nents were obtained from vacuum-infiltration (4°C, 5 min,
60 kPa) in medium composed of 0.01 M phosphate buffer
and 1 M NaCl, followed by centrifugation at 1500 g for
5 min. Using this procedure, we obtained 70–100 µl of
apoplastic fluids for 1 g of tissue. As there was no
detectable glucose 6-phosphate (Creissen et al. 1999) in
the apoplastic fluid, we conclude that this procedure did not
result in any contamination with intracellular material (data
not shown).

Superoxide dismutase activity was assayed using the
method described by Beauchamp and Fridovich (1971). In
brief, samples of the supernatant (100 µg per lane) were
separated by polyacrylamide gel electrophoresis (PAGE)
under non-denaturing conditions. Following electrophoresis
in 12.5% (w/v) native PAGs at 100 V and 4°C, the gel was
immersed in 2.45 mM nitroblue tetrazolium for 20 min,
followed by a 15-min soak in a solution containing 28 mM
tetramethylethylenediamine, 28 µM riboflavin, and 36 mM
potassium phosphate, pH 7.8. Superoxide dismutase activ-
ity was detected by illuminating the gel with bright light,
which caused the gel to turn uniformly blue except at
positions exhibiting SOD activity. When a maximum
contrast was achieved, the reaction was stopped by rinsing
the gel with water. CuZn, Fe, or MnSOD activities were
distinguished from each other based on their sensitivity to

4 mM KCN or 5 mM H2O2 (Scandalios 1993). In brief,
following electrophoresis, the gels were incubated with the
inhibitors for 30 min at room temperature and then
examined for SOD activity.

The protein content of the extracts was determined
according to Bradford (1976) using the Bio-Rad dye
reagent (Bio-Rad, Hercules, CA) with BSA as the standard.

Results

Specificity of responses to wounding

The specificity of the responses to the wounding treatment
was determined by measuring POD enzyme activity and
H2O2 production at different distances from the wounding
(Fig. 1a). Increased POD enzyme activity was observed
1 cm from the wounding site, but decreased with increasing
distance from the wound (2 and 3 cm; Fig. 1b). There was a
large increase in H2O2 production within the first 0.5 cm
analyzed; thereafter, the H2O2 levels were low up to a
distance of 2 cm, which as the total distance assayed
(Fig. 1c). Based on these results we can deduce that these
processes are locally regulated by the wound in unripe
avocado fruit.

Induction of ROS production

The kinetics of O2
− production was measured at several

time points following mechanical stimulation (Fig. 1).
Figure 1a shows that the level of O2

− increased significant-
ly 15 min after stimulation and decreased thereafter. The
level of H2O2 also increased 15 h after stimulation, but
there was no return to the baseline level after this time.

Because the DAB assay is also used to measure
peroxidase enzyme activity, discs were incubated with the
addition of catalase or n-propyl gallate in order to eliminate
H2O2 production or peroxidase activity, respectively
(Fig. 1b). Catalase inhibited H2O2 accumulation, indicating
that the DAB reaction is due to H2O2 production in
response to wounding and not to peroxidase activity, as
supported by the observation that the phenolic compound
n-propyl gallate had no effect in decrease the DAB reaction.

The induction of lipid peroxidation was assessed by
determining the accumulation of thiobarbituric acid reactive
species (TBARS) at various times following the wounding
(Fig. 1c). Increasing levels of TBARS were detected 2 h
after wounding, decreasing to control levels at 24 h.

Catalase, POD and SOD activities

Specific activities of the antioxidant enzymes CAT, POD
and SOD were measured in response to wounding (Table 1).
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Catalase activity had decreased by 38% at 1 h post-
treatment, remaining lower that the controls at 24 h post-
treatment. A significant increase in POD activity (150%)
was observed 24 h after wounding; in contrast, SOD
activity had increased only slightly (8.5%) 1 h after
treatment, and had decreased by 37% relative to the control
24 h after wounding.

Enzymes that metabolize ASC

The wounding caused increases in the activity of dehy-
droascorbate (DHR), GR, and AO 2 h after treatment
(Table 2), and the activities of these enzymes remained high
until 24 h post-treatment (extent of study period). Glutathi-

one reductase showed the highest, followed by AO and
DHR.

Effect of wounding on POD, SOD and CAT expression

Figure 2 shows typical patterns of the most active total
isoperoxidases obtained at different times after avocado
wounding. Native PAGE revealed no evident changes in
isozyme composition after wounding (Fig. 2a). In the
apoplast (Fig. 2b), two isozyme showed the greatest
increase in activity as a consequence of the treatment, and
a new isozyme was observed 24 h after wounding.

Table 1 Effect of wounding treatment on activities of some protective
enzymes in avocado fruits

Time after
woundinga (h)

Enzyme

CAT
(U mg−1 protein)

POD (µmol mg−1

protein min−1)
SOD
(U mg−1 protein)

0 317.09±19.53 203.50±7.19 2817±49.34

0.25 221.53±9.65 176.19±9.71 3017±71.27

0.5 231.57±20.53 182.70±3.70 3180±50.12

1 198.03±35.18 157.43±5.84 3057±160.94

2 219.00±25.71 169.00±9.57 2747±108.28

4 225.53±15.54 172.53±13.08 2512±151.43

8 218.87±23.21 236.34±16.41 2130±80.12

12 231.73±19.55 308.26±12.46 1061±157.48

24 224.33±25.00 453.94±25.16 1458±120.30

Data are given as the average of three independent experiments
(means ± standard deviation)
aMesocarp discs were incubated at different times post-treatment and
CAT (catalase), POD (peroxidase) and SOD (superoxide dismutase)
assayed

Table 2 Wounding effect on enzymes that metabolize ascorbic acid in
avocado fruits

Time after
wounding (h)

Enzyme

DHR
(μmol min-1mg-1

protein)

GR
(nmol min-1mg-1

protein)

AO
(nmol min-1mg-1

protein)

0 97.70±32.84 0.44±3.20 52.02±16.67

2 134.65±13.06 7.16±5.30 276.29±16.49

8 108.11±1.65 7.37±8.12 389.59±40.52

12 nm 3.56±3.95 247.61±68.89

24 125.26±17.50 4.55±6.63 111.39±43.03

nm, Not measured

Results are means ± SD of four determinations

DHR, Dehydroascorbate reductase; GR, glutathione reductase; AO,
ascorbate oxidase
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Fig. 1 Responses to wounding treatment in unripe avocado fruit. a
Unripe avocado fruit was longitudinally wounded with a sterile blade,
and samples of tissue were collected at 1-cm intervals from the wound
24 h after wounding. Soluble peroxidase (POD) activity (b) and
hydrogen peroxide (H2O2) production (c) were analyzed different
distances from the wound. Data are means ± standard deviation (SD)
of at least four independent experimentss
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To determine which peroxidase isozymes were affect-
ed by wounding, tissue samples were analyzed by
isoelectric focusing (Fig. 2c, Fig. 3). At least eight
isozymes were observed at all of the time points

assayed, with the expression changing with the incuba-
tion time. Wounding induced an increase in the activity
of at least three isozymes, pI 8.5, pI 8.8, and pI 9.4, at
24 h post-treatment. The activity of some isozymes,
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such as pI 5.9–8.1, appeared to decrease with increasing
incubation time.

Changes in the activities of SOD isozymes were
followed following wounding (Fig. 4). Three major SOD
activities were observed, denoted SOD1, SOD2, and SOD3.

The activities of all SOD isozymes decreased progressively
with increasing incubation time (Fig. 3a). The SOD
isoforms were classified according to their sensitivity to
cyanide and H2O2. When the SOD were incubated in KCN
or H2O2, SOD1 and activities SOD3 were abolished,
identifying this activity as a Cu/ZnSOD. SOD2 was
resistant to both inhibitors, a characteristic of MnSOD
(Fig. 4b).

CAT isozymes were not distinguished, and only one
smeared band was observed in all of the times assayed. The
CAT activity of this band decreased with increasing time
post-wounding (data not shown).

Discussion

Wounding caused by various biotic and abiotic factors is a
daily stress for plants that can lead to the loss of essential
organs and the easy penetration of pathogens. Plants
respond to wounding by activating self-defense systems to
restore damaged tissues or to defend against attacks by
pathogens and herbivores.

Our data show that ROS are rapidly produced in
avocado fruit following mechanical stress. We found that
as early as 15 min after mechanical treatment, the levels of
O2

− in the mesocarp tissue were increased; lipid perox-
idation was observed 2 h post-treatment, and H2O2

accumulated progressively during the time of experiment
(Fig. 1). Lamb and Dixon (1997) reported that, in plants,
exposure to various abiotic and biotic stresses results in the
accumulation of H2O2 and oxidative stress.

The speed of the oxidative burst associated with the
capacity of H2O2 to diffuse freely and rapidly across
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biological membranes and to signal gene expression
suggests that H2O2 could function as a short-lived second
messenger diffusing from cell to cell. Using cDNA micro-
array technology Desikan et al. (2001) identified 175 non-
redundant expressed sequence tags that were regulated by
H2O2. Of these, 113 were induced and 62 were repressed
by H2O2. A major proportion of these expressed sequence
tags had predicted functions in cell rescue and defense
processes, cell signaling, and transcription, implying that
H2O2 does have multiple roles in plant responses to stress.

H2O2 affects the polyphenol oxidase (PPO) of the
avocado mesocarp, which is involved in the browning
response through the oxidation of phenols and their
subsequent polymerization to dark-colored melanins. 3,4-
Dihydroxyphenylalanine (DOPA) oxidation by avocado
PPO was slightly increased by a relatively low concentra-
tion of H2O2 (3.3–30 mM), while higher concentrations of
H2O2 decrease both the rate and final level of dopachrome
formed (Kahn 1983). We did not study the effect of the
wounding on PPO activity hee, but no browning of the
tissue was observed with the treatment (data not shown).
The possibility that H2O2 production in avocado affects
PPO activity or melanin accumulation, given that melanins
are bleached in the presence of relatively high concen-
trations of H2O2 (50–500 mM) (Kahn 1983), could be
considered.

Alternately, organisms can protect themselves against
oxidative stress by the synthesis of various antioxidant
enzymes. The major ROS-scavenging enzymes of plants
include SOD, POD, and CAT (Mittler 2002). We observed
changes in these enzyme activities in avocado fruit after
wounding. The activities of POD and SOD increased and
that of CAT decreased with increasing time after wounding.
Cheong et al. (2002) reported on POD and CAT gene
expression in Arabidopsis during the analysis of transcrip-
tional profiling in response to wounding. Interestingly, no
SOD gene expression was observed in Arabidopsis despite
that analysis being carried out during the same time interval
our study (30 min).

There were no changes in total POD isozymes at
different times after wounding, but two apoplastic isozymes
did show increased levels and one new isozyme was
observed after wounding. Isoelectric focusing gels stained
for activity showed a predominant expression of basic
peroxidases (Fig. 2).

The POD family is a large group of proteins in plants,
many of which function asisozymes, with some located in
the apoplastic compartment (Andrews et al. 2000; Córdoba-
Pedregosa et al. 2003). The diversity of the reactions
catalyzed by plant POD provides the basis for the
implication of these proteins in a broad range of physio-
logical processes, such as auxin metabolism, lignin and
suberin formation, cross-linking of cell-wall components,

defense against pathogen, or cell elongation (Hiraga et al.
2001). Peroxidase has been shown to exhibit increases in
activity or mRNA levels upon mechanical wounding in
various plants, including tobacco (Lagrimini and Rothstein
1987), tomato and potato (Roberts et al. 1988), cucumber
(Svalheim and Robertson 1990), and sweet potato (Huh et
al. 1997). Suberin is deposited in wounded tissues. Since
suberin is a highly hydrophobic macromolecule composed
of hydroxycinnamic acid and its derivatives contain
conjugated aliphatic moieties, suberin deposition around
the wounded tissue should aid and healing (Hiraga et al.
2001).

In Asparragus officinalis spear discs the increase of the
total peroxidase activity was found to be due to the increase
in several distinct isoperoxidases. Four peroxidases with pI
8.7, 8.1, 7.4 and 6.7, respectively, showed increased
activity. The histochemical stain for lignin revealed an
increase in the lignified area during the time of measure-
ment, suggesting the involvement of a set of peroxidases in
the polymerization of phenolic compounds (Holm et al.
2003). Studies are in progress to determine whether the
POD isozymes that increased in response to wounding in
avocado are related to lignin and suberin accumulation.

In our studies SOD activity increased 30 min after
wounding and then decreased to lower levels than the control
thereafter (Table 2, Fig. 3). The main function of SOD is to
scavenge O2

− radicals generated in various physiological
processes, thus preventing the oxidation of biological
molecules, either by the radicals themselves or by their
derivatives (Liochev and Fridovich 1994; Karpinska et al.
2001). We observed three SOD enzymes at all of the times
assayed after wounding, SOD1, SOD2 and SOD3 (Fig. 1b),
and all three activities decreased in time. Using SOD
inhibitors, we characterized these activities as CuZnSOD to
SOD1 and SOD3 and MnSOD to SOD2. The decrease in
activity 12 h after wounding, most notably in SOD3, could
be due to an increase in H2O2 accumulation. Strack et al.
(1996) reported that, in animal cells, CuZnSOD is
inactivated and degraded by the combined action of active
oxygen species and proteases. H2O2 can reduce the
enzyme-bounded Cu+2 to Cu+, which in turn can form
Cu+2–.OH with an additional H2O2. This OH can com-
pletely inactivate the enzyme molecule by oxidative
modification of histidine residues at the active site
(Hodgson and Fridovich 1975). Also, in wheat chloroplasts
under light conditions, both CuZnSOD activity and enzyme
content decayed with exposure time to photooxidative
stress. O2

− had no effect on either SOD activity or enzyme
level. H2O2 and .OH inhibited SOD by inducing its
fragmentation, as evidence on native PAGE (Cassano et
al. 1997). This mechanism could explain the decrease in
SOD activity after wounding because this decrease was
correlated with an increase in H2O2 accumulation.
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We observed changes in the activities of enzymes related
to the metabolism of ascorbic acid (AA) such as DHR, GR,
and AO, following our wounding treatment of avocado
fruit. All enzyme activities increased as a result of the
treatment. Ascorbic acid is the most abundant antioxidant
present in all subcellular compartments, including the
apoplast. It provides protection against ROS produced
during normal cell metabolism or upon exposure to
environmental stresses (Smirnoff 2000), and there is a
growing recognition that shifts in the amount and/or redox
state of AA participates in the perception of potentially
stressful situations as well as in the modulation of defense
responses (Pastori et al. 2003; Pignocchi and Foyer 2003;
Foyer and Noctor 2005). Apoplastic AA also is believed to
represent the first line of defense against ROS produced as
a result of environmental perturbations (Barnes et al. 2002).
In the apoplast, AO; a glycoprotein belonging to the family
of blue copper oxidase enzymes) oxidizes AA to the
unstable radical monodehydroascorbate (MDHA), which
rapidly disproportionates to yield DHA and AA (Smirnoff
2000). The MDHA radical can be recycled back to AA by
the activity of NAD(P)-dependent monodehydroascorbate
reductase (MDHAR). Despite MDHA regeneration sys-
tems, rapid MDHA disproportionation results in DHA
production, which can be reduced back to AA through the
so-called ascorbate-glutathione (AA–GSH) cycle, which
involves the co-ordinated action of DHAR and NADPH-
dependent GR (Smirnoff 2000). Although the biosynthetic
pathway of AA in plants has been elucidated (Wheeler et al.
1998), a detailed knowledge of the mechanisms controlling
AA levels in different cell compartments is still missing
(Ishikawa et al. 2006). The pool of AA in the apoplast
results from the balance between inputs from newly
synthesized AA transported from the cytosol and losses
associated with enzymatic metabolism and oxidation by
cell-wall-localized AO (Smirnoff 2000).

It has been reported that tomato MDHAR (AFR;
ascorbate free radical) mRNA (Grantz et al. 1995) and
Cucumis melo AO4 (CmAO4) (Sanmartin et al. 2007)
mRNA increased notably in response to wounding. This
process may also contribute to maintaining the levels of AA
for protection against wound-induced free radical-mediated
damage.

Finally, Cheong et al. (2002) studied the transcriptional
response of 8200 genes in Arabidopsis plants with aim of
identifying those genes regulated by wounding. They found
that aproximately 8% of these genes were altered at steady-
state mRNA levels. Studies of expression patterns of these
genes provided new information on the interactions
between wounding and other signals, such as pathogen
attack, abiotic stress factors, and plant hormones. Two time
points after wounding were analyzed, 30 min and 6 h.
Those genes with significantly altered mRNA levels within

30 min were considered to be early response genes, whereas
those responsive after 6 h were considered to be late response
genes. In general the early response genes encoded to
signaling or regulatory components, such as protein kinases
and transcription factors, and late response genes encoded to
effector proteins, such as enzymes in the metabolism.
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