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Abstract The current manuscript focuses on the photo-thermoelastic interactions in a rotating plate with a
porous structure and temperature-dependent properties. The analysis is performed using the dual phase lag
theory and by considering a two-dimensional isotropic homogeneous plate. The upper surface of the plate
experiences the application of a mechanical source, while the lower surface of the plate is insulated thermally.
The application of the normal mode technique enables the derivation of analytical expressions for various field
variables such as displacement, stress, change in volume fraction field, carrier density and temperature within
the physical domain. Numerical computations are performed for a plate composed of silicon material and the
results are represented graphically with the support ofMATLAB software to demonstrate the consistency of the
obtained results. To outline the influences of rotation, photothermal transport process, temperature-dependent
properties and void parameters on the physical fields, certain collations are presented. Some specific cases of
interest have also been deducted.

1 Introduction

Because of the advancement of nuclear reactors, electromagnetic lasers,X-raymachines andother technologies,
generalized theories of thermoelasticity are getting a lot of attention from various researchers and engineers.
The generalized theories of thermoelasticity utilize hy-perbolic-type heat conduction equation and allow for
thermal signals propagatingwith finite speeds. Lord and Shulman [1]were the pioneers of the first non-classical
generalized theory, termed as L-S theory of generalized thermoelasticity, which incorporates a relaxation time
in Fourier’s law of heat conduction. The anisotropic situation was then included in L-S theory by Dhaliwal
and Sherief [2]. Tzou [3] proposed dual phase lag (DPL) theory of generalized thermoelasticity. He extended
Fourier’s law �q = −K �∇T of heat conduction to the equation �q(R, t + τq) = −K �∇T (R, t + τT ), with
two different phase lags, where the temperature gradient �∇T at a spatial location R of the material at time
t + τT corresponds to the heat flux vector �q at the same position at another time t + τq and K is the thermal
conductivity of the material. The relaxation time τT highlights the micro-structural interactions such as phonon
scattering and phonon-electron interactions and is called the phase-lag of the temperature gradient, while other
relaxation time τq emphasizes fast transitory effects of the thermal inertia, which is termed as the phase lag
of the heat flux. The Fourier’s law in the dual phase lag model is identical to the classical Fourier’s law if we
take τq = τT = 0.
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The qualitative and stability aspects of the dual phase lag theory were examined by Quintanilla and Racke
[4]. They analyzed the connection between the two distinct phase lags, namely τq and τT . Kalkal et al. [5]
scrutinized the thermoviscoelastic disturbances in a homogeneous isotropic thick plate using the eigenvalue
approach to analyze the impacts of the fractional order parameter, viscosity and time. Under DPL model of
generalized thermoelasticity, Allam and Tayel [6] examined the effect of nonhomogeneity parameter on a
functionally graded thermoelastic rectangular thin plate. By utilizing dual phase lag theory of generalized ther-
moelasticity, various authors [7–9] made significant advancements in the field of generalized thermoelasticity.
Peng et al. [10] developed a modified nonlocal thermoviscoelastic model by combining the dual phase lag heat
conduction model and the fractional-order strain model and investigated the transient response of a viscoelas-
tic microplate subjected to a sinusoidal thermal loading. Abouelregal et al. [11] examined thermo-magnetic
interactions in a viscoelastic micropolar thermoelastic medium under dual phase lag theory of generalized
thermoelasticity. Recently, Zenkour et al. [12] investigated the thermoelastic response of biological tissue
subjected to thermal shock using an advanced thermal conduction theory known as refined three-phase-lag
(TPL) theory of generalized thermoelasticity.

In our surroundings, semiconductor materials exist that have great importance in renewable sources of
energy i.e. in the solar cell industry. When a sample of semiconductor material is illuminated by a beam of
sunlight or laser beam, the electron–hole pairs are generated which scatter through the crystal from the place
of their generation to region of lower excess-pair concentration and produce carrier density (plasma) waves
that are similar to thermal waves. In general, when a semiconductor is heated, its electrons are released from
its atoms, raising the temperature of the semiconductor and as a result, the electron resistance of the semi-
conductor decreases. Photothermal and photoacoustic sciences have played a crucial role in the development
of semiconductors and microelectronic structures as they allow for the measurement of important parame-
ters such as thermal diffusivity, temperature, surface thickness, sound velocity and specific heat. Todorovic
[13] investigated the dynamic elastic bending contribution of the photoacoustic and photothermal signals as
a function of modulation frequency including the propagation processes of the plasma, thermal and elastic
waves. A complete analytical solution of photothermal deflection spectroscopy for the measurement of thermal
conductivities in an anisotropic material was presented by Jeon et al. [14]. Song et al. [15] studied the elastic
disturbances in semiconducting cantilevers under laser excitation and obtained the 3-D response for the carrier
density and temperature distribution using Green function method. Utilizing normal mode analysis, Lotfy [16]
discussed the impact of hydrostatic initial stress, two-temperature and activation coupling parameters under
the photothermal process of semiconducting medium. Hobiny and Abbas [17] investigated the problem of pho-
tothermalwaves in an unbounded semiconductormediumwith a cylindrical cavity. Kilany et al. [18] studied the
influences of rotation, void and photothermal parameters in a semiconducting thermoelastic half-space in the
context of L-S theory. Zenkour [19] defined a unified theory of coupled photo-thermoelasticity to investigate
the multi-time-derivative heat formulae. The photogenerated transport processes were examined by El-Sapa
et al. [20], when a microelongated elastic non-local semiconductor thermoelastic medium is considered. Under
the influence of a moving mechanical load, Deswal et al. [21] scrutinized the effects of gravity, diffusion, time,
magnetic field and Hall current on a photothermoelastic semiconducting medium.

A continuum elastic body with voids refers to a porous solid material, where the matrix materials are elastic
and the volume of thematerial contains small pores or voids. Linear and non-linear theories of elastic solidswith
voids have deliberated applications in several fields such as geological and biological material sciences, rocks,
drugs, soils, medical device industry and the petroleum industry. Cowin and Nunziato [22] developed the linear
theory of elastic materials with voids and studied the mechanical behaviour of porous materials. The basic idea
of the above theory is that the bulk density of the continuum body is presented by the product of the change in
volume fraction field and density field of the matrix material. Iesan [23] developed a theory of thermoelastic
materials with voids, where the constitutive equations were derived based on the balance law of energy, the
entropy production inequality and the invariance requirements under superposed rigid bodymotions. It was also
discussed that the transverse wave vibrates without affecting the porosity and temperature distribution of the
material. Deswal and Hooda [24] scrutinized the effects of voids, rotation parameter and magnetic field in the
context of two-temperature generalized thermoelasticity. Othman and Hilal [25] studied the effects of gravity
and voids in a thermoelastic medium under various theories of generalized thermoelasticity. By employing the
generalized theory of thermoelasticity with one relaxation time, Gunghas et al. [26] studied two-dimensional
deformations in a nonhomogeneous thermoelastic porous medium with gravity, whose surface is subjected to
a thermal load. Under various theories of generalized thermoelasticity, Othman et al. [27] studied the effects
of voids and temperature-dependent properties on a generalized thermo-microstretch solid half-space.
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In most of the studies, modulus of elasticity, coefficient of thermal expansion, Poisson’s ratio and thermal
conductivity are considered to be constants instead of temperature dependent, which restrict the materiality of
the solutions obtained to certain ranges of temperature. Keeping this in mind, Tang [28] presented the stress
formulation of thermoelasticity with temperature-dependent properties and showed that if a simply connected
body has a uniform temperature change and has no surface tractions in the absence of body forces, then
all the stress components are identically zero throughout the body. Othman [29] studied the behaviour of
two-dimensional solutions in a generalized thermoelastic medium with temperature dependence of the elastic
modulus on the reference temperature. By employing Laplace and Fourier transform techniques, Kumar and
Devi [30] scrutinized the effects of voids, thermal conductivity and temperature-dependent properties on the
field variables. Using three different theories, Othman and Edeeb [31] investigated the effect of temperature-
dependent properties on thermoelastic porous medium with rotation. Alharbi et al. [32] studied the effects of
temperature-dependent properties, voids and internal heat source on a micropolar thermoelastic medium in the
context of three phase lag theory.Mirparizi andRazavinasab [33] applied themodifiedGreen-Lindsay theory to
analyze thermo-electro-magneto-elasticity in a functionally graded disk that considers temperature-dependent
material properties. Barak and Dhankhar [34] analyzed thermomechanical interactions in a non-homogeneous
fiber-reinforced thermoelastic medium with temperature-dependent properties.

In the present investigation, the dual phase lag theory of generalized thermoelasticity is applied to ana-
lyze disturbances in a rotating photothermal semiconducting plate that includes voids and has temperature-
dependent properties. Using normal mode analysis, exact expressions are derived for various field variables,
including normal stress, normal displacement, temperature, change in volume fraction field and carrier den-
sity. These field variables are computed numerically with the help of MATLAB programming for a silicon
crystal-like material and the obtained numerical results are displayed graphically. Some collations are pre-
sented to delineate the effects of photothermal transport process, rotation and void parameters on normal
stress, normal displacement, temperature, change in volume fraction field and carrier density. The impacts of
temperature-dependent properties and time on the physical fields are also displayed.

Although numerous studies have been conducted to observe the transitory disturbances caused by different
parameters in a thermoelastic medium, the work in its current form has not been studied by any researcher till
date. The analysis of issues involving rotation, voids, temperature-dependent properties and photothermoe-
lasticity may be done effectively with the help of the current formulation. The novelty of this research stems
from the examination of more parameters on different field quantities in response of the mechanical load. The
findings of this research can be applied to laser resurfacing, vessel lesion treatment, laser surgery, material
science, biomechanical science, earthquake engineering and solid mechanics. Inspired by the broad spectrum
of potential applications discussed above across various fields, we are motivated to investigate the dynamical
distributions in a photothermoelastic rotating plate with voids and temperature-dependent properties.

2 Fundamental equations

Following Kilany et al. [18] and Iesan [23], the constitutive relations and field equations for an isotropic,
homogeneous semiconducting rotational medium with voids and temperature-dependent properties in the
absence of body forces can be expressed as:

(a) Constitutive equations

σi j = 2μei j + (λekk − βθ + bvφv − δnN )δi j , (1)

ei j = 1

2
(ui, j + u j,i ), (2)

g = −wvφ̇v − ξφv − bvekk + nθ, (3)

hi = αφv,i , (4)

where λ and μ are the well known Lame’s elastic constants, β = (3λ + 2μ)αt , αt is the coefficient of linear
thermal expansion, σi j are the components of stress, ei j are the components of strain, ui are the components
of displacement vector �u, hi are the components of equilibrated stress, θ = T − T0 is the temperature in
which T denotes the absolute temperature, T0 is the reference temperature of the medium in its natural state
assumed to be | θ

T0
| � 1, δn is the difference of deformation potential of conduction and valence band such

that δn = (3λ + 2μ)dn , dn is coefficient of electronic deformation, e = ekk is the cubical dilatation, φv is the
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change in volume fraction field, α, wv , bv and ξ are the void material constants, n is thermo-void coefficient,
g is the intrinsic equilibrated body force, N is the carrier density and δi j is the Kronecker delta function.

(b) Carrier density (plasma wave) equation

DE∇2N − N

τ
+ κθ = ∂N

∂t
, (5)

where, κ = 1

τ

∂N0

∂T
, N0 is the equilibrium carrier concentration at temperature T , DE is the carrier diffusion

coefficient and τ is the photo-generated carrier life time.

(c) Equation of motion in the rotating frame (Schoenberg and Censor [35])

σ j i, j = ρ[�̈u + ( �� × �� × �u) + (2 �� × �̇u)]i , (6)

where ρ is the mass density and it is assumed that the whole body is rotating with an angular velocity ��.
Due to accelerated frame of reference, the equation of motion has two additional terms: ( �� × �� × �u) is the
centripetal acceleration due to time varying motion only and (2 �� × �̇u) is Coriolis acceleration due to moving
reference frame.

(d) Heat conduction equation (Tzou [3])

K

(
1 + τT

∂

∂t

)
θ,i i =

(
1 + τq

∂

∂t
+ η

τ 2q

2

∂2

∂t2

)(
ρCE

∂θ

∂t
+ βT0

∂e

∂t
+ nT0

∂φv

∂t

)
− Eg

τ
N , (7)

where CE is the specific heat at constant strain, K is the thermal conductivity, Eg is the energy gap of the
semiconductor, τT and τq are phase lags of temperature gradient and heat flux respectively and η is the unifying
parameter. Moreover, the use of unifying parameter η in Eq. (7) makes this fundamental equation valid for the
two different theories of generalized thermoelasticity:

Case I: Lord-Shulman (LS) theory: τT = 0 and η = 0.
Case II: Dual phase lag (DPL) theory: τq − τT > 0 and η = 1.

(e) Balance of equilibrated force

hi,i + g = ρχφ̈v, (8)

where χ is the equilibrated inertia.
In the above relations, i, j, k = 1, 2, 3, comma represents derivative with respect to spatial variable and a

superposed dot denotes derivative with respect to time t .
Moreover, our motive is to investigate the effect of temperature-dependent parameters on the physical

fields. Therefore, we suppose that

(λ, μ, β, δn, κ, Eg, DE , α, bv, ξ, wv, n, χ)

= f (α∗)(λ0, μ0, β0, δn0 , κ0, Eg0 , DE0 , α0, bv0 , ξ0, wv0 , n0, χ0), (9)

where λ0, μ0, β0, δn0 , κ0, Eg0 , DE0 , α0, bv0 , ξ0, wv0 , n0 and χ0 are constants, f (α∗) is a given non-
dimensional function of temperature such that f (α∗) = 1− α∗T0 and α∗ is an empirical material constant. In
case of without temperature-dependent properties, we have f (α∗) = 1.

3 Formulation of the problem

In the current manuscript, we consider a rotating homogeneous isotropic semiconducting plate with voids and
temperature-dependent properties under DPL model, occupying the region −d ≤ x ≤ d , −∞ ≤ y ≤ ∞. The
origin of the rectangular cartesian co-ordinate system (x, y, z) is taken on the middle surface of the plate. The
yz-plane is chosen to coincide with the middle surface and the x-axis is normal to it along the thickness of the
plate. The fundamental state of the considered medium is undisturbed and initially at uniform temperature T0.
The surfaces of plate are given by x = ±d in which the upper surface (x = d) of the plate is subjected to the
action of a mechanical load and the lower surface (x = −d) of the plate is laid on a rigid foundation and is
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Fig. 1 Geometry of the problem

thermally insulated. We choose y-axis in the direction of wave propagation so that all the particles on a line
parallel to z-axis are equally displaced, therefore all the field quantities are independent of the z-coordinate.
The plate is rotating about z-axis with uniform angular velocity ��. The geometry of the problem is shown in
Fig. 1.

Under the above considerations, we may write the displacement vector �u, angular velocity ��, temperature
θ , carrier density N and change in volume fraction field φv as:

�u = (u, v, 0), u = u(x, y, t), v = v(x, y, t), �� = (0, 0, �), θ = θ(x, y, t),

N = N (x, y, t) and φv = φv(x, y, t). (10)

Using expressions (9) and (10), constitutive relation (1) provides the stress components in the form:

σxx = α1

[
D1

∂u

∂x
+ λ0

∂v

∂y
− β0θ + bv0φv − δn0N

]
, (11)

σyy = α1

[
λ0

∂u

∂x
+ D1

∂v

∂y
− β0θ + bv0φv − δn0N

]
, (12)

σxy = α1μ0

[
∂u

∂y
+ ∂v

∂x

]
, (13)

where D1 = λ0 + 2μ0 and α1 = 1 − α∗T0.
Taking into consideration expressions (3), (4), (9) and (11)–(13), the governing equations (5)–(8) are

converted to:

α1DE0∇2N − N

τ
+ α1κ0θ = ∂N

∂t
, (14)

α1

[
D1

∂2u

∂x2
+ μ0

∂2u

∂y2
+ D2

∂2v

∂x∂y
− β0

∂θ

∂x
+ bv0

∂φv

∂x
− δn0

∂N

∂x

]
= ρ

(
∂2u

∂t2
− �2u − 2�

∂v

∂t

)
, (15)

α1

[
D1

∂2v

∂y2
+ μ0

∂2v

∂x2
+ D2

∂2u

∂x∂y
− β0

∂θ

∂y
+ bv0

∂φv

∂y
− δn0

∂N

∂y

]
= ρ

(
∂2v

∂t2
− �2v + 2�

∂u

∂t

)
, (16)

(
1 + τq

∂

∂t
+ η

τ 2q

2

∂2

∂t2

)(
ρCE

∂θ

∂t
+ α1β0T0

∂e

∂t
+ α1n0T0

∂φv

∂t

)
− α1

Eg0

τ
N

= K

(
1 + τT

∂

∂t

)
∇2θ, (17)

α0∇2φv − wv0

∂φv

∂t
− ξ0φv − bv0

(
∂u

∂x
+ ∂v

∂y

)
+ n0θ = ρχ0

∂2φv

∂t2
, (18)
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where

∇2 ∼= ∂2

∂x2
+ ∂2

∂ y2
.

For convenience in the subsequent analysis, we will introduce the following non-dimensional variables:

(x ′, y′, u′, v′) = 1

CT t∗
(x, y, u, v), (t ′, τ ′

q , τ
′
T ) = 1

t∗
(t, τq , τT ), σ ′

i j = σi j

μ0
,

θ ′ = β0

λ0 + 2μ0
θ, N ′ = δn0

λ0 + 2μ0
N , φ′

v = χ0

λ0 + 2μ0
φv, �′ = t∗�,

with t∗ = K

ρCEC2
T

and C2
T = λ0 + 2μ0

ρ
. (19)

Now, with the help of the non-dimensional quantities defined in (19), expressions (11)–(13) and the Eqs.
(14)–(18) become (dropping the prime notation)

σxx = α1

[
D3

∂u

∂x
+ D4

∂v

∂y
− D3θ + D5φv − D3N

]
, (20)

σyy = α1

[
D4

∂u

∂x
+ D3

∂v

∂y
− D3θ + D5φv − D3N

]
, (21)

σxy = α1

[
∂u

∂y
+ ∂v

∂x

]
, (22)

(∇2 − D6 − D7
∂

∂t
)N + D8θ = 0, (23)

α1

[
∂2u

∂x2
+ D9

∂2u

∂y2
+ D10

∂2v

∂x∂y
− ∂θ

∂x
+ D11

∂φv

∂x
− ∂N

∂x

]
= ∂2u

∂t2
− �2u − 2�

∂v

∂t
, (24)

α1

[
∂2v

∂y2
+ D9

∂2v

∂x2
+ D10

∂2u

∂x∂y
− ∂θ

∂y
+ D11

∂φv

∂y
− ∂N

∂y

]
= ∂2v

∂t2
− �2v + 2�

∂u

∂t
, (25)

(
1 + τT

∂

∂t

)
∇2θ =

(
1 + τq

∂

∂t
+ η

τ 2q

2

∂2

∂t2

)(
∂θ

∂t
+ D12

∂e

∂t
+ D13

∂φv

∂t

)
− D14N , (26)

(
∇2 − D15 − D16

∂

∂t
− D17

∂2

∂t2

)
φv − D18

(
∂u

∂x
+ ∂v

∂y

)
+ D19θ = 0, (27)

where

D2 = λ0 + μ0, D3 = D1

μ0
, D4 = λ0

μ0
, D5 = bv0D3

χ0
, D6 = t∗2C2

T

DE0α1τ
,

D7 = t∗C2
T

DE0α1
, D8 = κ0t∗2δn0C2

T

β0DE0

, D9 = 1

D3
, D10 = D2

D1
, D11 = bv0

χ0
,

D12 = t∗α1β
2
0T0

ρK
, D13 = n0α1β0T0

ρχ0CE
, D14 = Eg0α1β0

τρδn0CE
, D15 = t∗2C2

T ξ0

α0
,

D16 = t∗wv0C
2
T

α0
, D17 = ρχ0C2

T

α0
, D18 = bv0χ0t∗2C2

T

α0D1
, D19 = n0χ0t∗2C2

T

α0β0
.

Now, we introduce the potential functions �(x, y, t) and �(x, y, t), which are related to the displacement
components u(x, y, t) and v(x, y, t) as:

u = ∂�

∂x
+ ∂�

∂y
, v = ∂�

∂y
− ∂�

∂x
. (28)



Photothermal interactions in a semiconducting

With the help of (28), expressions (20)–(22) and Eqs. (23)–(27) convert to:

σxx = α1

[
D3

∂2�

∂x2
+ D4

∂2�

∂y2
+ 2

∂2�

∂x∂y
− D3θ + D5φv − D3N

]
, (29)

σyy = α1

[
D3

∂2�

∂y2
+ D4

∂2�

∂x2
− 2

∂2�

∂x∂y
− D3θ + D5φv − D3N

]
, (30)

σxy = α1

[
∂2�

∂y2
− ∂2�

∂x2
+ 2

∂2�

∂x∂y

]
, (31)

(∇2 − D6 − D7
∂

∂t
)N + D8θ = 0, (32)

(
α1∇2 − ∂2

∂t2
+ �2

)
� − 2�

∂�

∂t
− α1θ + D20φv − α1N = 0, (33)

(
D21∇2 − ∂2

∂t2
+ �2

)
� + 2�

∂�

∂t
= 0, (34)

(
1 + τq

∂

∂t
+ η

τ 2q

2

∂2

∂t2

) (
∂θ

∂t
+ D12

∂

∂t
(∇2�) + D13

∂φv

∂t

)

−D14N −
(
1 + τT

∂

∂t

)
∇2θ = 0, (35)

(
∇2 − D15 − D16

∂

∂t
− D17

∂2

∂t2

)
φv − D18∇2� + D19θ = 0, (36)

where

D20 = α1bv0

χ0
, D21 = α1

D3
.

4 Normal mode analysis

The normal mode technique is utilized to obtain exact solutions without making any assumed limitations on
the physical variables that are present in the governing equations of the considered problem. This technique
involves decomposing the solution of the physical quantities into normal modes. Essentially, the normal mode
technique seeks to express the solution in the Fourier transformed domain. As a result, the physical variables
being analyzed can be expressed in terms of normal modes, using the following format:

[
�,�, N , θ, φv, σi j

]
(x, y, t) =

[
�∗, �∗, N∗, θ∗, φ∗

v , σ ∗
i j

]
(x) exp (ωt + ιmy), (37)

where �∗, �∗, N∗, θ∗, φ∗
v and σ ∗

i j are the amplitudes of the physical quantities, ω is the angular frequency,
m is the wave number in y-direction and ι is the imaginary unit.

Substituting the expression (37) into Eqs. (32)–(36), we attain the following set of equations:

D8θ
∗ + (D2 + B11)N

∗ = 0, (38)

(D2 + B12)�
∗ + B13�

∗ − θ∗ + B14φ
∗
v − N∗ = 0, (39)

B16�
∗ + (D2 + B15)�

∗ = 0, (40)(
B17(D

2 − m2) − B18
)
θ∗ − B19(D

2 − m2)�∗ − B20φ
∗
v + D14N

∗ = 0, (41)

(D2 + B21)�
∗
v − D18(D

2 − m2)�∗ + D19θ
∗ = 0, (42)

where

D ∼= ∂

∂x
, B11 = −(m2 + D6 + D7ω), B12 = �2 − ω2

α1
− m2, B13 = −2�ω

α1
,
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B14 = D20

α1
, B15 = �2 − ω2

D21
− m2, B16 = 2�ω

D21
, B17 = (1 + τTω),

B18 =
(
1 + τqω + η

τ 2qω2

2

)
ω, B19 = B18D12, B20 = B18D13,

B21 = − (
m2 + D15 + D16ω + D17ω

2) .

Eliminating the functions �∗, �∗, N∗, θ∗ and φ∗
v from Eqs. (38)–(42), we get the following differential

equation of order ten

[D10 + I1D
8 + I2D

6 + I3D
4 + I4D

2 + I5](�∗, �∗, N∗, θ∗, φ∗
v ) = 0, (43)

where

I1 = (E15E21 + E14E22 − E11E25 − E12E24)

(E14E21 − E11E24)
,

I2 = (E16E21 + E15E22 + E14E23 − E11E26 − E12E25 − E13E24)

(E14E21 − E11E24)
,

I3 = (E17E21 + E16E22 + E15E23 − E11E27 − E12E26 − E13E25)

(E14E21 − E11E24)
,

I4 = (E17E22 + E16E23 − E12E27 − E13E26)

(E14E21 − E11E24)
,

I5 = (E17E23 − E13E27)

(E14E21 − E11E24)
,

E11 = D8C25 − C15C23, E12 = C11C25 + C15C24 − C16C23, E13 = C12C25 + C16C24,

E14 = −C15B16, E15 = C25 − C15C21 − C16B16, E16 = C13C25 + C15C22 − C16C21,

E17 = C14C25 + C16C22, E21 = D8C23, E22 = C31C23 + C25C32 − D8C24,

E23 = C33C25 − C31C24, E24 = D8B17, E25 = D8C21 + C31B17,

E26 = C31C21 − D8C22 + C25D19, E27 = C34C25 − C31C22, C11 = (B12 + B15)D8,

C12 = (B12B15 − B13B16)D8, C13 = B11 + B15 − D8, C14 = B11B15 − D8B15,

C15 = D8B14, C16 = D8B14B15, C21 = B17B11 − B17m
2 − B18,

C22 = B17B11m
2 + B18B11 + D14D8, C23 = B19D8, C24 = B19D8m

2,

C25 = B20D8, C31 = B21D8, C32 = D8D18, C33 = −D8D18m
2, C34 = B11D19.

Eq. (43) can be factorized as:

(D2 − λ21)(D
2 − λ22)(D

2 − λ23)(D
2 − λ24)(D

2 − λ25)(�
∗, �∗, N∗, θ∗, φ∗

v )(x) = 0, (44)

where λ2n (n = 1, 2, 3, 4, 5) are the roots of the characteristic equation of (43).
Now, the solution of Eq. (44) can be written as

(�∗, �∗, N∗, θ∗, φ∗
v )(x) =

5∑
i=1

[
(H1i , 1, H2i , H3i , H4i )Mi (m, ω)exp(λi x)

+(N1i , 1, N2i , N3i , N4i )Gi (m, ω)exp(−λi x)
]
, (45)

where Mi and Gi are arbitrary constants depending upon m and ω. Hji and N ji ( j = 1, 2, 3, 4; i =
1, 2, 3, 4, 5) are the coupling parameters among �∗, �∗, N∗, θ∗ and φ∗

v . The values of coupling parameters
are obtained from Eqs. (38)–(42) and are given as:

H1i = −(λ2i + B15)

B16
, H2i = − (E11λ

4
i + E12λ

2
i + E13)H1i

E14λ
6
i + E15λ

4
i + E16λ

2
i + E17

, H3i = −(λ2i + B11)H2i

D8
,

H4i = D18(λ
2
i − m2)H1i − D19H3i

(λ2i + B21)
,
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N1i = −(λ2i + B15)

B16
, N2i = − (E11λ

4
i + E12λ

2
i + E13)N1i

E14λ
6
i + E15λ

4
i + E16λ

2
i + E17

, N3i = −(λ2i + B11)N2i

D8
,

N4i = D18(λ
2
i − m2)N1i − D19N3i

(λ2i + B21)
, (i = 1, 2, 3, 4, 5).

Based on the solution given in (45), the components of displacement (28) and stresses (29)–(31) can be
expressed in the following form:

(u∗, v∗, σ ∗
xx , σ

∗
yy, σ

∗
xy)(x) =

5∑
i=1

[
(H5i , H6i , H7i , H8i , H9i )Mi (m, ω) exp(λi x)

+(N5i , N6i , N7i , N8i , N9i )Gi (m, ω) exp(−λi x)
]
, (46)

where

H5i = (λi H1i + ιm), H6i = (ιmH1i − λi ),

H7i = α1
(
(D3λ

2
i − m2D4)H1i + 2ιmλi − D3H3i + D5H4i − D3H2i

)
,

H8i = α1
(
(D4λ

2
i − m2D3)H1i − 2ιmλi − D3H3i + D5H4i − D3H2i

)
,

H9i = −α1
(
2ιmλi H1i (λ

2
i + m2)

)
,

N5i = (−λi N1i + ιm), N6i = (ιmN1i + λi ),

N7i = α1
(
(D3λ

2
i − m2D4)N1i − 2ιmλi − D3N3i + D5N4i − D3N2i

)
,

N8i = α1
(
(D4λ

2
i − m2D3)N1i + 2ιmλi − D3N3i + D5N4i − D3N2i

)
,

N9i = α12ιmλi N1i (λ
2
i + m2).

5 Application: mechanical load

A mechanical load σ0(y, t) is imposed on the upper surface x = d of the considered rotating semiconducting
thermoelastic plate with voids and temperature-dependent properties as shown in Fig. 1. The lower surface
x = −d of the plate is thermally insulated. The constants Mi and Gi (i = 1, 2, 3, 4, 5) will be determined by
imposing appropriate boundary conditions.

Case I: Boundary conditions on the upper surface of the plate

(i) Mechanical conditions:

As the upper surface x = d of the plate is subjected to a mechanical load, the mechanical boundary conditions
on the upper surface of the plate are written as:

σxx (d, y, t) = −σ0(y, t), (47)

σxy(d, y, t) = 0, (48)

where σ0(y, t) is a given function of y and t representing the applied mechanical load such that σ0 =
σ ∗
0 exp(ωt + ιmy), the constant σ ∗

0 is the strength of the mechanical load.

(ii) Thermal condition: The upper surface x = d of the plate is kept at a uniform temperature T0 i.e. the

temperature distribution (θ = T − T0) must vanish at the bounding surface, i.e.

θ(d, y, t) = 0. (49)

(iii) Void condition:

The change in volume fraction field is supposed to be zero on the upper surface x = d of the plate, i.e.

φv(d, y, t) = 0. (50)

(iv) Plasma excitation condition: The excitation process occurs during the transport process on the surface
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x = d of plate with finite recombination probability, such that it can be represented by the carrier density in
the following form:

DE
∂N

∂x
(d, y, t) = sN (d, y, t), (51)

where s is the recombination velocity.

Case II: Boundary conditions on the lower surface of the plate

(i) Mechanical conditions:

The lower surface of the plate is laid on a rigid foundation i.e. normal and tangential components of displace-
ment vanish at the lower surface x = −d of the plate. So, the mechanical boundary conditions on the lower
surface of the plate are written as:

u(−d, y, t) = 0, (52)

v(−d, y, t) = 0. (53)

(ii) Thermal condition:

The lower surface of plate i.e. the surface x = −d , is assumed to be thermally insulated. Therefore, the
corresponding boundary condition is given by:

∂θ

∂x
(−d, y, t) = 0. (54)

(iii) Void condition:

The change in volume fraction field is constant on the lower surface x = −d of the plate, i.e.

∂φv

∂x
(−d, y, t) = 0. (55)

(iv) Plasma excitation condition:

At the surface x = −d of the plate with finite recombination probability, the excitation process takes place
during the transport process. This process can be described by the carrier density in the following form:

DE
∂N

∂x
(d, y, t) = sN (d, y, t), (56)

where s is the recombination velocity.
Taking into account the non dimensional expressions for all the field variables from (45) and (46) and

applying the normal mode technique defined in expression (37), the above boundary conditions reduce to a
non homogeneous system of ten equations, which can be written as:

10∑
j=1

Xi jY j = Zi (i = 1, 2, 3, · · · , 10), (57)

where

X1 j = H7 j exp(λ j d), X2 j = H9 j exp(λ j d), X3 j = H3 j exp(λ j d),

X4 j = H4 j exp(λ j d), X5 j = H2 j (λ j − L) exp(λ j d), X6 j = H51 exp(−λ j d),

X7 j = H6 j exp(−λ j d), X8 j = λ j H3 j exp(−λ j d), X9 j = λ j H4 j exp(−λ j d),

X10 j = H2 j (λ j − L) exp(−λ j d),

X1 j+5 = N7 j exp(−λ j d), X2 j+5 = N9 j exp(−λ j d), X3 j+5 = N3 j exp(−λ j d),

X4 j+4 = N4 j exp(−λ j d), X5 j+5 = N2 j (−λ j − L) exp(−λ j d), X6 j+5 = N5 j exp(λ j d),

X7 j+5 = N6 j exp(λ j d), X8 j+5 = (λ j )N3 j exp(λ j d), X9 j+5 = (−λ j )N4 j exp(λ j d),
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X10 j+5 = N2 j (−λ j − L) exp(λ j d), L = st∗CT

DE
,

Y j = Mj , Y j+5 = G j , Z1 = −σ0, Zi = 0, (i = 2, 3, . . . , 10; j = 1, 2, 3, 4, 5).

Now, we get the values of Mj and G j ( j = 1, 2, 3, 4, 5)with the help of matrix inversion method. Using these
values in the expressions (45) and (46), which when substituted in (37), provides the exact expressions of the
field variables.

6 Significant cases

6.1 Ignoring void effect

If the void effect is neglected, thematerial constants due to the presence of voidswill disappear from themedium
and the above problem reduces to that of a problem of a semiconducting rotating plate with temperature-
dependent properties. This is achieved by setting α = wv = bv = ξ = χ = n = 0 in both the constitutive
relations and field equations. Considering the above necessary modifications and following a procedure similar
to the general case, we derive a set of equations analogous to Eqs. (38)–(41), as follows:

D8θ
∗ + (D2 + B11)N

∗ = 0, (58)

(D2 + B12)�
∗ + B13�

∗ − θ∗ − N∗ = 0, (59)

B16�
∗ + (D2 + B15)�

∗ = 0, (60)(
B17(D

2 − m2) − B18
)
θ∗ − B19(D

2 − m2)�∗ + D14N
∗ = 0, (61)

By eliminating the functions �∗, �∗, N∗ and θ∗ from the equations mentioned above, we arrive at an
eight-order differential equation given by:

[D8 + I ′
1D

6 + I ′
2D

4 + I ′
3D

2 + I ′
4](�∗, �∗, N∗, θ∗) = 0, (62)

where

I ′
1 = (C11B17 + D8C21 − C23)

D8B17
, I ′

2 = (C12B17 + C11C21 − D8C22 − C13C23 + C24)

D8B17
,

I ′
3 = (C12C21 − C11C22 − C14C23 + C13C24)

D8B17
, I ′

4 = (C14C24 − C12C22)

D8B17
.

Now, Eq. (62) can be factorized as:

(D2 − λ′
1
2
)(D2 − λ′

2
2
)(D2 − λ′

3
2
)(D2 − λ′

4
2
)(�∗, �∗, N∗, θ∗)(x) = 0, (63)

where λ′
n
2

(n = 1, 2, 3, 4) are the roots of the characteristic equation of (62).
Now, the solution of Eq. (63) can be written as:

(�∗, �∗, N∗, θ∗)(x) =
4∑

i=1

[
(H ′

1i , 1, H ′
2i , H ′

3i )M
′
i (m, ω) exp(λ′

i x)

+(N ′
1i , 1, N ′

2i , N ′
3i )G

′
i (m, ω) exp(−λ′

i x)
]
, (64)

where M ′
i and G ′

i are arbitrary constants depending upon m and ω. H ′
i j and N ′

i j (i = 1, 2, 3, 4; j = 1, 2, 3)
are the coupling parameters among �∗, �∗, N∗ and θ∗. The values of coupling parameters are obtained from
Eqs. (58)–(61) and are given as:

H ′
1i = −(λ′

i
2 + B15)

B16
, H ′

2i = − (D8λ
′
i
4 + C11λ

′
i
2 + C12)H ′

1i

λ′
i
4 + C13λ

′
i
2 + C14

,

H ′
3i = −(λ′

i
2 + B11)H ′

2i

D8
, N ′

1i = −(λ′
i
2 + B15)

B16
,
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N ′
2i = − (D8λ

′
i
4 + C11λ

′
i
2 + C12)N ′

1i

λ′
i
4 + C13λ

′
i
2 + C14

,

N ′
3i = −(λ′

i
2 + B11)N ′

2i

D8
, (i = 1, 2, 3, 4).

In view of solution (64), the components of displacement and stress take the following form:

(u∗, v∗, σ ∗
xx , σ ∗

yy, σ ∗
xy)(x) =

5∑
i=1

[
(H ′

4i , H ′
5i , H ′

6i , H ′
7i , H ′

8i )M
′
i (m, ω) exp(λ′

i x)

+(N ′
4i , N ′

5i , N ′
6i , N ′

7i , N ′
8i )G

′
i (m, ω) exp(−λ′

i x)
]
, (65)

where

H ′
4i = (λ′

i H
′
1i + ιm), H ′

5i = (ιmH ′
1i − λ′

i ),

H ′
6i = α1

(
(D3λ

′
i
2 − m2D4)H

′
1i + 2ιmλ′

i − D3(H
′
3i − H ′

2i )
)

,

H ′
7i = α1

(
(D4λ

′
i
2 − m2D3)H

′
1i − 2ιmλ′

i − D3(H
′
3i − H ′

2i )
)

,

H ′
8i = −α1

(
2ιmλ′

i (λ
′
i
2 + m2)H ′

1i

)
,

N ′
4i = (−λ′

i N
′
1i + ιm), N ′

5i = (ιmN ′
1i + λ′

i ),

N ′
6i = α1

(
(D3λ

′
i
2 − m2D4)N

′
1i − 2ιmλ′

i − D3(N
′
3i − N ′

2i )
)

,

N ′
7i = α1

(
(D4λ

′
i
2 − m2D3)N

′
1i + 2ιmλ′

i − D3(N
′
3i − N ′

2i )
)

,

N ′
8i = α12ιmλ′

i (λ
′
i
2 + m2)N ′

1i .

By excluding the boundary conditions associated with the void effect from (47)–(56) and considering the
other appropriate boundary conditions, we obtain a non-homogeneous system of eight equations given as:

8∑
j=1

X ′
i j Y

′
j = Z ′

i , (i = 1, 2, · · · , 8), (66)

where

X ′
1 j = H ′

6 j exp(λ
′
j d), X ′

2 j = H ′
8 j exp(λ

′
j d), X ′

3 j = H ′
3 j exp(λ

′
j d),

X ′
4 j = H ′

2 j (λ
′
j − L) exp(λ′

j d), X ′
5 j = H ′

4 j exp(−λ′
j d),

X ′
6 j = H ′

5 j exp(−λ′
j d), X ′

7 j = λ′
j H

′
3 j exp(−λ′

j d),

X ′
8 j = H ′

2 j (λ
′
j − L) exp(−λ′

j d),

X ′
1 j+4 = N ′

6 j exp(−λ′
j d), X ′

2 j+4 = N ′
8 j exp(−λ′

j d),

X ′
3 j+4 = N ′

3 j exp(−λ′
j d), X ′

4 j+4 = N ′
2 j (−λ′

j − L) exp(−λ′
j d),

X ′
5 j+4 = N ′

4 j exp(λ
′
j d), X ′

6 j+4 = N ′
5 j exp(λ

′
j d),

X ′
7 j+4 = N ′

3 j (λ
′
j ) exp(λ

′
j d), X ′

8 j+4 = N ′
2 j (−λ′

j − L) exp(λ′
j d),

L = st∗CT

DE
, Y ′

j = M ′
j , Y ′

j+4 = G ′
j , Z ′

1 = −σ0,

Z ′
i = 0, (i = 2, 3, . . . , 8, j = 1, 2, 3, 4).

Following the similar procedure as in the main case, the exact expressions of the field variables can be derived
for a semiconducting rotating plate with temperature-dependent properties.
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Table 1 Values of physical constants

Physical ċonstants Values Physical constants Values

ρ 2.33 × 103 kg m−3 α∗ 5 × 10−4 K−1

λ0 3.64 × 1010 N m−2 αt 3 × 10−6 N m−2

μ0 5.46 × 1010 N m−2 α0 3.688 × 10−5 N
K 150 W m−1 K−1 CE 0.9623 × 103 J kg−1 K−1

n0 2 × 106 N m−2 K−1 DE0 2.5 × 10−3 m2 s−1

τ 5 × 10−5 s s 2 m s−1

τT 0.01 s dn −9 × 10−31 m3

τq 0.02 s Eg0 1.12 eV
T0 800 K κ0 6 × 104 m−3 s−1 K−1

m 1.3 wv0 0.078 × 10−3 N
σ0 1.0 bv0 1.13849 × 1010 N m−2

ω 0.6 ξ0 1.475 × 1010 N m−2

d 1.0 χ0 1.756 × 10−15 m2

� 0.01 y 2.0

6.2 Ignoring rotational effect

If we also neglect the rotational effect in the aforementioned case by setting the rotation parameter � to zero,
the expressions for the normal stress, normal displacement, temperature distribution and carrier density can be
obtained as in general case. Furthermore, if we also neglect the photothermal effect in the medium, the results
will coincide with those of Allam and Tayel [6] (without nonhomogeneity effects) with appropriate changes
in the boundary conditions.

6.3 Without temperature-dependent properties

If we remove the effect of temperature-dependent properties from the considered medium i.e. α∗ = 0.0, then
we are left with the resulting problem of a photothermoelastic semiconducting rotating plate under dual phase
lag theory. Additionally, if we assume the solid medium as half space instead of a plate, our results would
correspond to those obtained by Kilnay et al. [18] with appropriate modifications in the boundary conditions
and the theory employed.

7 Computational results and discussion

In order to study the impact of rotation, temperature-dependent properties, time, void and photothermal param-
eters on the field variables, a numerical analysis is carried out with the help of computer programing software
MATLAB. We have followed Kilany et al. [18] for a silicon crystal-like material with the physical data listed
in Table 1.

All the physical variables are displayed in graphswith the thickness of plate−1.0 ≤ x ≤ 1.0 at time t = 0.1.
By utilizing the above-mentioned numerical values, we have depicted the effects of rotation, photothermal
parameter, void parameter, temperature-dependent properties and time on the considered field variables. For
convenience, we have classified the figures into five different groups:

Group I: Figure2a–e examine the effect of angular velocity on the distribution of physical quantities for three
different values of rotation parameter as � = 0.01 (solid line), � = 0.02 (dashed line) and � = 0.03 (dotted
line).

Group II: Figure3a–e are presented to depict the effect of photothermal transport process on the variations of
field variables versus the thickness of the plate, by considering three different values of DE (Carrier diffusion
coefficient).

Group III: Figure4a–e depict the effect of void parameter bv on the two dimensional variations of the
considered field variables for three different values of parameter bv = 1.13849 × 1010 (solid line), bv =
3.13849 × 1010 (dashed line) and bv = 5.13849 × 1010 (dotted line).
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Group IV: Figure5a–e are plotted to scrutinize the effect of temperature-dependent properties on the variations
of the physical field variables. The solid line represents the plots of field variables corresponding to the
temperature-dependent properties and the dashed line corresponds to the plots without temperature-dependent
properties.

Group V: Figure6a–e are aimed at exploring the influence of time as t = 0.1 (solid line), t = 0.3 (dashed
line) and t = 0.5 (dotted line), on the considered physical quantities.

7.1 Group I: Effect of rotation

Group I consists of Fig. 2a–e. Figure2a elucidates the variation of normal stress σxx with the thickness of plate
for three different values of angular velocity �. The variations are having the starting points with maximum
non-zero values at the upper surface of the plate, which complies fairly well with the boundary condition. The
distribution experiences a similar pattern for all the considered values of the rotation parameter. Also, it is noted
from the plot that the increasing value of rotation parameter acts to decrease the numerical values of normal
stress σxx . The variation of normal displacement u has been displayed in Fig. 2b for three different values of
the rotation parameter. It is evident from the plot that on the rigid base at x = −1.0, normal displacement u is
zero, which complies fairly well with the assumed boundary condition. The maximum magnitude of normal
displacement is found to be on the upper surface (x = 1.0) of the plate, which may be attributed to the fact
that the upper surface of the plate is subjected to a mechanical load. Also, it is observed from the plot that
the rotation parameter has a decreasing effect on the magnitude of the normal displacement u. Figure2c gives
the comparison of temperature distribution θ for three different values of angular velocity �. The temperature
distribution behaves similarly for all the values of rotation parameter �, albeit with varying magnitudes. The
figure also demonstrates that an increase in the value of rotation parameter leads to a decrease in the magnitude
of the temperature distribution. This observation highlights the noticeable decreasing effect of rotation on the
profile of temperature distribution θ .

The transient effects of rotation parameter on the volume fraction field φv have been shown in Fig. 2d. The
plot illustrates that the change in volume fraction field φv has three different initial values corresponding to
three different values of angular velocity � at the lower surface of the plate (x = −1.0). Increasing values of
rotation cause a decrease in the magnitude of φv . The change in volume fraction field φv is zero at the upper
surface of the plate for all the three different values of rotation parameter, which agrees well with the real
situation. Figure2e indicates the qualitative behaviour of carrier density N . We can observe from the figure that
field variable N has different numerical values on the lower surface of the plate (x = −1.0). The maximum
value of carrier density N is found at location x = 0.2 of the plate. Moreover, rotation parameter � has a
decreasing effect on N .

7.2 Group II: Effect of photothermal transport process

This group comprises Fig. 3a–e. Figure3a illuminates the variations of normal stress σxx under the effect of
photothermal parameter DE . For all the three values of DE , σxx starts with different positive values on the
lower surface of the plate and attains its maximum value in the locality of source i.e. on the upper surface of
the plate (x = 1.0), which confirms the assumed boundary condition. It is clear from the plot that σxx is tensile
in nature for all the considered values of photothermal parameter DE . Moreover, it is easy to observe that DE
has an increasing effect on σxx . The effect of parameter DE on normal displacement u is shown in Fig. 3b.
The values of normal displacement start with magnitude zero at x = −1.0 and are found to be maximum on
the upper surface of the plate for the three values of photothermal parameter DE , which is in accordance with
the boundary condition. Also, DE has a decreasing impact on the normal displacement.

Figure3c depicts the variations of temperature distribution θ for three different values of DE . The medium
is initially at uniform temperature T0. As no thermal load is imposed on the upper surface (x = 1.0) of the
plate, therefore temperature deviation (θ = T − T0) vanishes at the upper surface of the plate i.e. reference
temperature (T0) of the medium is maintained. The numerical values of θ for DE = 2.5×10−3 are larger than
those for DE = 3.5×10−3 and DE = 5.5×10−3. The qualitative behaviour of the temperature distribution θ is
similar for every value of DE but experiences a decreasing impact of photothermal parameter. The distribution
of change in volume fraction field φv with respect to distance x for all the three values of DE has been shown
in Fig. 3d. It is manifested from the figure that the change in volume fraction field is directly proportional to
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DE . Increment in photothermal parameter DE is responsible for the increase in the magnitude of change in
volume fraction field φv . The dynamic effect of photothermal parameter DE on the variation of carrier density
N is depicted in Fig. 3e. It can be observed from the graph that the numerical values of the carrier density N
are large for larger values of DE . This shows that DE has an increasing effect on N .

7.3 Group III: Effect of voids

This group includes Fig. 4a–e. Figure4a is drawn to present the variation of normal stress σxx for the three
different values of void parameter bv . It is observed from the plot that the upper surface of the plate x = 1.0
is subjected to the action of a mechanical load, therefore, normal stress σxx should have a non-zero value near
the location of the application of the load. Also, normal stress follows a similar trend for the three considered
values of bv and attains larger values with the increasing values of bv . Figure 4b shows the variations of
normal displacement u with thickness x . It is clearly depicted in the plot that normal displacement is directly
proportional to the void parameter bv . It is also observed from the graph that normal displacement u is zero at
the lower surface (x = −1.0) of the plate, which is completely in agreement with the boundary condition.

The significant effect of void parameter bv on the distribution of temperature θ is depicted in Fig. 4c. It is
observed from the plot that temperature behaves like a decreasing function of the void parameter bv . Figure
4d illuminates that the void parameter acts to increase the magnitude of change in volume fraction field φv .
It is evident from the plot that the change in volume fraction field initiates with zero magnitude at the upper
surface of the plate and shows its maximum impact within the region −0.2 ≤ x ≤ 0.6. In Fig. 4e, three curves
of carrier density are drawn with respect to thickness of the plate for three different values of void parameter
bv . A comparison of the curves shows that the maximum effect of void parameter bv is appearing in the range
−1 ≤ x ≤ 0.4 and if we move away from this range, this impact starts vanishing. Another observation from
this figure is that an increase in the value of bv results in decrement in the values of carrier density function N .

7.4 Group IV: Effect of temperature-dependent properties

In this group, Fig. 5a–e are plotted to demonstrate the effect of temperature-dependent properties on the
considered field variables. Figure5a exhibits the distribution of normal stress σxx with the thickness of plate in
two cases (with temperature-dependent properties and without temperature-dependent properties). Values of
normal stress indicate a significant difference for the two cases. On the upper surface of the plate, the values of
normal stress are found to be maximum, which may be attributed to the fact that the upper surface of the plate
is subjected to a mechanical load, which is physically reasonable. The distribution of normal displacement u
is plotted in Fig. 5b. The curve of normal displacement u without temperature-dependent properties is lower
as compared to that with temperature-dependent properties, which clearly shows an increasing effect of α∗
on the normal displacement. For both the cases, normal displacement u has a value zero on the lower surface
of the plate, likely due to the lower surface of the plate is being supported by a rigid foundation. Figure5c
reveals the dynamic effect of temperature-dependent properties on the temperature distribution θ of the plate
with thickness x . The absolute values of temperature θ exhibit a notable increase in the range −1 ≤ x ≤ 0.12
when temperature-dependent properties are considered, in contrast to when these properties are not taken into
account. This observation indicates that temperature-dependent properties have an enhancing influence on
the temperature θ within this range. However, beyond this range, temperature-dependent properties have a
diminishing impact on the temperature θ .

Figure5d shows the transient effect of temperature-dependent properties on the volume fraction field φv .
The difference in the numerical values of φv for both the cases is quite observable from the plot. The solution
curves follow a similar pattern of variation in thewhole range−1 ≤ x ≤ 1. It can be noticed from the figure that
absolute values of change in volume fraction field are large in presence of temperature-dependent properties
in comparison to its absence, which indicates an increasing effect of α∗ on φv . Figure5e reveals the profile of
carrier density N for the two different cases ( presence and absence of temperature-dependent properties). The
profile curves have different starting values 5.3604×10−4 and 7.7188×10−4 on the lower surface of the plate
for with and without temperature-dependent properties respectively. It is clear from the figure that the flow of
variations for both the media is similar in the whole range. Also, the presence of temperature dependency in
the medium is having a decreasing impact on this field variable.
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Fig. 2 Effect of rotation parameter � on the field variables

7.5 Group V: Effect of time

This group consists of Fig. 6a–e, from which Fig. 6a shows the effect of time on the variation of normal stress
σxx . It attains itsmaximumvalues 0.9, 1.03 and 1.18 for t = 0.1, 0.3 and 0.5 respectively and sharply decreases
continuously to reach the lower surface of the plate. For all the three different values of time t , normal stress is
maximum in the vicinity of the source i.e. at the upper surface x = d of plate, which is physically plausible.
It is clear from the plot that σxx is directly proportional to the values of time t . The effect of time t on normal
displacement u is shown in Fig. 6b. The magnitude of variation in normal displacement u for small values
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Fig. 3 Effect of photothermal parameter DE on the field variables

of t is small in comparison to large values of t , which shows that time has an increasing effect on u and
this effect disappears on the lower surface of the plate. Figure6c is plotted to scrutinize the effect of time on
temperature distribution θ for three different values of t . It is noted that the difference among the magnitudes
of temperature distribution θ for different values of t is remarkable on the lower surface of the plate. This
difference disappears gradually as it goes to the upper surface of the plate. It is also found that the magnitude
of temperature distribution θ is large for larger values of t . This shows that the time has an increasing effect
on θ .
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Fig. 4 Effect of void parameter bv on the field variables

The variation in change in volume fraction field φv has been exhibited in Fig. 6d for the three values
of time t . For all the values of t, the volume fraction field starts with some non-zero values on the lower
surface of the plate. As we move away from the lower surface of the plate towards the upper surface, these
values approach zero on the upper surface of the plate, which acts in accordance with the assumed boundary
conditions. Additionally, it is evident that the volume fraction field φv exhibits an increasing effect of time t .
Figure6e is drawn to show the variant of carrier density N for three values of time (t = 0.1, 0.3 and 0.5).
Carrier density N has large values when t = 0.5 as compared to the case when t = 0.1 and t = 0.3, which
clearly indicates that time has an increasing effect on the carrier density N , which complies well with the real
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Fig. 5 Effect of temperature-dependent parameter α∗ on the field variables

situation. The figure also displays that the profile of carrier density N is similar in all the three cases having
non-zero values on the lower as well as the upper surface of the plate, which observes fairly well with the
boundary condition.

8 Concluding remarks

In this research work, we have inspected the normal stress, normal displacement, temperature distribution,
change in volume fraction field and carrier density in a homogeneous, isotropic photothermoelastic rotatory
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Fig. 6 Effect of time t on the field variables

plate with voids and temperature-dependent properties. The problem is negotiated in the framework of normal
mode analysis under DPL model, when a mechanical load is imposed on the upper surface of the plate. The
impacts of rotation, photothermal parameter DE, void parameter bv , temperature-dependent parameter α∗
and time are examined on the field variables. According to the above theoretical, numerical and graphical
representations, some conclusions emerge as follows:

• The presence of rotation parameter � plays a considerable role in the variations of all the physical fields.
It has a decreasing effect on all the field quantities.
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• The effect of photothermal parameter has significantly appeared on all thefield variables. It has an increasing
effect on normal stress, change in the volume fraction field and carrier density while it acts to decrease the
magnitudes of normal displacement and temperature distribution.

• Void parameter bv has an increasing effect on normal stress, normal displacement and change in the volume
fraction field, while it has a decreasing effect on carrier density and temperature distribution.

• All the physical variables are significantly affected by the temperature-dependent properties. These prop-
erties have an increasing effect on the normal displacement and change in volume fraction field, while
the reverse happens on carrier density N . However, it has a mixed kind of effect on normal stress and
temperature distribution.

• All the field variables are directly proportional to the time. We obtain a noticeable increasing effect of time
on all the physical quantities in the restricted region of a plate of thickness 2d .

• As expected, all the physical quantities are continuous and satisfy the boundary conditions.

9 Applications of the model

The theory of thermoelasticity in a semiconducting rotating plate with voids and temperature-dependent prop-
erties has a wide range of applications in various fields, including astronautics, aeronautics, nuclear reactors,
soil dynamics, high particle accelerators, earthquake engineering and the study of nanomaterial behaviour.
Photothermal semiconducting media have significant applications in physics, geophysics, television circuits,
automatic control systems, sound and motion picture technology, copying and recording equipment and par-
ticularly in solar cells and semiconducting polymer nanocomposites, which offer mechanical flexibility and
lower fabrication costs. The combination of photothermal properties and semiconducting capabilities makes
these materials valuable in industry, biophysics, structural engineering and chemical engineering.

Voids have significant effects in many scientific fields, particularly in geophysics and geology. Researchers
have shown a keen interest in understanding how voids influence materials in the presence of thermoelastic-
ity. This research aims to detect the effects caused by voids, especially regarding how materials respond to
external changes. The method used in this study applies to a broad spectrum of problems in thermoelasticity,
thermodynamics and photothermoelasticity. The normal mode technique has become a standard method for
studying the dynamics of biological molecules. It is used to identify and characterize the slowest motions in
macromolecular systems, which are inaccessible.
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