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Abstract This paper develops a size-dependent Kirchhoff plate model for bending and free vibration analyses
using a semi-analytical higher-order finite strip method (H-FSM) based on the nonlocal strain gradient theory
(NSGT). To satisfy the various longitudinal boundary conditions, the continuous trigonometric function series
and the interpolation polynomial functions are employed in the transverse direction. In solving nanoplate
problems using the H-FSM, the higher-order polynomial shape functions (higher-order Hermitian shape func-
tions) are utilized to evaluate the second derivatives, in addition to the displacement and first derivative. The
stiffness and mass matrices, and force vector of the nanoplates are derived using the weighted residual method.
A numerical study is conducted to investigate the impact of different factors, such as boundary conditions,
nonlocal and strain gradient parameters, aspect ratio, and types of transverse loading. The Navier solution is
utilized to analyze the effects of material length scale parameters on bending and free vibration responses of
nanoplates for preliminary comparisons. The numerical results show that, when the transverse load on the
nanoplate is uniform or hydrostatic and the plate has a CCCC boundary condition, the nonlocal effect does
not affect the deflection results and is the same as the obtained results in the local mode.

1 Introduction

Nanostructures have exceptional properties and have found numerous applications in various fields such
as aerospace, automotive, biomedical, mechanical, and civil engineering. Ignoring the nano-scale effects on
mechanical properties may lead to incorrect designs and solutions [1]. However, conducting experimental mea-
surements at the nano-scale is challenging and expensive, leading to the development of molecular dynamics
and continuum-based modeling. Although classical continuum mechanics models are computationally less
expensive, they do not consider inter-atomic forces and atomic length scale parameters, resulting in inaccurate
results. Continuum theories that can capture size effects of materials at small sizes have gained significant
attention in the research community for achieving more precise results. Several alternative theories to classical
elasticity have been proposed to account for material length scale parameters, including nonlocal elasticity
theory [2], strain gradient theories [3, 4], modified couple stress theory [5], and nonlocal strain gradient theory
[6].

The nonlocal theory of Eringen [2] is a continuum theory that can accurately capture small-scale effects and
the behavior of structures of all sizes. This theory assumes that stress at a point is a function of the strain field at
all neighboring points in the continuum body, making it useful for analyzing nanostructures. Numerous studies
have utilized this theory to investigate the scaling effects on the buckling, bending, and vibration behaviors
of nanostructures, including nonlocal nonlinear analysis of functionally graded and laminated composite
plates subjected to various loads [7–10], the nonlinear post-critical temperature-deflection behavior [11],
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investigation of the buckling and vibration behavior of imperfect nanoplates [12], stability and free vibration
analysis of orthotropic single-layered graphene sheets [13], and porosity-dependent analysis of functionally
graded sandwich nanoplates [14]. Other studies have investigated the buckling of compressed Bernoulli–Euler
nano-beams [15], compared differential and integral formulations for boundary value problems in nonlocal
elasticity [16], and investigated the deflection and temperature distribution of nanobeams [17] also, bending,
buckling, and vibration analysis of functionally graded (FG) nanobeam [18]. Additional investigations on
stress-driven nonlocal elasticity theory have been conducted and are referenced in a review article by Shariati
et al. [19], and Nuhu and Babaei [20].

The theory of gradient elasticity [3, 21] suggests that materials should be treated as collections of atoms
with higher-order deformation mechanisms at a small scale, and stress must consider additional strain gradient
terms. The literature shows that nonlocal models and strain gradient models describe distinct size-dependent
mechanical characteristics ofmaterials at a small scale. Aifantis’s model [21], which involves only one gradient
coefficient with length dimensions, has attracted considerable attention in gradient elasticity and led to the
publication of numerous papers based on this theory. Several studies have investigated themechanical behavior
of isotropic nanoplates [22–24], cross-ply and angle-ply ofKirchhoff nanoplates [25], thin laminated composite
nanoplates [26–29], transient analysis of functionally graded microplates [30], a neural network approach of
isotropic nanoplates [31] using strain gradient theory, and nonlinear analysis of porous functionally graded
composite microplates with and without cutouts [32], also bending of orthotropic nanoplates reinforced by
defective graphene sheets [33]. These studies have explored bending, buckling, and free vibration behaviors
of various nanoplates under different conditions using finite element and analytical methods.

The nonlocal strain gradient theory [6, 34] combines the effects of both nonlocal and strain gradient
parameters to consider both stiffness softening and stiffness enhancement effects in small-scale materials.
This theory has been successfully applied and developed for nanobeams, nanoplates, and nanoshells. Lim
et al. [6] formulated this theory by introducing two parameters into classical continuum mechanics. This
theory considers both the non-gradient nonlocal stress field [2] and the higher-order pure strain gradient stress
field [21].

Several studies have investigated various aspects of nanostructure mechanics using nonlocal strain gra-
dient theory are mentioned. For example, Rajabi and Hosseini-Hashemi [35] examined the free vibration of
orthotropic nanoplates, while Karami et al. explored hygrothermal wave propagation in viscoelastic graphene
[36] and resonance behavior of a three-directional functionally gradedmaterial [37]. A nonlocal strain gradient
plate model to investigate the vibration of double-layered graphene sheets was developed by Ebrahimi and
Barati [38], and the effects of hygrothermal and electromagnetic fields on smart piezomagnetic nanoplates was
studied by Abazid [39]. Khazaei and Mohammadimehr [40] analyzed the deflection and buckling of porous
nanocomposite piezoelectric plates, and Farajpour et al. [41] investigated the bending and transverse vibration
of rectangular nanoplates. In addition, Chu et al. [42] investigated the thermally-induced dynamic behaviors
of functionally graded flexoelectric nanobeams, and Malikan et al. [43] studied the torsional critical stability
of a single-walled composite nano-shell exposed to a magnetic field. A nonlocal model for thermal buckling
analysis of functionally graded nanobeams by was developed Fang et al. [44], and Xiao and Dai [45] proposed
a size-dependent beam model for bending of bi-semi-tubes.

Abdelrahman et al. [46] developed a non-classical dynamic finite element model for perforated nanobeam
structures, and Dangi et al. [47] considered the combined effect of nonlocality, strain gradient, and surface
stresses on natural frequencies of functionally graded nanobeams. Additionally, Fan et al. [48] studied the
nonlinear buckling and post-buckling analysis of micro/nano-plates made of a porous functionally graded
material, while Tang andQing [49] investigated the buckling and free vibration response of functionally graded
Timoshenko beams using a nonlocal strain gradient integral model. Mohammadian and Hosseini [50] analyzed
axial vibration of functionally graded carbon nanotube reinforced composite microrods, and Wang et al. [51]
studied the buckling of bi-directional functionally graded nanotubes. Furthermore, Li et al. [52] investigated
the free vibration of a piezoelectric nanoribbon, while Tanzadeh and Amoushahi [53] developed a buckling
analysis of orthotropic nanoplates. Wu et al. [54] studied the free and forced vibrations of nonplanar imperfect
nanobeams, Boyina and Piska [55] investigated wave propagation in viscoelastic Timoshenko nanobeams and
buckling analysis of functionally graded Euler–Bernoulli beam subjected to thermo-mechanical loads was
depeloped by Boyina et al. [56].

Recent research has explored the effects of material length scales on structures at micro- and nano-scales.
This paper introduces the higher-order finite strip method for the first time for analyzing nanoplates using the
nonlocal strain gradient theory. This theory incorporates two material length scale parameters that can capture
changes in the stiffness of nanoscale structures. The strain gradient effect increases the order of the governing
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differential equation for nanoplates, causing the conventional Hermite shape function to become inadequate.
Higher-order shape functions are necessary for accurate results, and fewer strips are required for convergence.
As a result, using the higher-order finite strip method with nonlocal strain gradient theory is an efficient
approach for examining nanoplates. Furthermore, the proposed relation demonstrates that simply supported
nanoplates will have responses equivalent to locally available responses if the non-local parameter equals the
second power of the strain gradient parameter. Numerical results show that the nonlocal effect does not impact
deflection results for nanoplates subjected to uniform or hydrostatic transverse loads and with CCCC boundary
conditions. The paper is divided into several sections. In Sect. 2, the higher order finite strip method is used
to explain the kinematics of deformation and governing equation for thin isotropic and orthotropic Kirchhoff
nanoplates based on nonlocal strain gradient theory. Section 3 proposes an analytical Navier formulation
for isotropic and orthotropic nanoplates. Section 4 presents numerical results for bending and free vibration
problems, demonstrating the effectiveness of the proposed H-FSM formulations in comparison to analytical
results. Finally, Sect. 5 provides concluding remarks.

2 Higher-order finite strip method for isotropic and orthotropic nanoplates

In this section, a novel approach for analyzing nanoplates is presented, which considers the effects of material
length scales and utilizes higher-order shape functions to enhance accuracy and convergence. The approach
presented here is the higher-order finite strip method for isotropic and orthotropic nanoplates, which employs
the nonlocal strain gradient theory. By deriving the governing equation, the method is shown to be capable of
capturing both the reduction and increase in the stiffness of structures at the nanoscale.

2.1 Nonlocal strain gradient theory and the governing equation

According to Lim et al. [6] theory, the nonlocal strain gradient theory considers non-local stress field and strain
gradient effects by introducing two scale parameters. The stress field, according to this theory, includes not
only the non-local elastic stress field but also the strains gradient field, i.e., [6]:

ti j � σ
(0)
i j − ∇σ

(1)
i j (1)

The laplacian operator ∇ is applied to obtain the total stress, represented as ti j . The classical nonlocal

stress σ
(0)
i j and the higher-order nonlocal stress σ

(1)
i j are related to the strain εkl and ∇εkl defined as [6]

σ
(0)
i j �

∫
V
Ci jklα0(|x − x ′|,μ0)εkl ′(x ′)dV (x ′) (2a)

σ
(1)
i j � l2

∫
V
Ci jklα1(|x − x ′|,μ1)∇εkl ′(x ′)dV (x ′) (2b)

where, the elastic coefficient Ci jkl is accompanied by the nonlocal effects captured by μ0 � (e0a)2 and
μ1 � (e1a)2, and the strain gradient effects captured by l. The attenuation kernel functions α0(|x − x ′|,
μ0), and α1(|x − x ′|, μ1) are nonlocal functions that satisfy the developed conditions by Eringen [57] and
incorporate the nonlocal effects of strain and the first-order strain gradient field into constitutive equations.

Considering the findings from the previous discussion, the following form represents the differential form
of the constitutive relation for size-dependent nanoplates based on the nonlocal strain gradient theory [6]:

(
1 − μ1∇2)(1 − μ0∇2)ti j � Ci jkl

(
1 − μ1∇2)εkl − Ci jkl l

2(1 − μ0∇2)∇2εkl (3)

where ∇2 � ∂2/∂x2 +∂2/∂y2. Including, μ0 � μ1 � μ, canceling
(
1 − μ∇2

)
from two sides of equation,

and factoring, Ci jklεkl , on the right-hand side, the general constitutive relation in Eq. (3), can be condensed
in this way:

(
1 − μ∇2)ti j � Ci jkl

(
1 − l2∇2)εkl (4)



H. Tanzadeh, H. Amoushahi

In the current theory, the displacement field under the Kirchhoff assumptions at an arbitrary point is shown
as follows [58]:

u(x , y, z, t) � u(x , y, t) − z
∂w(x , y, t)

∂x

v(x , y, z, t) � v(x , y, t) − z
∂w(x , y, t)

∂y
w(x , y, z, t) � w(x , y, t)

(5)

Here, u, v, and w specify the displacement components of an arbitrary point in the mid-plane along the
coordinates x , y, and z directions, respectively, and t denotes the time.

Finally, the above differential constitutive equation for an orthotropic nanoplate can be expressed by:

(
1 − μ∇2)

⎧⎨
⎩
txx
tyy
txy

⎫⎬
⎭ �

⎡
⎣C11 C12 0
C12 C22 0
0 0 C66

⎤
⎦(

1 − l2∇2)
⎧⎨
⎩

εxx
εyy
γxy

⎫⎬
⎭

C11 � E1

1 − v12v21
,C12 � v12E2

1 − v12v21
,C22 � E2

1 − v12v21
,C66 � G12 � E1

2(1 + v12)

(6)

In which E1 and E2 refer to Young’s moduli in directions x and y of the orthotropic plate; G12 is the shear
moduli, and v12 and v21 are Poisson’s ratios. Also, the moduli of elasticity and Poisson’s ratios are related by
v12E2 � v21E1.

The strains based on the classic plate theory (CPT) as a function of the displacements are written as follows
[59]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

γxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂x
∂v
∂y

∂v
∂x + ∂u

∂y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

− z

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2w
∂x2

∂2w

∂y2

2 ∂2w
∂x∂y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7)

In the following, by integrating the total stresses, resultants of forces and moments of a thin plate are
obtained

Ni j �
∫ h/2

−h/2
ti j dz; i � j � x , y (8)

Mi j �
∫ h/2

−h/2
ti j zdz; i � j � x , y (9)

where h denotes the thickness of the plate. Using Eqs. (6), (7), and (9), moment resultants in terms of dis-
placements for an orthotropic nanoplate based on the nonlocal strain gradient theory (NSGT) can be written
as

(
1 − μ∇2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mxx

Myy

Mxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

� −

⎡
⎢⎢⎢⎣
D11 D12 0

D12 D22 0

0 0 D66

⎤
⎥⎥⎥⎦(1 − l2∇2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2w
∂x

∂2w
∂y2

2 ∂2w
∂x∂y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10)

where, rigidities for orthotropic plates are [58],

D11 � E1h3

12(1 − v12v21)
; D22 � E2h3

12(1 − v12v21)
; D12 � v12E2h

3

12(1 − v12v21)
; D66 � G12h3

12
(11)
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Fig. 1 Continuum nanoplate model under transverse loads

Table 1 Different transverse loading and values of qmn [58]

Type lateral load q(x , y) qmn m, n

Uniformly distributed load (UL) q 16q
π2mn

1, 3, 5, . . .

Sinusoidal load (DSL) qsinmπx
a sin nπy

b q 1, 2, 3, . . .

Hydrostatic pressure load (HL) q x
a − 8qcosmπ

π2mn
1, 2, 3, . . .

Parabolic load (PL) q
( x
a

)2 16q
π2mn

I 1, 2, 3, . . .

Concentrated load (CL) P 4P
ab sin

mπxP
a cosmπyP

b 1, 2, 3, . . .

I � ( 2
mπ

sinmπ + 2
m2π2 cosmπ − cosmπ − 2

m2π2 )(−cosnπ + 1)

And for an isotropic plate, it is only necessary to set [58]

E1 � E2 � E ; v12 � v21 � v;G12 � G � E

2(1 + v)
(12)

where E and v are the moduli of elasticity and the Poisson’s ratio for the isotropic nanoplates. The following
equilibrium equation, based on the classical plate theory (CPT), is written as [58]

(13)

∂2Mxx

∂x2
+ 2

∂2Myy

∂x∂y
+

∂2Mxy

∂y2
+ q +

∂

∂x

(
Nx

∂w

∂x
+ Nxy

∂w

∂y

)
+

∂

∂y

(
Ny

∂w

∂y
+ Nxy

∂w

∂x

)

� I0
∂2w

∂t2
− I2

(
∂4w

∂x2∂t2
+

∂4w

∂y2∂t2

)

where, I0 � ρh and I2 � ρh3/12 are translational and rotational inertias, respectively. In which ρ is the mass
density. Also, q is the transverse load, as shown in Fig. 1, for uniformly distributed loading, and the different
load functions are presented in Table 1, and Nx , Ny , and Nxy are in-plane loads. Considering w(x , y, t) � w

(x , y)eiωt and using Eq. (10), it can obtain the nonlocal strain gradient governing the differential equation for
bending, vibration, and buckling of orthotropic nanoplates as shown.

(14)

(
1 − l2∇2) [D11

∂4w

∂x4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+ D22

∂4w

∂y4

]
+
(
1 − μ∇2) [−q

− ∂

∂x

(
Nx

∂w

∂x
+ Nxy

∂w

∂y

)
− ∂

∂y

(
Nxy

∂w

∂x
+ Ny

∂w

∂y

)
− I0ω

2w + I2ω
2
(

∂2w

∂x2
+

∂2w

∂y2

)]
� 0

This study examines the static and free vibration analyses of nanoplates, where buckling loads Nx , Ny , and
Nxy are neglected. The governing equation for orthotropic nanoplates in Eq. (14) is derived using the nonlocal
theory with l � 0, the strain gradient theory with μ � 0, and the local theory with l � μ � 0.
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Fig. 2 Higher-order rectangular strip with two nodal lines (HO2)

2.2 Development of a finite strip formulation for nanoplates

The ordinary finite strip method is considered for analyzing rectangular nanoplates where two opposite edges
in the longitudinal directions (y direction) are assumed to be different boundary conditions. The other two
edges in the transverse direction (x direction) can have arbitrary boundary conditions. The displacement
functions are supposed to be polynomials in the transverse direction, while in the longitudinal direction, the
basic trigonometric functions are considered. This approach allows the discretization of the rectangular plate
in finite longitudinal strips. In this strip, the transverse curvature amplitude is also used as a nodal displacement
parameter in addition to the standard deflection and rotation variables.

Using Hamilton’s principle, the governing equation of orthotropic nanoplates can be derived from the
virtual work of stress/moment resultants. However, this approach only provides an incomplete set of boundary
conditions for the sixth-order equation (Eq. (14)) with higher-order strain gradient terms. Because of this,
numerical solutions such as finite element (FE) and finite strip (FS) formulations that are based on this method
necessitate only C1 continuity but generate an unsymmetric stiffness matrix. Nevertheless, the weak form of
the governing equations results in a symmetric stiffness matrix, necessitates C2 continuity of the finite strip
formulation, and demands a proper set of boundary conditions. By performing integration by parts of non-
local terms, the symmetric weak form of the equation can be derived, which necessitates additional boundary
conditions. The symmetric weak form and complete set of boundary conditions can also be obtained by starting
from the weighted residual statement corresponding to Eq. (14) [22].

Since the governing equation in Eq. (14) has the highest derivative of w with respect to x in the essential
boundary conditions of order 2, the finite strip method used in this study needs to meet the C2 continuity
requirement. In Fig. 2, the degrees of freedom at each node line are selected as the lateral displacement w,
its rotation θ , and curvature χ (i.e., the first and second partial derivatives of w with respect to x). These
parameters can be represented using the generalized displacement parameters.

w(x , y) �
r∑

p�1

(
H1(x)w1p + H2(x)θ1p + H3(x)χ1p+H4(x)w2p + H5(x)θ2p + H6(x)χ2p

)
Yp(y) (15)

As shown in Fig. 2, wi p, θi p, and χi p(i � 1,2) are deflections, rotations, and curvatures at nodal line i for
the pth mode, so Eq. (15) can be rewritten in the vector form as

w(x , y, t) �
r∑

p�1

HYp(y)�pe
iωt (16)

where Yp(y) the trigonometric shape function, is presented in Table 1, �p is the DOF vector of one strip at
pth mode as shown in Eq. (17), also, ω is the natural frequency, and t is time.

�p � [
w1 θ1 χ1 w2 θ2 χ2

]T
p (17)

In which θi � (
∂w
∂x

)
i , θ j � (

∂w
∂x

)
j andχi �

(
∂2w
∂x2

)
i
,χ j �

(
∂2w
∂x2

)
j
. The total DOF vector for each finite

strip could be expressed as:

� � [
�p�1 �p�2 · · · �p�r

]T (18)
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As previously stated, a 6-term polynomial is used to approximate H in this strip. In order to satisfy the
continuity and differentiability requirements between elements, the quintic variation of H is utilized.

H(x) � α1 + α2x + α3x
2 + α4x

3 + α5x
4 + α6x

5 (19)

The local coordinates of the 2-noded line strip are denoted by x in the polynomial approximation of H ,
where x belongs to the interval [0, as]. The constants α j , j � 1, . . . , 6 are determined and grouped in the
vector α to meet the differentiability and interelement continuity requirements. The values of w, θ , and, χ at
each noded line, which are represented by H , dH/dx , and d2H/dx2, are computed at x � 0, as and are set
equal to their nodal values collected in the vector �p. This process results in a system of 6 algebraic equations
that allow the computation of the constants α j . This system can be represented in a compact matrix form.

�p � Âα (20)

The coefficients of the vector α, which depend on the node coordinates, can be obtained through matrix
inversion of the known coefficient matrix Â.

α � Â−1�p (21)

After computing the constants α j , the solution is substituted into the initial approximation of H given in
Eq. (3). Each term of the solution multiplied by �pj represents an interpolating function Hj (x) associated
with that degree of freedom. This results in six functions that can be used for further analysis.

Hp �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H1
H2
H3
H4
H5
H6

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

T

Yp(y) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
1 − 10ξ3 + 15ξ4 − 6ξ5

)
as
(
ξ − 6ξ3 + 8ξ4 − 3ξ5

)
0.5a2s

(
ξ2 − 3ξ3 + 3ξ4 − ξ5

)
(
10ξ3 − 15ξ4 + 6ξ5

)
as
(−4ξ3 + 7ξ4 − 3ξ5

)
0.5a2s

(
ξ3 − ξ4 + ξ5

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

T

Yp(y) (22)

In which, ξ � x/as , as is the width of the strip.
By disregarding the buckling load terms (Nx , Ny , Nxy) and using the definition of w from Eq. (16), the

sixth-order governing equation in Eq. (14) can be used to derive the linear algebra static and eigenvalue free
vibration equations of nanoplates. This is accomplished by applying the method of weighted residuals.

(
K − ω2M

)
� � 0 (23a)

K� � F (23b)

In which� is the eigenvector for the free vibration problem and nodal displacements vector for the bending
problem;K includes global local and nonlocal (associated with strain gradient) stiffness matrices,M includes
local and nonlocal (associated with Eringen nonlocality) mass matrices and F is related to local and nonlocal
(also associated with Eringen nonlocality) force vectors.

In the present study, using the higher-order finite strip procedure, the element stiffness and mass matrices,
also force vectors, are calculated, and according to the compatibility equations along the nodal lines, these
matrices are assembled, and the global stiffness and mass matrices and global force vector on the whole
plate are obtained. Finally, by properly applying the boundary conditions and then as an eigenvalue problem,
fundamental frequencies and by linear solution deflection of nanoplate could be calculated.

The stiffness matrix of a higher-order strip corresponding to mth and nth modes, (K)emn , is expressed as

(K)emn �
(
KL

)e
mn

+ l2
(
KNL

)e
mn

�
b∫

0

as∫

0

⎛
⎜⎜⎜⎝
[

∂2Hm
∂x2

∂2Hm
∂y2

2 ∂2Hm
∂x∂y

]
⎡
⎢⎢⎢⎣
D11 D12 0

D12 D22 0

0 0 D66

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

∂2Hn
∂x2

∂2Hn
∂y2

2 ∂2Hn
∂x∂y

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠dxdy
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+ l2
b∫

0

as∫

0

⎛
⎜⎜⎜⎜⎜⎜⎝
[

∂3Hm
∂x3

∂3Hm
∂x∂y2

∂3Hm
∂y3

∂3Hm
∂x2∂y

]
⎡
⎢⎢⎢⎢⎢⎢⎣

D11 D12 0 0

D12 D22 + 2D66 0 0

0 0 D22 D12

0 0 D12 D11 + 2D66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

∂3Hn
∂x3

∂3Hn
∂x∂y2

∂3Hn
∂y3

∂3Hn
∂x2∂y

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠
dxdy (24)

The mass matrix of the strip, (M)emn is also defined as

(M)emn �
(
ML

)e
mn

+ μ
(
MNL

)e
mn

�
b∫

0

as∫

0

(
HT

m I0Hn +
[

∂Hm
∂x

∂Hm
∂y

]
I2

[
∂Hn
∂x

∂Hn
∂y

])
dxdy

+ μ

∫ b

0

∫ as

0

([
∂Hm
∂x

∂Hm
∂y

]
I0

[
∂Hn
∂x

∂Hn
∂y

]
+
[

∂Hm
∂x

∂Hm
∂y

][ I2 I2
I2 I2

][ ∂Hn
∂x

∂Hn
∂y

])
dxdy (25)

Also, (F)emn is shown as

(F)em �
(
FL

)e
m
+ μ

(
FNL

)e
m

�
∫ b

0

∫ as

0
q(x , y)HT

mdxdy + μ

∫ b

0

∫ as

0
− ∇2q(x , y)HT

mdxdy (26)

When transverse applied load q(x , y) � q0, the force vector (F)em simplified rewritten as

(F)em � q0

∫ b

0

∫ as

0
HT

mdxdy + μq0

∫ b

0

∫ as

0
−

(
∂2Hm

∂x2
+

∂2Hm

∂y2

)
dxdy (27)

Finally, by considering, Eq. (23a), the fundamental frequency (ω) and transverse displacement of the
nanoplates are calculated by solving the eigenvalue problem and linear solution, as shown in Eqs. (28a) and
Eq. (28b), respectively.

det
∣∣K − ω2M

∣∣ � 0 (28a)

K� � F (28b)

3 Analytical solution of isotropic and orthotropic nanoplates

This section presents analytical solutions for the static and free vibration analyses of isotropic and orthotropic
nanoplates.

3.1 Static analysis

The analytical solution is derived for the bending of simply-supported thin orthotropic nanoplates using nonlo-
cal strain gradient theory to compare with the present higher-order semi-analytical finite strip method. Navier’s
approach is used to express the transverse displacement w, which satisfies both local and nonlocal boundary
conditions, including w � Mxx � 0 at x � 0, a and w � Myy � 0 at y � 0, b, while the nonlocal boundary
conditions are ∂2w/∂x2 � 0 at x � 0, a and ∂2w/∂y2 � 0 at y � 0, b [60], in small-scale problems [58].

w(x , y, t) �
∞∑

m�1

∞∑
n�1

Wmn sin αx sin βy�(ωmnt) (29)

whereWmn is the amplitude and ωmn is the natural frequency of transverse vibration, also. α � mπx
a , β � mπy

b
The lateral load q is also expanded into a double sine series as:

q(x , y) �
∞∑

m�1

∞∑
n�1

qmn sinαx sinβy (30)
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where

qmn � 4

ab

∫ b

0

∫ a

0
q(x , y) sinαx sinβy (31)

Setting in-plane loads Nxx � Nyy � Nxy � 0, and �(ωmnt) � 1, and substituting the expression of
w, Eq. (29), in the equation of motion (Eq. (14)), the static deflection of orthotropic nanoplates for different
lateral load q(x , y) could be expressed as:

Wmn � qmn

dmn
(32a)

dmn � K0 + l2K2

K0 � D11α
4 + 2(D12 + 2D66)α

2β2 + D22β
4

K2 � D11(α
2 + α4β2) + 2(D12 + 2D66)

(
α4β2 + α2β4) + D22(α

2β4 + β4)

(32b)

, whereas for nanoplates with an isotropic material

Wmn � qmn(1 + μλ)

Dλ2(1 + l2λ)
(33a)

dmn � Dλ2
(
1 + l2λ

)
, · · · · · λ � (

α2 + β2) (33b)

The corresponding expression for the classical case (local mode) can be obtained, if in Eq. (33a), nonlocal
and strain gradient parameters are set to zero (l � μ � 0).

Wmn � qmn

Dλ2
(34)

For the case of a square plate with a � b, and m � n � 1, the relation between nonlocal and local
normalized central deflection if μ � (e0li )2 can be obtained:

wNSGT
c �

(
1 + μλ

1 + l2λ

)
wLocal
c �

⎛
⎜⎝
1 + 2π2

(
e0li
a

)2

1 + 2π2
( l
a

)2
⎞
⎟⎠wLocal

c (35)

A nonlinear relationship can be observed between the deflection of the nanoplate and the increase in values
of (l/a), indicating a decrease in deflection. On the other hand, an increase in deflection of the nanoplate is
observed with an increase in values of ( e0lia ), also in a nonlinear way. The coefficients qmn corresponding to
various transverse loads are listed in Table 1.

3.2 Free vibration analysis

By setting q � 0, in-plane loads Nxx � Nyy � Nxy � 0 and �(ωmnt) � eiωmnt , in Eq. (14) the expression
for natural frequencies of orthotropic nanoplates is derived as:

ω2
mn � K0 + l2K2

(I0 + I2λ) + μ(I0λ + I2λ2)
� K0 + l2K2

(I0 + I2λ)(1 + μλ)
(36)

whereas, for nanoplates with an isotropic material,

ω2
mn � Dλ2(1 + l2λ)

(I0 + I2λ)(1 + μλ)
(37)

For the special case of a square plate with side a and, m � n � 1, one has the form

ω11 �
(
2π2

a2

)√√√√ D(
I0 + I2

(
2π2

a2

))
√√√√√1 + l2

(
2π2

a2

)

1 + μ
(
2π2

a2

) (38)
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If μ � (e0li )2

ω11 �
(
2π2

a2

)√√√√ D(
I0 + I2

(
2π2

a2

))
√√√√√ 1 + 2π2

( l
a

)2
1 + 2π2

(
e0li
a

)2 (39)

Therefore, the nondimensional nonlocal fundamental frequency when ωLocal
11 �(

2π2

a2

)√
D/

(
I0 + I2

(
2π2

a2

))
is

ωNSGT
11 � ωLocal

11

√√√√√ 1 + 2π2
( l
a

)2
1 + 2π2

(
e0li
a

)2 (40)

Increasing the strain gradient parameter (l) results in an increase in frequency, while increasing the nonlocal
parameter (μ) leads to a decrease in frequency.

4 Numerical results

Various numerical examples are provided to analyze the bending and free vibration of isotropic and orthotropic
nanoplates using the nonlocal strain gradient theory based on the classic plate theory (CPT). The examples
consider different length-to-thickness ratios, types of transverse loading, and boundary conditions. The number
of degrees of freedom for each finite longitudinal strip is 6r , where r represents the number of deformation
modes along the longitudinal direction. The dimensions of the nanoplates, represented as a, b, and h, stand
for the plate width, length, and thickness, respectively. These values are used consistently in all tables and
figures.

The nanoplates analyzed in this study have dimensions of a � 10nm, b � 10nm, and h � 0.34nm [61].
For isotropic nanoplates, material properties of E � 1.1TPa, ν � 0.3, and mass density ρ � 2300kg/m3 are
used. For orthotropic nanoplates, Poisson’s ratio is set to ν12 � 0.25, and for the modulus ratio E1/E2 � 1,
the shear modulus is G12 � 0.4E2. For other modulus ratios, the value of G12 is set to 0.5E2.To access the
same results for isotropic plates with Poisson’s ratio (ν � 0.25), with orthotropic plates with E1/E2 � 1,
the shear modulus is taken G12 � 0.4E2. To obtain equivalent outcomes for isotropic plates having Poisson’s
ratio (ν � 0.25) and orthotropic plates having a modulus ratio of E1/E2 � 1, G12 is set to 0.4E2.

Non–dimensional transverse displacement and fundamental frequency for orthotropic nanoplates are
expressed by the following equations:

w � w0
D22

q0a4
, w̌ � w0

(
E2h3

q0a4

)
while for isotropic material, D22 � D

ω � ωcr

(
a2

π2

)√
ρh

D11
; ω̂ � ωcr b

2
√

ρ

E2h2

(41)

where D � Eh3

12(1−ν2)
. In this higher-order finite strip method, different boundary conditions in the longitudinal

direction and the transverse direction are considered. Different end conditions for the two other edges in
the transverse direction are given in Table 2 and for the two opposite edges in the longitudinal direction,
trigonometric functions are chosen are shown in Table 3. Note that the essential boundary conditions specified
in this table are just constrained conditions. Also, the different boundary conditions that are considered for the
plate, as shown in Fig. 3, are simply supported (S), clamped (C), and free (F).

4.1 Bending results of the isotropic and orthotropic nanoplates

For verification, the non-dimensional transverse deflection w � 1000w0(a/2, b/2)(D/qa4) of simply sup-
ported isotropic square nanoplate for different strain gradient parameters (l � 0, 0.2, 0.5, 1) are shown in
Table 4. The obtained results are based on the use of different numbers of strips considering nine modes
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Table 2 Different essential boundary conditions in the transverse direction [22]

Boundary conditions atx � 0, a

Simply supported (S) Clamped (C) Free (F)

w � 0, χ
(
� ∂2w

∂x2

)
� 0 w � 0, θ

(� ∂w
∂x

) � 0, All essential DOFs as shown in Fig. 2 are released

Table 3 Different shape functions in the longitudinal direction [62]

Boundary conditions at y � 0, b Shape function,Yp(y)

SS sin pπy
b

CC sin pπy
b sin πy

b

SC sin (p+1)πy
b +

(
p+1
p

)
sin pπy

b

CF 1 − cos (p−0.5)πy
b

Fig. 3 Nanoplate subjected to the different types of transverse loading. a Uniform (UL), b concentrated (CL), c hydrostatic (HL),
d parabolic (PL), e single sinusoidal (SSL), f double sinusoidal (DSL)
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Table 4 The non-dimensional transverse deflections w � 1000w0(a/2, b/2)(D/qa4) in isotropic square simply-supported
(SSSS) plates subjected to uniformly distributed load, [μ � 0]

No. strip (r � 9) Strain gradient parameter, l(nm)

0 0.2 0.5 1

1 4.0977 4.0331 3.9116 3.4371
2 4.0624 4.0330 3.8844 3.4232
3 4.0624 4.0331 3.8845 3.4232
4 4.0624 4.0331 3.8844 3.4231
5 4.0624 4.0331 3.8844 3.4231
Analytical 4.0624 4.0330 3.8845 3.4231
[61]-FEM (1NCE) 4.0624 4.0331 3.8844 3.4233
[61]-FEM (2CE) 4.0624 4.0332 3.8856 3.4271

1Non-conforming element
2Conforming element

Table 5 The nondimensional transverse deflections w̌ � w0(a/2, b/2)
(
E2h3/q0a4

)
of isotropic and orthotropic (E1/E2 � 25,

G12 � 0.5E2, ν12 � 0.25) rectangular plates subjected to different types of loads, (μ � 0, l � 0)

b/a Load Isotropic Orthotropic

Present [58] Present [58]

1 PL 0.0131 (3) – 0.0019 (3) –
HL 0.0222 (3) 0.0222 (19) 0.0032 (3) 0.0032 (19)
DSL 0.0280 (1) 0.0280 (1) 0.0043 (1) 0.0043 (1)
SSL 0.0358 (3) – 0.0055 (1) –
UL 0.0444 (5) 0.0444 (19) 0.0065 (3) 0.0065 (19)
CL 0.1263 (17) 0.1266 (29) 0.0232 (21) 0.0232 (29)

2 PL 0.0328 (7) – 0.0019 (9) –
HL 0.0553 (7) – 0.0031 (7) –
DSL 0.1157 (1) – 0.0048 (1) –
SSL 0.0918 (5) – 0.0061 (1) –
UL 0.1106 (7) – 0.0063 (9) –
CL 0.1800 (27) – 0.0229 (33) –

3 PL 0.0396 (7) – 0.0018 (15) –
HL 0.0668 (9) 0.0668 (19) 0.0031 (8) 0.0031 (19)
DSL 0.0908 (1) 0.0908 (1) 0.0049 (1) 0.0048 (1)
SSL 0.1161(3) – 0.0062 (1) –
UL 0.1336 (9) 0.1336 (19) 0.0062 (11) 0.0062 (19)
CL 0.1845 (45) 0.1845 (29) 0.0227 (29) 0.0227 (29)

(*) The numbers in parentheses are the number of terms used in evaluating the series (r )

(r � 9). The analysis shows that increasing the number of strips is effective up to five strips, beyond which
no significant effect is observed. Therefore, for the following analysis, five strips and one mode (r � 1) are
used unless otherwise specified. It should be mentioned that the plate’s four edges are assumed to be simply
supported unless mentioned otherwise. The deflection of the nanoplate is seen to decrease with an increase in
the strain gradient length scale parameter(l). This is due to the stiffening of the nanoplate as this parameter
increases, which is reflected in the stiffness matrix. These results are consistent with previously published
work and support the accuracy and dependability of the H-FSM.

Table 5 presents the non-dimensional transverse deflections w̌ � w0(a/2, b/2)
(
E2h3/q0a4

)
of square and

rectangular plates under various types of loads, including single sinusoidal (SSL), double sinusoidal (DSL),
uniform (UL), hydrostatic (HL), parabolic (PL), and concentrated load (CL). For concentrated load, the non-
dimensional transverse deflection is considered w̌ � w0(a/2, b/2)

(
E2h3/Pa2

)
. The results show the effect

of different types of loads on the non-dimensional transverse deflection and provide valuable insights into the
behavior of square and rectangular plates under various loading conditions. It is noticeable from the table that
the results obtained in this study exhibit remarkable conformity with the previously published work conducted
by Reddy [58]. Additionally, the proposed formulation in Eq. (34) which is based on the Navier solution is
also presented in this study.
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Table 6 The effect of nonlocal and strain gradient parameters on the non-nondimensional deflection w � 100w0(a/2,
b/2)(D/qa4) of simply-supported isotropic rectangular plates subjected to uniformly distributed load

b/a Present Navier [58] Present

μ � 0, l � 0 μ � 0, l � 1 μ � 1, l � 1 μ � 4, l � 1 μ � 4, l � 0

1.0 0.4062 (7) 0.4062 (399) 0.3423 0.4062 0.5980 0.7009
1.5 0.7724 (9) 0.7724 (249) 0.6815 0.7724 1.0451 1.1755
2.0 1.0129 (13) 1.0129 (199) 0.9089 1.0129 1.3249 1.4684
2.5 1.1496 (13) 1.1496 (149) 1.0395 1.1496 1.4797 1.6293
3.0 1.2233 (17) 1.2233 (149) 1.1105 1.2233 1.5617 1.7141
3.5 1.2619 (19) 1.2619 (99) 1.1479 1.2619 1.6042 1.7578
4.0 1.2819 (17) 1.2819 (99) 1.1672 1.2819 1.6258 1.7800
4.5 1.2920 (21) 1.2920 (99) 1.1771 1.2920 1.6367 1.7912
5.0 1.2971 (25) 1.2971 (89) 1.1820 1.2971 1.6422 1.7968

10.0 1.3021 (41) 1.3021 (39) 1.1870 1.3021 1.6476 1.8025

The numbers in parentheses denote the final value of m used to evaluate the quantities. All nonlocal results obtained for r � 41

The effects of nonlocal and strain gradient parameters on the non-dimensional deflection of simply-
supported rectangular plates under uniform loading are presented in Table 6. It is observed that by increasing
the aspect ratio after b/a � 5, maximum deflection does not change. This situation also exists in non-local
(Eringen nonlocal and strain gradient) problems. The interesting point is that in the non-local mode when
μ � 1 and l � 1, the results are the same as in the local mode. This was also mentioned in the relationship
presented in Navier’s formula, and Eq. (35) confirms this issue. The lowest deflection occurs when strain
gradient length scale parameter l is maximum and nonlocal parameter μ is minimum, because as observed in
the table, increasing l increases the stiffness of the plate but increasing μ decreases the stiffness of the plate.
In other words, l has a hardening effect and μ has a softening effect.

Table 7 presents the nondimensional deflection for different aspect ratios of isotropic and orthotropic CSSS
plates under uniformly distributed load. The table reveals that an increase in the value of E1/E2 leads to a
significant reduction in deflection. Moreover, increasing the stiffness of the edges and aspect ratio of the plate
results in a decrease in the influence of nonlocal and strain gradient parameters.

Table 8 presents the maximum non-dimensional deflection w � 1000w0(x , y)(D/qa4) of a rectangular
isotropic nanoplate with various boundary conditions (SSSS, CCSS, FFSS, CFSS, and CCCC) under a uni-
formly distributed transverse load and different b/a ratios. The aim of this study is to investigate the effect
of the strain gradient parameter (l) on the maximum deflection. The results indicate that the present H-FSM
agrees well with [23] based on the Levy solution. Moreover, increasing the strain gradient parameter l results
in a decrease in the maximum transverse displacement for all cases.

The Effect of nonlocal and strain gradient length scale parameters (μ andl) are presented in Table 9–13 on
the non-dimensional deflection w � 1000w0(a/2, b/2)(D/qa4) of isotropic Kirchhoff nanoplate subjected to
uniform, sinusoidal and concentrated load with different combinations of simply-supported (S) and clamped
(C) boundary conditions on the edges x � 0, a andy � 0, b.

Figure 4 illustrates the non-dimensional deflection w � 100w0(a/2, b/2)(D/qa4) of an isotropic square
nanoplate at y � b/2 under various types of loads including uniform, hydrostatic, sinusoidal, and concentrated
load, with CCCC boundary condition. The plot shows how the deflection varies for different types of loads
and highlights the differences between them.

On the edges y � 0, b, the used shape function for the CC boundary condition is Ym(y) �
sin(mπy/b)(sin(πy/b) and for applying the CC boundary condition on the edges x � 0, a, w, and its first
derivative to x as mentioned in Table 3, should be constrained. The force vector is typically separated into two
parts: local and non-local. In the non-local part, for uniform or hydrostatic load distributions in the x direction,
only the degrees of freedom that are constrained on the edges x � 0, a have nonzero terms in the first term of
the force vector calculation for CC boundary condition. Once these constraints are applied to the force vector,
the nonzero terms are eliminated, resulting in a zero-force vector. The second non-local term also yields a
zero-force vector due to trigonometric properties.

Hence, it can be observed that the deflection results for a nanoplate with CCCC boundary conditions under
uniform or hydrostatic transverse loads remain unaffected by the nonlocal parameter (μ), indicating that the
nonlocal effect has no significant impact on the results in such cases. This can be verified by referring to Table 9
and Fig. 4, which illustrate that the deflection values remain the same as those obtained in the local mode.
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Table 7 Effect of nonlocal and strain gradient length scale parameters (μ andl) on the non-dimensional deflections of isotropic
and orthotropic w � w0(a/2, b/2)(D22/q0L4) rectangular plates with side x � 0 clamped, side x � a simply0supported, and

sides y � 0, b simply supported (CSSS), subjected to uniformly distributed load, (b/a ≤ 1:qL4qb
4
,b/a > 1: qL4 � qa4),

r � 9

Material Type

Isotropic Orthotropic (E1/E2 � 25,
G12 � 0.5E2, v12 � 0.25)

b/a (μ, l) Present Levy, [58] Present Levy, [58]

1/2 (0, 0) 0.9270 0.9270 0.2872 0.2873
(0,1) 0.6004 – 0.1795 –
(1, 1) 0.8598 – 0.2577 –
(4, 1) 1.6379 – 0.4924 –
(4, 0) 2.4725 – 0.7503 –

1 (0, 0) 0.2786 0.2786 0.0221 0.0221
(0, 1) 0.2120 – 0.0171 –
(1, 1) 0.2434 – 0.0189 –
(4, 1) 0.3377 – 0.0242 –
(4, 0) 0.4357 – 0.0291 –

3/2 (0, 0) 0.4250 0.4250 0.0210 0.0210
(0, 1) 0.3336 – 0.0169 –
(1, 1) 0.3650 – 0.0179 –
(4, 1) 0.4593 – 0.0210 –
(4, 0) 0.5768 – 0.0259 –

2 (0, 0) 0.4879 0.4880 0.0209 0.0209
(0, 1) 0.3874 – 0.0167 –
(1, 1) 0.4167 – 0.0178 –
(4, 1) 0.5045 – 0.0211 –
(4, 0) 0.6280 – 0.0268 –

For different boundary conditions the non-dimensional transverse deflection w � 100w0(x , y)(D/qa4)
of isotropic square nanoplates with nonlocal and strain gradient parameters μ � l � 1 subjected to double
sinusoidal load (DSL) are depicted in Fig. 5.

4.2 Free vibration results of the isotropic and orthotropic nanoplates

The non-dimensional frequencies, ω � ωcr (a2/π2)
√

ρh/D11, of isotropic (ν � 0.25) plates and orthotropic
(G12 � 0.5E2, ν12 � 0.25) plates for modulus ratios E1/E2 � 3, 10, 25 are presented in Table 11. The first
natural frequency of vibration of the plate increases as the ratio of the moduli E1/E2 increases. The effect of
rotary inertia I2 on the frequency is negligible for thin plates because I2 is proportional to the third power of
the thickness. The proposed equation in Eq. (36) based on the Navier solution indicates that I2 has a decreasing
effect on the frequency. As the aspect ratio (b/a) of the plate increases, the frequency of vibration decreases.
On the other hand, orthotropy, which is characterized by the modulus ratio E1/E2, increases the frequency of
vibration.

Table 12 displays the frequencies at which orthotropic plates with SSCF boundary condition vibrate. The
boundary condition has C and F boundary conditions on the edges x � 0 and a, respectively. The table shows
the first six modes of vibration for orthotropic plates with modulus ratios E1/E2 � 3, 10 and aspect ratios
b/a � 0.5, 1.0, 1.5and2. The modulus ratio E1/E2 has a more significant impact on the natural frequencies
of the fundamental and lower modes of vibration, whereas the effect is almost negligible on higher modes of
vibration.

The non-dimensional frequencies ω � ωcr a2
√

ρh/D of isotropic nanoplate for different strain gradient
parameters (l � 0, 0.2, 0.5, 1) are presented in Table 13, for SSCC, SSFF, SSCF, and CCCC boundary
conditions. This table presents the natural frequencies of rectangular nanoplates with different boundary
conditions and values of the strain gradient parameter (l) and edge stiffness. The results indicate that increasing
both the strain gradient parameter and the edges stiffness leads to an increase in the frequency of vibration.
This is because the plate becomes stiffer due to the applied constraint on support moment and stress resultants.
It can also be observed that the CCCC boundary condition has the highest stiffness, while SSFF has the lowest.
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Table 9 The non-dimensional deflection w � 100w0(a/2, b/2)(D/qa4) of isotropic square nanoplates with different boundary
conditions subjected to uniformly distributed load (UL)

UL (r � 9) BC (y � 0, b)

SS CC SC

Strain gradient parameter l(nm) Strain gradient parameter l(nm) Strain gradient parameter l(nm)

BC (x � 0, a) 0 0.2 0.5 1 0 0.2 0.5 1 0 0.2 0.5 1

μ� 0
SS 0.4062 0.4033 0.3884 0.3423 0.1915 0.1878 0.1709 0.1304 0.2605 0.2530 0.2254 0.1706
CC 0.1917 0.1878 0.1709 0.1304 0.1265 0.1233 0.1098 0.0795 0.1504 0.1456 0.1272 0.0905
SC 0.2786 0.2748 0.2577 0.2120 0.1569 0.1535 0.1384 0.1033 0.1991 0.1932 0.1708 0.1260
μ� 1
SS 0.4800 0.4766 0.4596 0.4062 0.2074 0.2033 0.1852 0.1416 0.2977 0.2892 0.2583 0.1965
CC 0.2076 0.2034 0.1852 0.1416 0.1265 0.1233 0.1098 0.0795 0.1578 0.1528 0.1337 0.0955
SC 0.3178 0.3137 0.2946 0.2434 0.1643 0.1607 0.1451 0.1085 0.2197 0.2132 0.1890 0.1402
μ� 2.25
SS 0.5721 0.5683 0.5486 0.4862 0.2271 0.2227 0.2031 0.1556 0.3441 0.3345 0.2993 0.2288
CC 0.2275 0.2229 0.2031 0.1556 0.1265 0.1233 0.1098 0.0795 0.1671 0.1618 0.1419 0.1017
SC 0.3669 0.3622 0.3408 0.2827 0.1736 0.1698 0.1535 0.1151 0.2454 0.2383 0.2118 0.1580
μ� 4
SS 0.7012 0.6966 0.6732 0.5980 0.2548 0.2499 0.2282 0.1753 0.4091 0.3978 0.3568 0.2742
CC 0.2553 0.2502 0.2282 0.1753 0.1265 0.1233 0.1098 0.0795 0.1801 0.1745 0.1533 0.1104
SC 0.4357 0.4302 0.4055 0.3377 0.1866 0.1826 0.1652 0.1242 0.2813 0.2734 0.2436 0.1828

Table 10 The non-dimensional deflectionw � 100w0(a/2, b/2)(D/qa4) of isotropic square nanoplates with different boundary
conditions subjected to uniformly distributed load (SL)

SL (r � 1) BC (y � 0, b)

SS CC SC

Strain gradient parameter l (nm) Strain gradient parameter l(nm) Strain gradient parameter l(nm)

BC (x � 0, a) 0 0.2 0.5 1 0 0.2 0.5 1 0 0.2 0.5 1

μ� 0
SS 0.2566 0.2546 0.2446 0.2143 0.1291 0.1278 0.1214 0.1029 0.1002 0.0987 0.0915 0.0727
CC 0.1303 0.1277 0.1162 0.0884 0.0919 0.0901 0.0824 0.0631 0.0683 0.0683 0.0598 0.0438
SC 0.1815 0.1790 0.1674 0.1369 0.1093 0.1078 0.1005 0.0813 0.0829 0.0814 0.0743 0.0569
μ� 1
SS 0.3073 0.3049 0.2929 0.2566 0.1546 0.1530 0.1453 0.1233 0.1199 0.1181 0.1096 0.0870
CC 0.1561 0.1529 0.1391 0.1058 0.1100 0.1079 0.0987 0.0756 0.0818 0.0799 0.0716 0.0525
SC 0.2173 0.2143 0.2005 0.1640 0.1309 0.1291 0.1204 0.0973 0.0993 0.0974 0.0889 0.0681
μ� 2.25
SS 0.3706 0.3677 0.3532 0.3095 0.1864 0.1846 0.1753 0.1487 0.1446 0.1425 0.1322 0.1050
CC 0.1882 0.1844 0.1678 0.1276 0.1327 0.1302 0.1190 0.0912 0.0986 0.0963 0.0863 0.0633
SC 0.2621 0.2585 0.2418 0.1978 0.1579 0.1557 0.1452 0.1174 0.1197 0.1175 0.1073 0.0821
μ� 4
SS 0.4593 0.4557 0.4377 0.3836 0.2310 0.2287 0.2172 0.1842 0.1792 0.1766 0.1638 0.1301
CC 0.2333 0.2286 0.2079 0.1581 0.1644 0.1613 0.1474 0.1130 0.1222 0.1194 0.1070 0.0784
SC 0.3248 0.3203 0.2996 0.2451 0.1956 0.1929 0.1799 0.1455 0.1484 0.1456 0.1329 0.1018

The results obtained in this study have good agreement with Babu and Patel’s FEM-based studies [61], but
with less computational effort and a smaller number of elements.

Table 14 presents the influence of boundary condition, nonlocal, and strain gradient parameters (μ, l) on
the non-dimensional fundamental frequency (ω � ωcr a2

√
ρh/D) of square isotropic nanoplates. The results

show that increasing the strain gradient parameter and the edges stiffness of the plate leads to an increase in
the fundamental frequency due to the stiffer plate resulting from the applied constraint on support moment
and stress resultants. However, the nonlocal parameter (μ) has a softening effect, resulting in a decrease in
frequency. It is also observed that as the strain gradient parameter (l) increases, the results for CC and SC
boundary conditions at y � 0, b converge to the same values.
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Table 11 The non-dimensional frequenciesω � ωcr (a2/π2)
√

ρh/D11 of simply-supported SSSS isotropic and orthotropic plates

b/a Isotropic E1/E2 � 3 E1/E2 � 10 E1/E2 � 25

Present Navier, [58] Present Navier, [58] Present Navier, [58] Present

RI � 0 RI � 1 RI � 0 RI � 1 RI � 0 RI � 1 RI � 0 RI � 1

0.5 5.000 4.988 4.999 7.670 7.652 7.669 13.075 13.044 13.072 20.273 20.225
1 2.000 1.998 2.000 2.541 2.539 2.541 3.673 3.669 3.672 5.338 5.333
1.5 1.444 1.444 1.444 1.639 1.638 1.639 2.020 2.019 2.020 2.655 2.653
2 1.250 1.249 1.250 1.342 1.342 1.342 1.499 1.498 1.499 1.785 1.784
2.5 1.160 1.159 1.160 1.212 1.212 1.212 1.286 1.285 1.286 1.428 1.427
3 1.111 1.111 1.111 1.145 1.144 1.145 1.183 1.183 1.183 1.259 1.259

RI � 0 means that the results are obtained without including rotary inertia
RI � 1 means that the results are obtained, including rotary inertia

Table 12 Effect of plate aspect ratio (b/a) and modulus ratio (E1/E2) on the non-dimensional frequencies ωn � ωna
2√ρh/D11

of orthotropic rectangular SSCF plates

ωn � ωna
2√ρh/D11 for the first six modes

b/a 1 2 3 4 5 6

Modulus ratio, E1/E2 � 3
0.5 Present 70.247 87.291 123.197 179.348 256.059 353.450

Levy, [58] 69.901 84.921 118.563 173.237 249.143 345.828
1 Present 19.393 37.938 76.236 134.744 213.292 312.032

Levy, [58] 19.042 36.395 74.275 132.684 211.209 309.646
1.5 Present 10.208 29.060 68.031 126.962 205.768 304.678

Levy, [58] 9.880 28.126 67.051 125.991 204.806 303.416
2 Present 7.111 25.977 65.229 124.291 203.173 302.131

Levy, [58] 6.828 25.381 64.654 123.733 202.622 301.276
Modulus ratio,E1/E2 � 10
0.5 Present 125.889 136.233 161.772 207.931 277.012 369.078

Levy, [58] 125.694 134.707 158.222 202.607 270.537 361.680
1 Present 32.541 46.148 80.720 137.400 215.037 313.276

Levy, [58] 32.331 44.781 78.843 135.351 212.940 310.868
1.5 Present 15.472 31.355 69.085 127.563 206.166 304.969

Levy, [58] 15.254 30.479 68.106 126.582 205.192 303.694
2 Present 9.668 26.827 65.597 124.504 203.319 302.241

Levy, [58] 9.459 26.242 65.017 123.939 202.759 301.378

Table 13 Effect of boundary conditions and strain gradient parameter (l) on the non-dimensional frequenciesω � ωcr a2
√

ρh/D
of isotropic (ν � 0.3) square nanoplates

Boundary condition References Strain gradient parameter l (nm)

0 0.2 0.5 1

SSCC Present 28.9203 29.2402 30.7452 35.3927
[58], FEM (1NCE) 28.9196 29.2371 30.7411 35.3866
[58], FEM (2CE) 28.4701 29.2244 30.7382 35.3839

SSFF Present 9.6267 9.6472 9.7531 10.1181
[58], FEM (NCE) 9.6267 9.6469 9.7520 10.1135
[58], FEM (CE) 9.6267 9.6469 9.7508 10.1085

SSCF Present 12.6790 12.7220 12.9353 13.6398
[58], FEM (NCE) 12.6790 12.7216 12.9338 13.6343
[58], FEM (CE) 12.6450 12.7206 12.9331 13.6322

CCCC Present (r � 3) 36.0984 36.5851 38.9206 46.0778
[58], FEM (NCE) 35.9419 36.4514 38.8266 46.0024
[58], FEM (CE) 35.1906 36.4306 38.8255 46.0116

1Non-conforming element
2Conforming element
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Fig. 4 The non-dimensional deflection w � 100w0(x , b/2)
(
D/q0a4

)
of isotropic square CCCC nanoplates subjected to: a UL,

b HL, c DSL, d CL

The first six mode shapes and natural frequencies of isotropic square nanoplates with CCCC boundary
conditions are shown in Fig. 6 The values presented in the figure are obtained by considering nonlocal and
strain gradient parameters μ � 4 and l � 1, and using the non-dimensional fundamental frequency ω �
ωcra2

√
ρh/D with two series terms (r � 2). The mode shapes and corresponding frequencies are plotted in

the figure, providing a visual representation of the vibration behavior of the nanoplates under these conditions.

Figure 7 shows plots of the non-dimensional fundamental frequency ω � ωcr a2
√

ρh/D11 versus aspect
ratios b/a, nonlocal parameter (μ � 0,1, 2.25,4), and strain gradient parameter (l � 0) of isotropic and
orthotropic simply-supported SSSS nanoplates. The natural frequency increases with the degree of orthotropy
E1/E2, but for long nanoplates, the results approach to frequency of a plate strip (ω11 � 1.0). In the high
nonlocal parameter (μ � 4), the aspect ratio almost has no effect on the frequency of isotopic nanoplates.

The non-dimensional fundamental frequencies ω � ωcr a2
√

ρh/D11 versus aspect ratios b/a, for different
nonlocal parameters (μ � 0, 1, 2.25, 4) and strain gradient parameters (l � 0, 0.2, 0.5, 1) of isotropic
clamped nanoplates are depicted in Fig. 8. The natural frequency of plate increases when the strain gradient
parameter (l) increases and the nonlocal parameter (μ) decreases. However, the effect of the nonlocal parameter
on the frequency is more significant compared to the effect of the strain gradient parameter. In other words,
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Fig. 5 The non-dimensional deflectionw � 100w0(x , y)(D/qa4) of isotropic square nanoplateswith nonlocal and strain gradient
parametersμ � 1, l � 1 subjected to double sinusoidal load (DSL) for different boundary conditions: a SSSS, bCCCC, c CCCF,
d CFCF, e FFSC, f FFCF

Fig. 6 First six mode shape of an isotropic square CCCC nanoplate with nonlocal and strain gradient parameters μ � 4, l � 1
and non-dimensional fundamental frequencies ω � ωcra2

√
ρh/D, (r � 2)

changing the nonlocal parameter has a greater impact on the natural frequency of the system than changing
the strain gradient parameter.

5 Conclusions

The article presents a novel semi-analytical higher-order finite strip method for analyzing the bending and free
vibration of isotropic andorthotropic nanoplates based on the nonlocal strain gradient theory (NSGT).The study
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Fig. 7 The effect of the modulus ratio (E1/E2) on the fundamental frequencies ω � ωcr a2
√

ρh/D11 of simply supported SSSS
isotropic and orthotropic nanoplates (l � 0). a μ � 0, b μ � 1, c μ � 2.25, d μ � 4

investigates the effects of various factors such as boundary conditions, nonlocal and strain gradient parameters,
aspect ratio, and different types of transverse loading and boundary conditions. The results demonstrate the
suitability of the proposed method for analyzing the behavior of nanoplates and provide valuable insights that
can be useful in designing and engineering nanoplates for various applications.

The deflection of nanoplates is influenced by the strain gradient and nonlocal effects. Increasing the
strain gradient length scale parameter decreases deflection, while increasing the nonlocal parameter increases
deflection. Aspect ratio affects the difference between local and non-local results, with larger aspect ratios
resulting in smaller differences. The nonlocal effect is more significant for aspect ratios smaller than one, and
disappears for aspect ratios larger than two, while the strain gradient effect remains. Increasing the modulus
ratio and stiffness of edges reduces the effect of nonlocal and strain gradient parameters. Nonlocal effect is
negligible for uniform or hydrostatic transverse loads and CCCC boundary conditions, with deflection results
like those in local mode.

Increasing the strain gradient parameter and stiffness of edges increased the fundamental frequency of
isotropic nanoplates due to increased stiffness from support moment and stress resultants. The aspect ratio had
an inverse relationship with the frequency, while orthotropy had a positive effect, especially in lower modes.
The degree of orthotropy affected the frequency, but for long plates, the results were close to that of a plate
strip ω11 � 1.0. In high nonlocal parameters, the aspect ratio had almost no effect on the frequency. Increasing
the strain gradient parameter and decreasing the nonlocal parameter increased the natural frequency, but the
frequency was more sensitive to the nonlocal effect.
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Fig. 8 The effect of strain gradient parameter (l) on the fundamental frequency ω � ωcr a2
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isotropic CCCC nanoplate. a μ � 0, b μ � 1, c μ � 2.25, d μ � 4
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