
Acta Mech
https://doi.org/10.1007/s00707-024-04083-x

ORIGINAL PAPER

Shihao Lv · Bingyang Li · Yan Shi · Cunfa Gao

Phase field fracture modelling of flexible piezoelectric
materials considering different electrical boundary
conditions

Received: 24 April 2024 / Revised: 12 July 2024 / Accepted: 24 August 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024

Abstract Flexible piezoelectric materials have gained considerable attention due to their remarkable proper-
ties, including electromechanical coupling and high stretchability. These characteristics make them valuable
in the realm of flexible electronic devices. However, the issue of fracture in these materials cannot be ignored.
In general, these flexible/stretchable materials experience fractures when subjected to significant deformation,
unlike brittle piezoelectric materials with low failure strain which have been extensively studied. There is a
pressing need to investigate the fracture behavior of flexible piezoelectrics under finite deformation conditions.
Within the framework of the phase field method, this work addresses the fracture of flexible piezoelectrics
utilizing a nonlinear electromechanical material model. To investigate the influence of electrical boundary
conditions on fracture behavior, a function related to the electric permittivity ratio and phase field variable
is employed to degrade the electric energy density. By adjusting the electric permittivity ratio, the analysis
encompasses the fracture behavior of flexible piezoelectric materials under the assumptions of electrically
impermeable, semi-permeable, and permeable conditions, respectively. In order to solve the coupled govern-
ing equations, a residual controlled staggered algorithm (RCSA) is employed in the user element subroutine of
commercial software ABAQUS. The simulation results indicate that fracture behavior in flexible piezoelectric
materials is influenced by several factors, including material parameters, geometry, polarization direction, and
the external electric field. Notably, when the poling direction is perpendicular to the electric field direction,
variations in the external electric field have a minimal impact on fracture behavior. In contrast, when the poling
direction is parallel to the electric field direction, the influence on fracture behavior is pronounced. These
findings provide valuable insights for developing strategies to enhance the fracture resistance and durability
of flexible piezoelectric materials in practical applications.

Abbreviations

Br Reference configuration
∂Br External boundary
Be
r Discrete undeformable body

Bt Deformed configuration
Be
t Discrete deformable body

� Sharp crack surface
F Deformation gradient
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γ Green-Lagrange strain
I Identity tensor
α Phase field variable
αn Converged phase field variable at the previous increment
�l0 Diffuse crack surface
Gc Critical energy release rate
η Viscous parameter
t Time
τ Time-like scalar variable
ψem Mixed energy-enthalpy per unit volume
ψm Mechanical energy density
ψc Coupled energy density
ψe Electric energy density
ψv Mechanical energy density
ψ+

v Positive part of mechanical energy density
ψ−

v Negative part of mechanical energy density
gm, gc, and ge Degradation function
εc Electric permittivity of crack
εp Electric permittivity of piezoelectric material
ζ A variable defining electrical boundary conditions
t Prescribed surface traction force
w Prescribed surface free charge density
St External boundary with surface force
Sw External boundary with surface free charge density
k An artificial parameter with a small value
Ẽ Referential electric field intensity
E Spatial electric field intensity
D̃i Referential electric displacement
Di Spatial electric displacement
φ, and φ∗ Electric potential
Sij The first Piola–Kirchhoff stress
σi j Cauchy stress
μ Initial shear modulus
K0 Initial bulk modulus
εi j Dielectric tensor
eijk Piezoelectric tensor
J Volume variation
Wint Internal energy
Wext External energy
I 1 The first invariant of the distortional right Cauchy-Green defor-

mation tensor
NA Shape function
RA
ui , R

A
φ , andR

A
α Residual vectors

KuA
i u

B
k
, KuA

i φB , KφAuBi
, KφAφB , andKαAαB Stiffness matrices

n Unit outward-pointing normal vector
l0 Length scale parameter for the phase field
P Poling direction
γa Eigenvalue of the strain
na Eigenvector of the strain
H History field
L, w, and h Length, width, and height of piezoelectric specimen
u Displacement
u Displacement increment
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1 Introduction

Flexible piezoelectric materials have attracted considerable attention due to their exceptional properties, char-
acterized by high stretchability and electromechanical coupling [1]. These materials hold immense promise for
applications in flexible electronics, such as wearable devices and foldable displays [2, 3], biomedical sensors
for health monitoring [4, 5], and energy harvesting from ambient mechanical vibrations [2]. The development
of flexible piezoelectric materials with superior tensile properties and durability has been a primary focus of
numerous experimental studies [6, 7].

Polyvinylidene fluoride (PVDF) has emerged as a highly promisingmaterial for flexible piezoelectric appli-
cations [7, 8]. Experimental studies have demonstrated that PVDF-based stretchable soft materials exhibit a
notable stress-softening phenomenon [8]. To elucidate the nonlinear behavior of flexible piezoelectric mate-
rials, Lv et al. [9] proposed a nonlinear electromechanical model based on the Neo-Hookean material model
and electromechanical theory. This model provides valuable insights into the electromechanical coupling and
nonlinear mechanical response exhibited by these materials. Nevertheless, further investigation is still required
to explore the fracture behavior of these materials.

Fracture failure of piezoelectric materials has become a significant concern in engineering fields [10–12].
The fracture behavior of these materials plays a critical role in determining the performance and reliability of
related devices. However, previous investigations have predominantly focused on brittle piezoelectricmaterials
under the assumption of small deformations. While this approximation is suitable for materials like Lead
Zirconate Titanate (PZT) [2] and Barium Titanate (BaTiO3) [13], it may not adequately capture the behavior
of flexible piezoelectrics. In general, flexible piezoelectrics exhibit considerable failure strain and undergo
finite deformation upon fracture.

Electromechanical fracture in piezoelectric solids requires careful consideration of the electrical boundary
conditions at crack surfaces [12]. These conditions are contingent upon the medium present within the crack
[14], typically classified as permeable, semi-permeable, and impermeable [12, 14]. In a permeable boundary
condition [15], both the electric potential and the normal component of electric displacement are assumed to be
continuous across the crack surfaces, ensuring no disruption in electrical properties at the interface. Conversely,
the impermeable case [16] assumes that the medium inside the crack has no conductivity and prohibits the
passage of electric current. In this case, the normal component of electric displacement is considered to be
zero at the top and bottom surfaces of the crack. The semi-permeable assumption [17] posits that the filling
medium within the crack can sustain a certain level of electric field, thereby inducing electric displacement.
These distinct electrical boundary conditions along the crack surfaces may influence fracture behavior. In the
simulation process, it is crucial to choose appropriate electrical boundary conditions to accurately assess the
reliability of these materials. In the framework of small deformation, several studies [18, 19] have investigated
the effect of electrical boundary conditions on brittle piezoelectric materials. However, the influence of these
boundary conditions on flexible piezoelectric materials has not been thoroughly explored.

Within the framework of finite deformation, there have been several studies investigating fracture prob-
lems utilizing the phase field method. Tang et al. [20] proposed an energy decomposition approach to simulate
the fracture behavior of nonlinearly elastic materials. Arash et al. [21] developed a finite deformation phase
field model to investigate the thermo-viscoelastic fracture behavior and predict failure processes in polymer
nanocomposites. Zuo andZhao [22] established amodel incorporating finite deformation, elastic softening, and
plastic flow to analyze the stress evolution of spherical silicon particles. These investigations demonstrate the
effectiveness of the phase-field method in simulating finite deformation fracture phenomena in flexible mate-
rials. Nonetheless, there remains a scarcity of dedicated studies on phase field models specifically addressing
electromechanical fracture in flexible piezoelectric materials.

Numerical simulation plays a crucial role in studying the fracture characteristics of piezoelectric materials,
allowing visualization of stress and electric field distribution during the loading process. This enables a deeper
understanding of the fracture behavior of the material. Various numerical methods are employed to address
fracture problems [23–25], such as singular element [26], cohesive zone [12], extended finite element [13],
and phase field [14, 27, 28] methods. Among these, the phase field method has proven particularly effective. It
transforms the challenge of crack propagation and evolution into an energy minimization problem involving
multiple coupled fields. This transformation allows for direct solutions to complex fracture problems, providing
a powerful tool for studying electromechanical fracture in piezoelectricmaterials. In solving phase field fracture
problems, both monolithic and staggered procedures are commonly utilized. The staggered scheme is notable
for its robustness: it sequentially handles variables as staggered fields and solves them independently [29].
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Fig. 1 Schematic representation of a two-dimensional piezoelectric solid with the presence of a a sharp crack and b a diffuse
crack �l0 (α) approximated using the phase field variable α

This approach simplifies the solution process and enhances computational efficiency, making it a preferred
choice in many phase field simulations of fracture.

According to Griffith’s theory, crack propagation occurs when the energy release rate surpasses a crit-
ical threshold. Francfort and Marigo [30] extended Griffith’s theory by establishing a variational principle
to analyze crack initiation and evolution. Subsequently, Bourdin et al. [31] proposed a regularization frame-
work for the Francfort-Marigo variational principle, known as the phase field model for fracture mechanics.
Within the phase field method framework, several investigations have been conducted to explore the fracture
behavior of electromechanical materials. For brittle piezoelectric materials experiencing small deformations,
Wu and Chen [32] proposed a PF-CZM model, yielding results consistent with experimental measurements.
Regarding soft dielectric elastomer, Moreno-Mateos et al. [33] discussed numerically and experimentally how
electromechanical actuation modulates fracture performance. These studies demonstrate the applicability of
the G-criterion to electromechanical materials, whether under small or finite deformations.

This study presents a phase field fracture model tailored for flexible piezoelectrics subjected to finite defor-
mations. The model incorporates various electrical boundary conditions at the crack surfaces. The subsequent
sections are structured as follows: Sect. 2 outlines the derivation of governing equations and boundary con-
ditions. Section 3 provides detailed information about the finite element implementation of the phase field
model. An efficient staggered scheme, namely RCSA, is used to solve for the displacement, electric potential,
and phase field variables. Several numerical examples are performed in Sect. 4 to demonstrate the effectiveness
and applicability of the proposed model. Finally, we draw some conclusions in Sect. 5.

2 Governing equations

As shown in Fig. 1a, consider a cracked piezoelectric material, denoted as Br , undergoing finite deformation.
The boundary of the material is represented by ∂Br , while the crack surface is denoted by �. An arbitrary
material point X in the undeformed reference configuration Br is mapped to x in the deformed configuration
Bt . The deformation gradient is denoted as F � ∂x/∂X. To quantify the deformation, the Green–Lagrange
strain is utilized, defined by g � 1

2

(
FTF − I

)
, whereI represents the identity tensor.

In the phase field method, crack propagation is formulated using a variable α(X,t), which indicates the
degree of sharpness of the crack. The sharp crack is regularized by a diffuse crack �l0(α) in Fig. 1b. The
variable α ranges from 0 to 1, where α � 0 denotes an undamaged state of the material, and α � 1 corresponds
to a fully broken state. The total internal energy can be defined as

Wint �
∫

Br
ψem

(
F, Ẽ

)
dV0 +

∫

�

Gcd� +
∫

Br

1

2

η

t
(α − αn)

2dV0. (1)

where, ψem represents the mixed energy-enthalpy per unit volume. Gc is the critical energy release rate. The
third part denotes a viscous term [34], with η being the viscous parameter. αn is the converged phase field
variable at the previous increment with t � tn+1 − tn .
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The energy density ψem can be additively decomposed into [19]

ψem � gm(α)ψm(F) + gc(α)ψc

(
F, Ẽ

)
+ ge(α, ζ )ψe

(
Ẽ
)
. (2)

Herein, gm(α), gc(α), and ge(α,ζ ) represent functions that describe the degradation of mechanical, coupled,
and electric energy density, respectively. The ratio of electric permittivity between the crack εc and piezoelectric
material εp is denoted by ζ , which can affect the fracture behavior of piezoelectricmaterials. This dimensionless
variable ranges from 0 to 1, where a value of 1 indicates a perfectly electrically permeable crack, 0.5 indicates
an electrically semi-permeable crack, and 0 indicates an electrically impermeable crack.

To simplify the computation of the fracture energy, an approximation can be used to avoid the need for
cumbersome discontinuous surface integrals [35]. The second term of Eq. (1) can be recast as [35]

∫

�

Gcd� ≈
∫

Br
Gc

(
α2

2l0
+
l0
2

∂α

∂Xi

∂α

∂Xi

)
dV0, (3)

where the parameterl0 controls the width of the smooth approximation of the crack.
In the absence of body forces and volumetric free charge density, the external energy of piezoelectric solid

can be straightforwardly presented as

Wext �
∫

St
t · ud A −

∫

Sw

wφd A. (4)

where u is the displacement. φ represents the electric potential. t and w are the traction force per unit area
applied on boundary St and surface free charge density applied on boundary Sw, respectively. The referential
electric field intensity is defined as the gradient of electric potential, Ẽ � −∂φ(X, t)/∂X. Likewise, the spatial
electric field intensity is represented as E � −∂φ(x, t)/∂x.

Based on the Neo-Hookean material model and electromechanical theory, our recent study proposed a
novel nonlinear model [9] to investigate the finite deformation behavior of anisotropic flexible piezoelectric
materials. Generally, an anisotropic crack surface density function is essential for accurately capturing the
fracture behavior of anisotropic materials, as highlighted in previous studies [19, 36]. It has been reported that
an isotropic model offers a simpler formulation for capturing mechanical behaviors [13] compared with the
anisotropic model. In actuality, the fracture energy function described in Eq. (3) is more suitable for scenarios
involving isotropic fracture toughness.

To simplify our analysis, we neglect the anisotropic properties of the flexible material in this study. The
energy density has the form of [9]:

ψm(F) � μ

2

(
I 1 − 3

)
+
K0

2
(J − 1)2,

ψc

(
F,QE

)
� −J F−1

im empqγpq Ẽi ,

ψe

(
QE

)
� −1

2
J F−1

im εmj F
−1
k j Ẽk Ẽi . (5)

where, I 1 � J−2/3tr(FTF). J � det(F).μ andK0 represent the initial shear and bulk moduli, respectively. The
symbols εi j , eijk , and γ jk are used to denote dielectric, piezoelectric, and strain tensors, respectively. Herein, an
isotropic flexible piezoelectric model is employed to investigate the fracture behavior. Future work will focus
on enhancing the phase field model to account for variations in anisotropic fracture toughness, addressing a
current limitation of the present study.

Substituting Eq. (5) into Eq. (2), the first Piola–Kirchhoff stress Sij is derived as

Si j � ∂ψem

∂Fi j
� gm(α)

[
μJ− 2

3

(
Fi j − 1

3
I1F

−1
j i

)
+ K0 J (J − 1)F−1

j i

]

+ gc(α)
[
−J F−1

j i F−1
lm empqγpq Ẽl + J F−1

jm F−1
li empqγpq Ẽl − J F−1

lm emjq Fiq Ẽl

]

+ ge(α, ζ )

[
−1

2
J F−1

j i F−1
lm εmnF

−1
kn Ẽk Ẽl + J F−1

lm εmnF
−1
jn F−1

ki Ẽk Ẽl

]
. (6)
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The Cauchy stress σi j takes the form of

σi j � J−1Sik Fjk � gm(α)

[
μJ− 5

3

(
Fik Fjk − 1

3
I1δi j

)
+ K0(J − 1)δi j

]

+ gc(α)
[−δi j emklγkl Em + e jklγkl Ei − emkl Fil Fjk Em

]

+ ge(α, ζ )

[
−δi j

1

2
εmnEnEm + εnj Ei En

]
. (7)

The referential electric displacement D̃i and spatial electric displacement Di can be expressed as

D̃i � −∂ψem

∂ Ẽi
� gc(α)J F−1

im empqγpq + ge(α, ζ )J F−1
im εmj F

−1
k j Ẽk , (8)

Di � J−1Fi j D̃ j � gc(α)ei jkγ jk + ge(α, ζ )εi j E j , (9)

respectively.
Recall Eqs. (1), (2), (3), and (5), the variational of the total internal energy can be formulated as

δWint � ∂Wint

∂F
: ∇δu +

∂Wint

∂Ẽ
· δẼ +

∂Wint

∂α
δα +

∂Wint

∇∂α
· ∇δα. (10)

where

∂Wint

∂F
�

∫

Br

∂ψem

∂F
dV0 �

∫

Br
SdV0,

∂Wint

∂Ẽ
�

∫

Br

∂ψem

∂Ẽ
dV0 � −

∫

Br
D̃dV0,

∂Wint

∂α
�

∫

Br

(
∂ψem

∂α
+

α

l0
Gc +

η

t
(α − αn)

)
dV0,

∂Wint

∇∂α
�

∫

Br
l0Gc∇αdV0, (11)

with

∂ψem

∂α
� ∂gm(α)

∂α
ψm(F) +

∂gc(α)

∂α
ψc

(
F, Ẽ

)
+

∂ge(α, ζ )

∂α
ψe

(
Ẽ
)
. (12)

With the help of Eq. (4), the formulation for the variational of external work can be expressed as

δWext �
∫

St
t · δud A −

∫

Sw

wδφd A. (13)

Using the principle of virtual work δWint − δWext � 0, the strong forms of governing equations can be
obtained by

∂S

∂X
� 0, in Br ,

∂D̃

∂X
� 0, in Br ,

Gc

(
l0

∂2α

∂X2 − α

l0

)
− ∂ψem

∂α
− η

t
(α − αn) � 0, in Br , (14)

with the following boundary conditions

S · n � t, on St,

D̃ · n � −w, on Sw,

∂α

∂X
· n � 0 on ∂Br , (15)

where n denotes the outward unit normal on the boundary ∂Br .
In order to deal with fracture problems of brittle piezoelectric ceramics under different electrical bound-

ary conditions along cracks, Sridhar and Keip [19] proposed various forms for electromechanical energy
degradation functions. In this work, we employ the degradation functions of [13, 19]

gm(α) � gc(α) � (1 − α)2 + k,
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ge(α, ζ ) � 1 − 2(1 − ζ )α + (1 − ζ )α2 + k, (16)

where k is a small positive parameter to avoid numerical singularities during calculations. Notably, the intro-
duction of parameter k is necessary for nonlinearly elastic materials. For the electrically permeable case,
namely ζ � 1, the function has the form of ge(α, 1) � 1 + k. While for the impermeable case, one obtains gm
(α) � gc(α) � ge(α, 0).

Previous studies [32, 37] reported that crack propagation in piezoelectric materials is derived frommechan-
ical energy density. The mechanical energy density has the form of [32]

ψv

(
F, Ẽ

)
� ψm(F) + ψc

(
F, Ẽ

)
. (17)

Notably, to ensure that material damage is only driven by tensile load, the above expression could be
further additively decomposed into an active part ψ+

v caused by tension and an inactive part ψ−
v caused by

compression, respectively defined as

ψ+
v

(
F, Ẽ

)
� μ

2

(
I 1 − 3

) − Jg+ : eT · E + H(J − 1)

[
K0

2
(J − 1)2

]
,

ψ−
v

(
F, Ẽ

)
� −Jg− : eT · E + [1 − H(J − 1)]

[
K0

2
(J − 1)2

]
. (18)

where H(·) represents the Heaviside function. g± � ∑ 〈
γa

〉±
na ⊗ na , γa and na denote the eigenvalue and

eigenvector of the strain, respectively.
The last part in Eq. (14) could be recast as

Gc

(
l0

∂2α

∂X2 − α

l0

)
+2(1 − α)ψ+

v

(
F, Ẽ

)
− η

t
(α − αn) � 0, in Br . (19)

To avoid crack healing after unloading, some studies [27] introduced a history field as the maximum
electromechanical fracture source, defined as

H(X, t) � max
τ∈[0,t] ψ+

v (X, τ). (20)

Substituting Eq. (20) into Eq. (19) leads to the phase field evolution description

Gc

(
l0

∂2α

∂X2 − α

l0

)
+ 2(1 − α)H − η

t
(α − αn) � 0. (21)

3 Finite element implementation

In the finite element implementation, it is more convenient to work with weak forms of governing equations
that can be discretized and solved using numerical methods. By employing the Galerkin approach, the weak
forms can be obtained by

∫

Br
S : ∇δudV0 �

∫

St
t · δud A,

∫

Br
D̃ · ∇δφdV0 � −

∫

Sw

wδφd A,

∫

Br
Gc

(
1

l0
αδα + l0∇α · ∇δα

)
dV0 +

∫

Br

η

t
(α − αn)δαdV0−

∫

Br
2(1 − α)HδαdV0 � 0. (22)
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3.1 Discretization

To simulate the phase field fracture of flexible piezoelectric materials, a numerical framework is employed
using a two-dimensional four-noded quadrilateral element. The implementation of this framework is carried
out in the commercial software ABAQUS by utilizing a user element subroutine UEL. The nodal solution
variables for each element include displacement component u, electric potential φ, and phase field variable α.
These variables can be discretized as follows:

ui �
∑

uA
i N

A(i � 1, 2), φ �
∑

φAN A, α �
∑

αAN A (23)

Herein, the superscript A � 1, 2, 3, 4 denotes the number of nodes per element. NA represents the shape
function associated with node A. The displacement, electric potential, and phase field values at node A are
represented by uA

i , φ
A and αA, respectively.

3.2 Residuals and stiffness matrices

In the user element subroutine, the residual vector and element stiffness matrixmust be calculated. Specifically,
by substituting the nodal solution variable discretizations into theweak formspresented inEq. (22), the elements
residuals for displacement, electric potential, and phase field evolution can be derived by

RA
ui � −

∫

Be
r

Si j
∂N A

∂X j
dV0 +

∫

Set

N Ati d A,

RA
φ �

∫

Be
r

D̃i
∂N A

∂Xi
dV0+

∫

Sew

N Awd A,

RA
α �

∫

Be
r

[
Gc

α

l0
− 2(1 − α)H +

η

t
(α − αn)

]
N AdV0 +

∫

Be
r

Gcl0∇α
∂N A

∂Xi
dV0, (24)

respectively.
If there are no surface tractions or surface charge density, the corresponding tangents can be calculated by

KuA
i u

B
k

� −∂RA
ui

∂uB
k

�
∫

Be
r

∂N A

∂X j

∂Si j
∂Fkn

∂N B

∂Xn
dV0�

∫

Be
t

∂N A

∂xa

(
J−1Faj Fmn

∂Si j
∂Fkn

)
∂N B

∂xm
dV ,

KuA
i φB � −∂RA

ui

∂φB
� −

∫

Be
r

∂N A

∂X j

∂Si j

∂ Ẽl

∂N B

∂Xl
dV0 � −

∫

Be
t

∂N A

∂xa

(
J−1Faj Fml

∂Si j

∂ Ẽl

)
∂N B

∂xm
dV ,

KφAuBi
� −∂RA

φ

∂uB
i

� −
∫

Be
r

∂N A

∂Xl

∂ D̃l

∂Fin

∂N B

∂Xn
dV0� −

∫

Be
t

∂N A

∂xa

(

J−1Fal Fjn
∂ D̃l

∂Fin

)
∂N B

∂x j
dV ,

KφAφB � −∂RA
φ

∂φB
�

∫

Be
r

∂N A

∂Xl

∂ D̃l

∂ Ẽi

∂N B

∂Xi
dV0 �

∫

Be
t

∂N A

∂xa

(

J−1Fal Fji
∂ D̃l

∂ Ẽi

)
∂N B

∂x j
dV ,

KαAαB � −∂RA
α

∂αB
�

∫

Be
r

−
(
2H +

Gc

l0
+

η

t

)
N AN BdV0 −

∫

Be
r

Gcl0
∂N A

∂Xi

∂N B

∂Xi
dV0

�
∫

Be
t

−J−1
(
2H +

Gc

l0
+

η

t

)
N AN BdV −

∫

Be
t

∂N A

∂xk

(
J−1Fki FliGcl0

)∂N B

∂xl
dV . (25)

Herein, Be
t represents the discrete deformable body and satisfies Bt � ∪Be

t . Particularly, the tangent
stiffness matricesKuu, Kuφ , Kφu and Kφφ have the same expression as described in the literature [9]. However,
the first Piola–Kirchhoff stress and electric displacement in Eq. (25) incorporate the degradation functions.
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Table 1 Materials properties of BaTiO3 [13]

Property Value

Young’s modulus (GPa) E � 116.1331
Passion ratio ν � 0.31967
Piezoelectric parameter (C/m2) e311 � − 4.4 e333 � 18.6 e113 � 11.6
Dielectric (10–9 F/m) ε11 � 11.2 ε33 � 12.6
Critical energy release rate (N/m) Gc � 200
Length scale parameter (mm) l0 � 0.01

3.3 Staggered algorithm

Staggered algorithm is robust in solving nonlinear governing equations [38]. According to the different stop
or coverage criteria, staggered algorithms can be classified into single-pass [29, 39], damage-based [40],
energy-based [41], and residual-based [13, 36, 42] criteria. In consideration of the easy implementation and
insensitivity to load increments of RCSA, this algorithm is employed to address the fracture failure problem of
finite deformation for flexible piezoelectric solids. Details of the RCSA scheme can be found in the literature
[42].

4 Numerical examples

During the simulations, if convergence is not achieved, the loading step size will be automatically reduced.
Notably, to prevent complete loss of stiffness in a fully damaged element, a small parameter k � 1×10–5 is
adopted throughout this work. This parameter helps maintain some residual stiffness even in elements that
have undergone significant damage.

4.1 Single-edge notched tension test

To validate the numerical implementation, a square piezoelectric plate model is established in Fig. 2a. There
is an initial sharp crack with a length of 0.5 mm in the middle of the specimen. The bottom edge is fixed,
maintaining a zero electric potential. The top edge undergoes displacement loading, accompanied by the
application of an electric potential of φ∗. To investigate the influence of poling direction on fracture behavior,
cases of parallel andperpendicular to electricfield direction are involved.Thematerial parameters utilized in this
work are consistentwith the literature [13], as listed inTable 1.Notably, the current nonlinear electromechanical
material model is isotropic, whereas Tan et al. [13] utilized a transversely isotropic piezoelectric model with
smaller values of elastic constants c33 and c44. To properly capture the behavior of crack propagation, a refined
discretization strategy is employed in regions where the crack has the potential to propagate. This leads to a
finite element mesh consisting of 26,045 elements. A displacement incrementu of 4×10–5 mm is employed.
Consistent with the literature [13], the viscous parameter η is set to zero in this example.

4.1.1 Poling directing parallel to electric field direction

In this case, the poling direction aligns parallel to the electric field direction. At an applied electric potential
of φ∗ � − 1000 V, Fig. 2b–e presents phase field contour, electric potential distributions, and electric field
distributions for various electrical boundary conditions upon the complete fracture. These boundary conditions
include impermeable ζ � 0 in Fig. 2c, semi-permeable ζ � 0.5 in Fig. 2d, and perfectly permeable ζ � 1
cases in Fig. 2e. Under the tensile and electric loadings, the material exhibits fracture behavior with crack prop-
agating from the initial notch toward the right side. Significant variations are observed in the electric potential
and electric field distributions under different electrical boundary conditions. In the impermeable electrical
boundary assumption, an electric potential discontinuity occurs in Fig. 2c(i). This is due to the impermeability
of the crack to electric potential, causing a division in the internal electric potential. In contrast, both the semi-
permeable and permeable cases maintain continuous electric potential along the predicted crack propagation
path (Fig. 2d(i) and e(i)). This continuity is attributed to the permeability of the electric potential allowed
by these conditions. Moreover, the electric field distributions within the crack also vary with the electrical
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Fig. 2 Schematic diagram and response of a single-notched piezoelectric material. a Schematic illustration of the piezoelectric
specimen subjected to uniaxial tension and an electric field. Upon the complete fracture with the applied electric potential φ∗ of
− 1000 V, b phase field contour, (i) electric potential distributions, and (ii) electric field distributions inside the material for the
c impermeable, d semi-permeable, and e permeable electrical boundary conditions, respectively

boundary conditions. In the impermeable crack assumption (Fig. 2c(ii)), there is a high concentration of the
electric field within the crack, sharply decreasing elsewhere. This occurs due to the abrupt change in electric
potential across the crack surface. Under the semi-permeable condition (Fig. 2d(ii)), the electric field within
the crack remains concentrated but with reduced magnitude. In contrast, in the permeable case (Fig. 2e(ii)),
the electric field distribution within the crack is more uniform, indicating free propagation without significant
hindrance or concentration. These observations highlight the influence of electrical boundary conditions on
the crack behavior, electric potential, and electric field distributions.

Figure 3 illustrates the relationship between load and displacement under various applied electric potentials
ranging from − 1000 V to 1000 V. When the poling direction is parallel to the electric field direction, the
results under the assumption of electric impermeability are depicted in Fig. 3a. With the increasing in electric
potential, both the ultimate displacement and peak load correspondingly increases, indicating delayed fracture
occurrence. However, differences emerge in the semi-permeable case (Fig. 3b) and permeable case (Fig. 3c).
In both scenarios, higher electric potential increases peak load while decreasing ultimate displacement. This
discrepancy in ultimate displacement demonstrates the influence of electrical boundary conditions on fracture
behavior. In Fig. 3d, the simulation results under different electrical boundary conditions with an applied
electric potential φ∗ of 1000 V are compared with the literature [13]. Peak loads of 156.42 N, 153.49 N, and
153.19 N are observed for impermeable, semi-permeable, and permeable scenarios, respectively. Interestingly,
allowing electrical permeability results in a reduced fracture load for the brittle BaTiO3 specimen, compared
with the impermeable condition. In addition, it promotes the earlier occurrence of fracture. Furthermore, the
predicted results fit well with the results reported in the literature. This simulation demonstrates the reliability
and effectiveness of the numerical framework. Notably, material parameters utilized in this example result in
the piezoelectricmaterial fracturing at a small strain state. Consequently, the results obtained from the nonlinear
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Fig. 3 When the poling direction is parallel to electric field direction, the relationship between load and displacement under
various electric potentials ranging from − 1000 V to 1000 V. Load and displacement curves for the a impermeable, b semi-
permeable, and c permeable cases, respectively. d At an applied electric potential of 1000 V, a comparison of results between
obtained numerical simulations and literature data [13]. Dots and lines represent results from the literature [13] and numerical
simulations, respectively. e The relation of peak load versus electric potential under different electrical boundary conditions

electromechanical material model do not exhibit significant differences from those using linear theory in the
literature [13].

In Fig. 3e, the peak load exhibits a linear increase with higher electric potential. Under negative electric
potential, the permeable case exhibits the highest peak load, followed by the semi-permeable case, and then the
impermeable case. Notably, at an applied electric potentialφ∗ of 500V, different electrical boundary conditions
predict similar peak loads. However, at 1000 V, the impermeable case shows the highest peak load, while the
permeable case demonstrates the smallest value.

4.1.2 Poling directing perpendicular to electric field direction

Figure 4a–d explore scenarios where the poling direction is perpendicular to the electric field direction. It can
be observed that variations in electric potential do not significantly affect the load-bearing capability. Across
different electrical boundary conditions, zero electric potential consistently results in the maximum peak load.
Regarding ultimate displacement, similar trends are observed in both the impermeable case (Fig. 4a) and the
semi-permeable case (Fig. 4b). Larger electric field magnitudes correspond to smaller ultimate displacements.
In contrast, Fig. 4c indicates that the electric potential may not influence the ultimate displacement in the
permeable case.

The relations of peak load versus electric potential are shown in Fig. 4d. Initially, peak load increases
with higher electric potential, reaching a maximum at zero electric potential, and subsequently decreases.
Furthermore, across different electric potentials, the impermeable case consistently shows the highest peak
load, followed by the semi-permeable case, and then the permeable case.

These results indicate that the fracture behavior of the piezoelectric material is influenced by the electrical
permeability of the crack. However, the specific effects can be different depending on the applied electric
potential, and poling direction.
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Fig. 4 When the poling direction is perpendicular to electric field direction, load and displacement relationships under various
electric potentials ranging from − 1000 V to 1000 V. Load and displacement curves for the a impermeable, b semi-permeable,
and c permeable cases, respectively. d Relationship between peak load and electric potential under different electrical boundary
conditions

4.2 Three-point bending test

A three-point bending case of flexible piezoelectric material (PVDF) is considered in Fig. 5a. This specimen
has a length of L � 20 mm, a width of w � 10 mm, and a height of h � 5 mm. There is a vertical slit
inserted at the lower boundary to create a pre-crack with a length of 2 mm. Two different eccentricities of the
crack are considered: one positioned at the mid-span (0 mm offset) and another with a 4 mm offset. The left
support is constrained in both horizontal and vertical directions, while the right one is constrained vertically.
A displacement loading is applied at the center of the upper edge, with an increment u of 2×10–2 mm. The
left side maintains a zero electric potential, whereas an electric potential of φ∗ is applied on the right side.
The poling direction is denoted by P. The material parameters used are listed in Table 2. In the region around
the potential crack propagation path, the mesh is refined via the characterized element size of l0/3. Different
electrical boundary conditions of impermeable, semi-permeable, and permeable cases are considered. To avoid
potential numerical convergence issues, a value of η� 10–3 is adopted for all subsequent simulations.
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Fig. 5 When the poling direction is parallel to electric field direction, schematic representation and response of a flexible piezo-
electric specimen in a three-point bending test. a Schematic diagram of the three-point bending test of a flexible piezoelectric
specimen with a pre-crack, where the pre-crack has two different eccentricities: 0 mm, and 4 mm offset from the mid-span. At
various normalized electric potentials (φ∗/L)

√
ε33/μ ranging from − 0.002 to 0.002: with a notch eccentricity of 0 mm, load-

–displacement curves for the b impermeable, c semi-permeable, and d permeable cases, respectively. With a notch eccentricity
of 4 mm, load and displacement relationships for the e impermeable, f semi-permeable, and g permeable cases, respectively

Table 2 Materials properties of PVDF [9]

Property Value

Young’s modulus (MPa) E � 10
Passion ratio ν � 0.4
Piezoelectric parameter (C/m2) e311 � 0.11 e333 � − 0.165 e113 � 0.07
Dielectric (10–11 F/m) ε11 � 4.87 ε33 � 5.11
Critical energy release rate (N/mm) Gc � 0.31
Length scale parameter (mm) l0 � 0.15
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4.2.1 Poling directing parallel to electric field direction

When the poling direction is parallel to the electric field direction, the schematic illustration is presented in
Fig. 5a and the responses are shown in Fig. 5b–g.

A notch eccentricity of 0 mm In the case where the notch eccentricity is 0 mm, the predicted load–displacement
curves are depicted in Fig. 5b–d. Initially, the force increases with the increase in loading displacement. When
it reaches the maximum load, the crack begins to propagate towards the top side. With the further loading, the
force gradually decreases. Similar trends are observed across different electrical boundary conditions: in Fig. 5b
for the impermeable case, Fig. 5c for the semi-permeable case, and Fig. 5d for the permeable case. Specifically,
peak load increases with higher electric potential, and ultimate displacement also rises under varying electrical
conditions. This suggests that higher electric potential delays the fracture occurrence. Flexible piezoelectric
materials exhibit a rapid decrease in load-bearing capacity after reaching their maximum load. However, with
further loading and larger displacements, these materials can still maintain a certain level of load-bearing
capacity.

A notch eccentricity of 4 mm In the case of a notch eccentricity of 4 mm, similar phenomena are observed
compared to the previous case. Higher electric potential enhances the load-bearing capacity irrespective of the
electrical boundary conditions: impermeable case in Fig. 5e, semi-permeable case in Fig. 5f, and permeable
case in Fig. 5g. However, the peak load exhibits a higher value compared to the case with notch eccentricity
of 0 mm.

To enhance the understanding of the effects of various electrical boundary conditions, Fig. 6 illustrates
the distribution of stress and electric field in a flexible piezoelectric specimen as the initial crack begins to
propagate. Under displacement loading, the top of the specimen experiences compressive stress, while the
bottom experiences tensile stress. Regardless of the electrical boundary conditions (the impermeable case
in Fig. 6a, the semi-permeable case in Fig. 6c, and the permeable case in Fig. 6e), a stress concentration
phenomenon occurs at the crack tip. Similarly, the electric field distribution exhibits a peak at the crack tip,
with the impermeable case exhibiting the highest electric field intensity (Fig. 6b), followed by the semi-
permeable case (Fig. 6d) and the permeable case (Fig. 6f). This variation in electric field intensity highlights
the influence of boundary conditions on the material’s response to crack propagation.

Figure 7 demonstrates the relationship between peak load and applied electric potential. As electric potential
increases, peak load also increases in both cases. Notably, the impermeable scenario consistently exhibits the
lowest peak load in both cases. This indicates an enhanced bearing capacity when electrical permeability
is allowed. In Fig. 7a, depicting the notch eccentricity of 0 mm, the relationship follows an approximate
logarithmical model of increase. However, with a notch eccentricity of 4 mm in Fig. 7b, the relation follows
an approximate exponential model.

4.2.2 Poling directing perpendicular to electric field direction

In addition, to investigate the influence of the poling direction, perpendicular orientation to the electric field
direction is considered in Fig. 8a.

A notch eccentricity of 0 mm In the scenario with a notch eccentricity of 0mm, the predicted load–displacement
curves for impermeable, semi-permeable, andpermeable cases are depicted inFig. 8b, c, andd, respectively.The
results indicate that the bearing capacity increases with increasing electric potential, although this trend shows
a limited increment. After reaching the peak load, there is a gradual decline in bearing capacity. This suggests
that the structure maintains a certain level of bearing capacity even under significant large displacement. This
may be attributed to the high tensile limit of flexible materials, which can delay material failure. In contrast,
brittle piezoelectric materials behave differently after reaching their maximum strength limit. Some studies
[13, 32] have reported that once the maximum strength limit is reached, cracks rapidly propagate, leading to
the loss of load-bearing capacity. In contrast to the case where the poling direction is parallel to the electric
field direction, the ultimate load capacity of the structure diminishes.
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Fig. 6 Under the displacement loading, stress and electric field distributions under different electrical boundary conditions. In
the impermeable case, the distribution of a stress andb electric field. c Stress distribution for the semi-permeable case, with the
corresponding d electric field distribution. In the permeable case, the distribution of e stress and f electric field

Fig. 7 In consideration of the poling direction parallel to electric field direction, peak load versus normalized electric potential
(φ∗/L)

√
ε33/μ with notch eccentricities of a 0 mm and b 4 mm offset from the mid-span, respectively

A notch eccentricity of 4 mm When the notch eccentricity is 4 mm, the simulation results for impermeable,
semi-permeable, and permeable cases are presented in Fig. 8e–g, respectively. Interestingly, the peak load
decreases with the increasing electric potential, while the ultimate displacement increases.

Figure 9 further illustrates the relation of peak load versus applied electric potential. In both notch eccen-
tricity cases, the impermeable scenario consistently shows the lowest peak load. For a notch eccentricity of
0 mm in Fig. 9a, the peak load increases with increasing electric potential. Furthermore, the permeable case
exhibits the maximum bearing capacity, followed by the semi-permeable case, and then the impermeable case.
Conversely, in Fig. 9b, where the notch eccentricity is 4 mm, the peak load decreases with increasing elec-
tric potential. In this case, the electrically impermeable assumption results in the lowest peak load, while the
semi-permeable case may yield the highest bearing capacity.
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Fig. 8 When the poling direction is perpendicular to electric field direction, schematic representation and response of a flexible
piezoelectric specimen in a three-point bending test. a Schematic diagram of the three-point bending test of a flexible piezoelectric
specimen with a pre-crack. At various normalized electric potentials (φ∗/L)

√
ε33/μ ranging from − 0.002 to 0.002: with a

notch eccentricity of 0 mm offset from the mid-span, load–displacement curves for the b impermeable, c semi-permeable, and
d permeable cases, respectively. With a notch eccentricity of 4 mm, load and displacement relationships for the e impermeable,
f semi-permeable, and g permeable cases, respectively

To demonstrate the influence of electromechanical response, comparisons of load–displacement curves are
presented in Fig. 10, where zero electric potential is applied. Setting the piezoelectric and dielectric parameters
to zero indicates the absence of electromechanical response. The results for notch eccentricities of 0 mm and
4 mm are shown in Fig. 10a and b, respectively. In both cases, the scenario with the poling direction aligned
parallel to the electric field direction exhibits the highest peak load, followed by the perpendicular configuration.
In contrast, the curve representing the absence of electromechanical response exhibits the lowest peak load.
Notably, the ultimate displacement without electromechanical response is notably high.

5 Conclusion

In this contribution, a phase field model is proposed to predict the fracture behavior of flexible piezoelectrics
under finite deformation and external electric fields. Thismodel takes into account different electrical boundary
conditions on the crack surfaces. The numerical simulations are implemented using the commercial finite
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Fig. 9 Relationship between peak load and normalized electric potential (φ∗/L)
√

ε33/μ under different electrical boundary
conditions when the poling direction is perpendicular to the electric field direction. Peak load versus normalized electric potential
with notch eccentricities of a 0 mm and b 4 mm offset from the mid-span, respectively

Fig. 10 Comparison of with and without electromechanical responses, for notch eccentricities of a 0 mm and b 4 mm offset from
the mid-span, respectively. Results considering electromechanical response are obtained under the assumption of electrically
impermeable and zero applied electric potential. Solid lines represent results with electromechanical response, while dashed lines
correspond to results without electromechanical response

element software ABAQUS, utilizing a user element subroutine. RCSA scheme is employed to solve the
coupled displacement, electric potential, and phase field variables.

Numerical simulations are conducted on single-edge notched tension and three-point bending tests. To
investigate the influence of the poling direction on fracture behavior, both parallel and perpendicular ori-
entations to electric field direction are considered. Results show that the fracture of piezoelectric materials
is affected by poling direction, external electric fields, and electrical boundary conditions. In the case of
single-edge notched tension, when the poling direction is parallel to the electric field direction, the electrical
permeability influences the fracture load, with the specific effect depending on the magnitude of the applied
electric field. Conversely, when the poling direction is perpendicular to the electric field direction, the presence
of electrical permeability may reduce the fracture load. Regarding the three-point bending test, the presence
of electrical permeability may increase the fracture load, regardless of the poling direction, in contrast to the
conditions of electrical impermeability. When the poling direction is aligned with the electric field direction,
an increase in electric potential results in a higher peak load. Conversely, when the poling direction is perpen-
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dicular to the electric field direction, varying notch eccentricities result in differing effects of electric potential
on bearing capacity.

The fracture behavior of flexible piezoelectric materials is influenced by geometric parameters, external
electric fields, and the poling direction. This study aims to contribute to the development of guidelines for
accurately predicting fractures in these materials under electromechanical environments.
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