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Abstract In this paper, the dynamics of a compressed Euler-Bernoulli beam on a Winkler elastic foundation
under the action of an external nonlinear force, which models a wind force, is studied. The beam is assumed
to be long, and the lower part of its spectrum is prescribed. An asymptotic method is proposed to find the
parameters of the beam, in order to have this prescribed lower part of the spectrum. All these parameters are
necessary to guarantee the stability of the beam and to avoid resonances between the low frequency modes.
These modes have special spatial supports that exclude a direct interaction between them. It is shown that
the Galerkin system describing the time evolution can be decomposed into a system of almost independent
equationswhich describes n independent nonlinear oscillators. Each oscillator has its own phase and frequency.
It is shown that interaction between oscillators can exist only through high frequency modes.

1 Introduction

The axially loaded Euler–Bernoulli beam resting on an elastic Winkler foundation is a simple mechanical
model for a large class of engineering structures, which are long and slender, and for which it is possible to
ignore the effects of rotary inertia and shear deformation. In many practical applications it is useful to construct
such a beamwith given (lower part of the) spectrum for the natural eigenfrequencies. Some examples on how to
avoid undesirable resonances in mechanical structures using “the principles of passive modification and active
control” are considered in [1]. Other examples are the “determination of parameters in a numerical model for
a structure such that the first natural eigenfrequencies coincide with experimental data for these frequencies”,
see for instance [2–6] . Similar examples can be found in the geophysical sciences, where researchers are
dealing with the reconstruction of the internal structure of the Earth from data on toroidal and spheroidal
oscillations [7], or in the field of the identification of structural damage from frequency data (see [8–11]). Also
the determination of loads acting on elastic beams or plates during the vibrations of the structure are of interest
in practical applications [12,13]. In [14] the authors show that for certain mass per unit length distributions

Sergei A. Vakulenko and Wim T. van Horssen have contributed equally to this work.

A. K. Abramian (B) · S. A. Vakulenko
Laboratory for Mathematical Modelling of Wave Phenomena, Institute for Problems in Mechanical Engineering, V.O.,
Bol’shoy pr., 61, Saint Petersburg, Russia 199178
E-mail: andabr33@yahoo.co.uk; andabr55@gmail.com

S. A. Vakulenko
E-mail: vsa@ipme.ru

W. T. Horssen
Delft Institute ofAppliedMathematics, Faculty EEMCS,Delft University of Technology,Mekelweg 4, 2628C,Delft, Netherlands
E-mail: W.T.vanHorssen@tudelft.nl

http://orcid.org/0000-0003-0576-8249
http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-024-04078-8&domain=pdf


A. K. Abramian et al.

and for flexural stiffness variations in axially loaded Rayleigh beams, there exist fundamental closed form
solutions of the governing differential equations. The obtained results can serve as "benchmark solutions for
various numerical methods and also provide valuable insights into the design of such beams if they are required
to vibrate at or away from a pre-specified frequency range". In this paper, we consider one of these inverse
problems for an axially compressed Euler–Bernoulli beam resting on an elastic Winkler foundation. The beam
is under the action of an external weak, nonlinear force which models a wind force (see [15–17]). This model
can be useful, for example, to analysis the dynamic behavior of hull structures in wind turbine. In [18] a
one-dimensional model for an offshore wind turbine was proposed. The main characteristic of the model is an
Euler–Bernoulli beamwith a constant cross-section of area andwith variable sectional density and longitudinal
force along the axial direction of the beam. In our model we take into account the variation of the beam rigidity
in axial direction. The approach as suggested in this paper can be seen as a first step in developing a method
which helps to design a spectrum for a construction which leads to a predictable dynamic behaviour. Through
the design the so-obtained oscillation modes, which are the most important ones for the beam dynamics, can
then be controlled by active or passive controls. To solve the problem an asymptotic approach is proposed,
which makes it possible to show that the high-frequency modes (corresponding to the free vibrations of the
linear beam) lead to small (in terms of norm) contributions to the solution (despite possible resonances).
Therefore, it is possible to design part of the spectrum containing only a limited number of low frequency
modes (the frequency threshold can be estimated). Instead of methods as suggested in [7,13], where the beam’s
rigidity and linear mass density vary along the longitudinal coordinate, we propose a method which uses only
variations in the rigidity of the beam. We choose the beam rigidity as a piecewise constant function that is
bounded on N small intervals separated by non-small distances. First we solve the problem for large L , and
N = 1. This problem plays the role of a reference problem. Using a variational principle, explicit formulas,
and Euler’s approach for a critical compressive force, we construct eigenfunctions, which decay exponentially
in space. In the general case for N > 1, we divide up the beam into N sections, each of which is described
by a reference problem. Due to exponential decay, the resulting functions satisfy the differential equation and
boundary conditions with high exponential accuracy. There are no resonances between the constructed modes,
since the effect of mode overlap is exponentially small. For several types of spectra examples for finding the
beam parameters are given, and an algorithm of beam design with a partly prescribed spectrum is described
in detail. The paper is organized as follows. In Sect. 2 we state the problem. In the Sect. 3 we show that
the problem is well posed. In Sect. 4 we outline the main ideas on how to get the desirable dynamics of the
beam. Further, in Sect. 5 we formulate the spectrum design problem. In Sect. 6, we give the proof for the main
theorem, and formulate an algorithm that allows us to design a beam with a partly prescribed spectrum. In
Sect. 7, we consider nonlinear effects. Finally, Sect. 8 contains a discussion and some concluding remarks.

2 Statement of the problem

The equation describing the dynamics of an Euler–Bernoulli beam on a Winkler foundation is given by:

m0utt + (D(x)uxx )xx + T0uxx + Ku = f (ut ), (1)

where u(x, t) is the beam transverse displacement, x ∈ [0, L] is the longitudinal coordinate, L is the length of
the beam, t > 0 is the time, m0 = Aρ is the mass of the beam per unit length, A is the beam’s cross-sectional
area, ρ is the beam’s material density, D(x) = E I (x) or D(x) = E(x)I is a non-heterogeneous beam rigidity,
I is the moment of the cross-section area, E is the Young’s modulus of the beam material, T0 > 0 is the
longitudinal compressive force, f (ut ) is a smooth function, which defines nonlinear forces acting on the
beam, and K is the Winkler elastic foundation coefficient. Note that we keep the beam’s cross-sectional area
constant and vary the moment of the cross-sectional inertia. The force f (ut )may have the following form (see
[15–17,19]):

f (ut ) = a1ut + a2u
3
t , (2)

where ai are coefficients. These coefficients can have arbitrary signs, however, to provide existence of solutions
of the problem, and to avoid an unbounded energy growth, it is necessary to fulfill the following condition (see
[15,19]):

a2 < 0. (3)
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We will not consider the trivial linear case a2 = 0, where the energy is bounded for a1 < 0, and unbounded
for a1 > 0. The initial conditions have the following form

u(x, 0) = u0(x), ut (x, 0) = u1(x), (4)

where u0, u1 are smooth functions. We consider a problem for a beam, which has a length L with a free
boundary at x = L , and a clamped boundary at x = 0. Then, the following boundary conditions hold:

ux (x, t) = u(x, t) = 0, x = 0, t ≥ 0, (5)

and

uxx (x, t) = 0, x = L , t ≥ 0 (6)

(D(x)uxx (x, t))x + T0ux (x, t) = 0, x = L , t ≥ 0. (7)

These conditions can be obtained by a variation of a natural LagrangianL[u] = 1
2

∫ L
0 (Du2xx −T0u2x +Ku2)dx

associated with the problem. We suppose that D(x) is a smooth positive function:

D(x) > 0, x ∈ [0, L]. (8)

Notice that the differential equation (1), and the given initial and boundary conditions can be transformed to
a dimensionless form when we rescale the variables. For the rescaling, the following choice is made: x = x̄ L ,
u = ūL , L = L̄

√
A, D(x) = Em ImD(x) = DmD(x), t = t̄ 1

c0
, c20 = Em

Aρ
, T̄0 = T0

AEm
, K̄ = K

Ac20ρ
. Also it

is possible to consider the case when D(x) = Em I (x)D(x) or D(x) = E(x)ImD(x). Here Im and Em are
the maximum values of the beams moment of the cross-sectional area, and Young’s modulus of the beam’s
material, respectively. For simplification, the bars are omitted, and the final equation then takes the form:

(D(x)uxx )xx + T0uxx + Ku + m0utt = ε f (ut ) (9)

where m0 = 1, and ε > 0 is a small parameter.

3 The well-posedness of the problem

3.1 General estimate of energy

We are looking for solutions u(x, t) of the weakly nonlinear initial-boundary value problem (IBVP) defined
by (1)–(7), which are bounded in L2[0, L]. Under certain conditions on f existence of such solutions follows
from an a priori estimate, which gives a limit from above for the beam energy. We use the following standard
notation

(u, v) =
∫ L

0
u(x)v(x)dx, ‖u‖ = (u, u)1/2.

Let us introduce the dissipation functional

P[ut ] =
∫ L

0
p(ut (x, t))dx,

where p(ut ) = a1u2t /2 + a2u4t /4.
Multiplying the left and the right hand sides of (1) by ut , and by integrating by parts, one obtains

dE[u(·, t)]
dt

= εP[ut ], (10)

where

E[u] = Ekin[ut ] + Epot [u],
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is the beam energy which is a sum of the kinetic and the potential energies:

Ekin[ut ] = m0

2
‖ut‖2,

Epot [u] = 1

2

(∫ L

0
D(x)u2xxdx − T0‖ux‖2 + K‖u‖2

)

.

Equation (10) implies that

E[u(x, t)] = E[u(x, 0)] + ε

∫ t

0
P[us]ds. (11)

Lemma I Assume that condition (3) holds. Then, for ε > 0 one has

‖ut (·, t)‖2, ‖ux (·, t)‖2, ‖u(·, t)‖2 < C̄ + εC0t, ∀t > 0, (12)

where a positive constant C̄ depends on the norms ‖u0‖, ‖u1‖ of the initial data and a positive constant C0
depends on a1 and a2.

This Lemma provides us a priori estimates of the L2-norms of u and ut , which show that solutions of (1)
exist for all times t if the initial data have bounded L2-norms, that is,

‖u0‖, ‖u1‖ < c0.

Proof Condition (3) implies the uniform in v estimate p(v) < C1 for some C1 ≥ 0. Therefore, P[ut ] < C1L .
Then Eq. (11) implies

2E[u(x, t)] < 2E[u(x, 0)] + εC1Lt (13)

which completes the proof of the estimate.

3.2 Estimate of kinetic energy for stable beams

Under additional assumptions on the properties of the beam, we can improve the estimate in Lemma I, and
obtain estimates which are uniform in time. The functional of the potential energy is not necessarily positively
definite, but if the beam is linearly stable then

Epot ≥ C̄0‖u‖2, (14)

for some C̄0 > 0. This condition means that the parameters D(x), K , T0 are chosen such that the potential
energy is positive for all beam forms and the Euler instability is absent. Let us introduce the time averages:

〈 f 〉T = T−1
∫ T

0
f (s)ds, T > 0.

Under condition (14) we are able to estimate the time averages of Ekin for large times T ≤ cε−1. To do this,
let us rewrite (11) as

Ekin[u(x, t)] − Ekin[u(x, 0)] = �Epot + ε

∫ t

0
P(us)ds,

where

�Epot = Epot [u(x, 0)] − Epot [u(x, t)] ≤ Epot [u(x, 0)] = C1.

Condition (14) and the last equation imply that

T−1(Ekin[ut (x, t)] − Ekin[u(x, 0)]) ≤ T−1Epot [u(x, 0] + εT−1a1

∫ T

0
P(us)ds,
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which in turn, leads to

ε
|a2|
4

〈∫ L

0
u4t dx

〉

T
≤ RT , (15)

where

RT = εa1
2

〈∫ L

0
u2t dx

〉

T
+ T−1E0,

and

E0 = Ekin[ut (x, t)]|t=0 + Epot [u(x, 0]
where E0 is the initial beam energy. Now we use the Schwarz inequality

∫ L

0
u2t dx ≤ L1/2

(∫ L

0
u4t dx

)1/2

.

By using this inequality and (15), one obtains

|a2|
4L

〈‖ut‖4〉T ≤ a1
2

〈‖ut‖2〉T + ε−1T−1E0. (16)

This inequality shows that ‖ut‖2 is less than the maximal positive root y0 of the polynomial Q(y) = |a2|
4 L y2 −

a1
2 y − ε−1T−1E0. This root is

y2(T ) = L|a2|−1
(
a1 +

√
a21 + ε−1T−1E0|a2|L−1

)
.

Therefore,

Ekin[ut (x, T )] ≤ m0y2(T )

2
. (17)

Note that this estimate is uniform in ε for times T ∈ Iε = (ε−1τmin, +∞), where τmin is a constant independent
of ε > 0. To obtain the estimate for T < ε−1τmin , we use equation (10) which, under condition a2 < 0, implies
that

dE[u(·, t)]
dt

≤ εa1‖ut‖2 = 2a1ε

m0
Ekin[u(x ·, t)].

Now, we use the condition that Epot ≥ 0. Then, the last inequality gives

dE[u(·, t)]
dt

≤ 2a1ε

m0
E[u(x ·, t)],

and therefore,

E[u(·, t)] ≤ E[u(x ·, 0)] exp
(2a1ε

m0
t
)
, (18)

that, in turn, gives us uniform in ε > 0 estimate of the energy E[u(x, t)] for all t ∈ (0, ε−1τmin). The estimates
(17 ) and (18) lead to the following Lemma II:

Lemma II Under the condition (14), and for T > 0 we have

Ekin[ut (·, T )] ≤ C̄E , (19)

where a positive constant C̄E is uniform in T , ε > 0.

This Lemma and inequality (15) allow us to obtain the following corollary.
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Corollary For t ∈ Iε and for stable beams satisfying (14), one has

Epot [u(x, t)] < Cpot , (20)

where positive constants Cpot ,C2,C4 can depend on initial data and parameters but are uniform in ε > 0.

Proof Let us observe that on the interval Iε the quantity y2(T ) is uniform in ε. To derive estimate (20) for
Epot , we note that

dEkin

dt
+ dEpot

dt
≤ a1ε‖ut‖2,

and, as a result by integration over [0, t], one obtains
Epot (t) ≤ E(0) + a1tε〈‖ut‖2〉t ,

and thus, by Lemma II, for t ∈ Iε one has (20).

4 The main idea on how to get the desirable large time behavior of the beam

We would like to get the desirable large time behaviour of the beam and avoid resonances. Let us consider a
hyperbolic nonlinear equation in a Hilbert space H with an inner product (, ) and norm ‖ ‖:

utt = −Lu + εF(ut ), (21)

where L is a linear positively definite self-adjoint operator, and ε > 0 is small. The function F is smooth and
for sufficiently large ‖ut‖ the function F satisfies

|(F(ut ), ut )| < C, (22)

where C > 0 is a constant. Equation (22) holds for the cubic nonlinearity (2) if a2 < 0. In fact, then F
is a map u → a1u2t + a2u3t and |(F, ut )| = ∣

∣
∫ L
0 (a1u2t + a2u4t )dx

∣
∣. Let r = u2t . For a2 < 0 the parabola

p(r) = a1r + a2r2 has the maximum at r0 = a1(2|a2|)−1. Therefore, in this case C = La21(4|a2|−1). In our
case the Hilbert space H consists of all measurable functions u(x) satisfying the boundary conditions (5), (6),
and (7) such that

∫ L
0 u2xxdx is bounded (i.e. lie in the Sobolev space W2,2[0, L]). The corresponding inner

product is (u, v) = ∫ L
0 u(x)v(x)dx . Sometimes, it is hard to find exact eigenfunctions of L. Suppose, however,

that we can find approximating eigenfunctions such that

λ jφ j = Lφ j + h j , j ∈ [m] = {1, 2, . . . ,m}, (23)

where the functions φ j are orthonormal, λ j > 0, and where h j are small corrections:

‖h j‖ � ε ∀ j ∈ [m]. (24)

Moreover, suppose that there is a spectral barrier

(Lu, u) ≤ −R‖u‖ ∀u ∈ H (25)

where R  λm > λm−1 > ... > λ1 > 0. This spectral barrier property helps us to analyse all evolution
equations with dissipative effects [20]. We can represent solutions u of Eq. (21) by

u =
m∑

j=1

X j (t)φ j + ũ, (ũ, φ j ) = 0, ∀ j ∈ [m].

where the term ũ is orthogonal in L2-norm to all approximating eigenfuctions φ j . Then the finite dimensional
Galerkin system

d2X j

dt2
= −λX j +

(

F
( m∑

n=1

dXn(t)

dt
φn

)
, φ j

)

(26)
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serves as a good approximation for the exact solutions as will turn out in Sect. 7. Note that typically, in order
to solve a weakly nonlinear evolution equation, people use a Galerkin basis consisting of eigenfunctions of
a linear operator associated with the linear part of the equation. However, we can use any orthogonal (and
even non-orthogonal ) basis in L2[0, L]. In our case it is convenient to use a basis consisting of the localized
approximating eigenfunctions (which, as we will see, are orthogonal up to exponentially small terms) plus all
remaining localized and non-localized eigenfunctions. In fact, for sufficiently small ε > 0 one can show (see
Sect. 7) that ‖ũ‖ remains small for all sufficiently large t . This means that, for example, a beam affected by a
wind load can become unstable only under action of low frequency modes, therefore, to provide stability, we
should design the spectrum with prescribed low frequency modes. The main idea in the construction of the
functions φ j (providing the stability) is that the product of the functions φiφ j is exponentially small that allows
us to avoid resonances between low frequency modes, whereas resonances between high frequency modes do
not lead to large growth of amplitudes in ‖u‖. So, if we are able to construct the operator L with prescribed
spectrum λ j for the approximating eigenfunctions and the spectral barrier for L, we will be able to get the
desirable large time behaviour of the system. The approximating eigenfunctions are called quasimodes [21]. In
mechanical engineering problems, interactions between quasimodes and exact eigenfunctions are nontrivial,
as it was first noted in the seminal work [21]. In this work, V.I.Arnold also notes that quasimodes are more
convenient to describe the large time dynamics than the use of eigenfunctions. Following these ideas, in the
next sections we find quasimodes satisfying (for L  1) the spectral problem with an exponential accuracy
of O

(
exp(−cL)

)
, where c > 0 depends on the beam parameters, but is uniform in L .

5 The spectrum design problem and the main result

Let us first consider the case when ε = 0. Then, we apply the Fourier method by taking

u(x, t) = U (x) exp(iωt),

which leads to a linear operator L associated with our problem, that is,

LU = (D(x)Uxx )xx + T0Uxx + KU, (27)

and the following boundary conditions are satisfied:

Ux = 0, U = 0 for x = 0, (28)

Uxx = 0, (D(x)Uxx )x + T0Ux = 0 for x = L . (29)

And so, we obtain a spectral problem which is defined by the equation

LU = λU, (30)

and the boundary conditions (28), (29). We consider the following spectrum design problem (SDP).
Let λi ∈ (0, λmax ) be given different numbers for i = 1, . . . ,m. Consider a beam with parameters T0,

D(x), K , and L  1 such that there exist quasimodesφ j satisfying the following equations with an exponential
accuracy:

Lφ j = λ jφ j + h j , (31)

where

‖h j‖ < c1 exp(−c0L), j = 1, . . . ,m, (32)

where c0, c1 are positive constants uniform in L as L  1. If φ is orthogonal to all quasimodes, i.e.,

(φ, φ j ) = 0 j = 1, . . . ,m (33)

then

(Lφ, φ) ≥ �‖φ‖2. (34)
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Property (34) implies that the spectrum of the operator L restricted to the subspace of functions orthogonal in
H = L2[0, L] to all quasimodes, lies in the domain

D� = {λ ∈ R : λ > �},
where �  λmax > 0. This statement means that the numbers λi for i = 1, . . . ,m define the main beam
oscillation frequencies. At the same time, the possible oscillations for the remaining beam frequencies will be
sharply damped by the force f (ut ). In fact, the critical level for spectrum truncation can be defined via the
damping terms and the Galerkin method. In fact, the modes with large frequencies damp out faster (this is
shown in Sect. 7).

Our main result is as follows:

Theorem The SDP problem has a solution if δ = maxi λi/� is small enough. There is an algorithm to find
T0, D(x), K, and L.

Note that, without loss of generality, we can assume that

� = 1, λi = δλ̂i , (35)

where λ̂i > 0 are of order 1. In fact, we always can change T0, D(x), K and L to realise (35) (by multiplying
all parameters with appropriate coefficients).

Note that the corresponding frequencies ω j of the free beam oscillations (for ε = 0) can be found by
simple expressions, i.e.,

ω j = √−λ j/m0. (36)

Wewill refer to designedmodes and frequencies as a low frequency spectrumLS, and to the remaining part
of the spectrum as a high frequency spectrum HS. All non-localized modes lie in the high frequency domain.

6 Proof and Algorithm

Let us first consider the simplest case when m = 1. We take a beam with a piece-wise constant rigidity
D(x) which is symmetric around the midpoint at x = L/2. Around this midpoint a narrow soft layer for
x ∈ (L/2− L0, L/2+ L0) of the length 2L0 � L with a small rigidity D0 is located, while the remaining part
of the beam has a high rigidity D1. To analyse the spectrum of the beam, we apply an asymptotic approach
by using small dimensionless parameters L0/L and D0/D1. We use the parameter K > 0 in order to obtain
λ1 > 0 and to satisfy condition (34). The value for T0 can be taken arbitrary, but it is related to the choice for
D0. Let K > λ1, λ̃1 = λ1 − K , and let us take D0 = D̄0 + D̃0, where D̄0 = T0(L0/π)2. To simplify the
analysis, we introduce the coordinate shift x → x − L/2 and extend the beam to an infinite beam (see step 1 in
Sect. 6.1, where we find an auxiliary eigenfunction (mode) which decreases exponentially as |x − L/2|  1).
To create a spectral barrier � and a design it will turn out that the Euler instability plays an important role.
Consider the auxiliary spectral problem

D0wxxxx + T0wxx = λ̃w, (37)

w(±L0) = 0, wx (±L0) = 0. (38)

For D0 = D̄0 we have a solution w = 1+ cos(kx) with λ̃ = 0 corresponding to the Euler instability for (37).
To obtain a small λ̃ = λ̃1 �= 0, we perturb D0 = D̄0 by a small term D̃0 of the order δ (see also step 2 in
Sect. 6.1 and Eq. (64)). Then all other eigenvalues λ̃ are larger than�  δ. We expect that inside the soft layer
the quasimode φ j is close to w. To describe the asymptotic solutions φ outside the soft layer in the domain
x > L0, we consider the following auxiliary spectral problem

D1Wxxxx + T0Wxx = λ̃W,

W (L0) = 0, Wx (L0) = 0,

Wxx (+∞) = 0, Wxxx (+∞) = 0,

(39)
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Fig. 1 Beam with prescribed spectrum for the case m = 1

and a similar problem in the domain x < −L0. For large D1 we can remove the term T0Wxx . Then for
λ̃ = λ̃1 < 0 we obtain exponentially decreasing solutions W of problem (39):

exp(−r(x − L0))
(
C1 cos(r̄(x − L0)) + C1 sin(r̄(x − L0))

)
,

where r ≈ (|λ̃1|/D1)
1/4 and r̄ = r/

√
2. To obtain an even quasimode φ1, we match slightly perturbed

functions w and W at x = L0 to provide smoothness of the solutions. This construction shows that we need
the parameter K to satisfy the condition λ j > 0 for quasimode eigenvalues (which in turn provides the real
valued frequencies of the beam oscillations). We also need T0 to design the spectral barrier �. So, a single soft
layer allows us to design the frequency of a single, low frequency quasimode (see Figs. 1, 2). The amplitude
of this mode should be smaller than C exp(−a|x − xc|), where xc = L/2 and a = O

(
D−1/4
1

)
> 0 is the

attenuation coefficient. We thus should take L  D1/4
1 .

Form > 1wefindm localized approximating eigenfunctions by these auxiliary eigenmodes. Here the beam
consists of m narrow layers of rigidity D0 and intermediate large layers of rigidity Di , i = 1, 2, . . . ,m. Let
us consider for example the case m = 3. In this case we take three soft narrow layers located at xc = 4, 10, 17
(see Figs. 3, 4). Each layer generates the corresponding well localized exponentially decreasing approximating
modes φ1, φ2, φ3. These modes interact weakly because the products φiφ j (x) are small for i �= j and for
sufficiently large Di leading to small inner products involved in the Galerkin truncation procedure.

6.1 Step 1: the auxiliary problem

As a first step, we consider the casem = 1. The system under investigation is shown in Fig. 1.We will consider
the case when f (ut ) = 0. The following auxiliary problem for the infinite beam is as follows:

(D(x)uxx )xx + T0uxx = λ̃u, x ∈ (−∞,+∞) (40)

where λ̃ = λ − K , and

u(x), ux (x) → 0, x → ±∞. (41)

We choose D(x) as follows:

D(x) = D1, |x | > L0,

D(x) = D0 |x | < L0,
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where D1  D0 > 0. Before starting the computations, it is useful to remark that we are looking for
eigenfunctions with minimal eigenvalues λ̃. The variational principle for the eigenfunctions u has the form

L[u] =
∫ +∞

−∞
(
D(x)u2xx − T0u

2
x

)
dx = λ̃ → min (42)

under the boundary conditions (41) and the condition
∫ +∞

−∞
u2(x)dx = 1.

Note that D(x) is an even function. Then we observe that without loss of generality, we can assume that a
function, which is a solution of the variational problem (42) is even in x , or is odd in x . In fact, we can represent
u as a sum of odd and even functions: u = u− + u+. All integrals of the form

∫ +∞
−∞ u+u−,

∫ +∞
−∞ u+

x u
−
x and

∫ +∞
−∞ D(x)u+

xxu
−
xx arising in the variational principle are equal to zero. Then it is easy to see that either the even

part u+ or the odd part u− gives no less λ̃ value with respect to u. So, due to this observation, we can consider
even or odd solutions u, and this simplifies the computations. We consider even solutions; for odd ones the
computations are similar. Let us note that minimal λ̃ values will occur for even solutions. Odd solutions lie in
the zone of high frequencies. To avoid singularities, we make the substitution vxx = u. Then by integrating
the obtained equation (40) two times with respect to x , and by taking into account the boundary conditions
(41) as x → ±∞ we obtain:

D(x)vxxxx + T0vxx = λ̃v + c1 + c2x, x ∈ (−∞, +∞), (43)

vxx (x), vxxx (x) → 0, x → ±∞, (44)

where ci are constants of integration. For λ̃ �= 0 (if λ̃ = 0 we can always obtain λ̃ �= 0 by a small perturbation
of T0) we introduce a transformation ṽ = v − λ̃−1(c1 + c2x) yielding (we omit the tilde in the notation for v):

D(x)vxxxx + T0vxx = λ̃v, x ∈ (−∞,+∞), (45)

vxx (x), vxxx (x) → 0, x → ±∞. (46)

Suppose that

β0 = T 2
0 + 4D0λ̃ > 0, β1 = T 2

0 + 4D1λ̃ < 0. (47)

The second condition leads to solutions which are exponentially decreasing in x as x → +∞.
If the solution v is even with respect to x , for |x | < L0 then one obtains

vin(x, λ) = C1 cosh(k+x) + C2 cos(k−x), (48)

where

k± =
⎛

⎝
∓T0 +

√
T 2
0 + 4λ̃D0

2D0

⎞

⎠

1/2

.

For |x | > L0 one has

vout (x, λ̃) = exp(−a(x − L0))g(x, λ̃), (49)

where

g(x, λ̃) = C3 cos(γ (x − L0)) + C4 sin(γ (x − L0)).

Due to (47) for large D1 one has

a ≈ γ = 1

2

⎛

⎝

√
|T 2

0 + 4λ̃D1|
D1

⎞

⎠

1/2

.
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Note that a, γ = O
(
D−1/4
1

)
for large D1. This outer solution vout (x) is exponentially decreasing as x → +∞.

To find Ci (for i = 1, 2, 3, 4) and λ̃ we use the following matching conditions for the inner solution vin and
the outer solution vout at x = ±L0:

Dp
x vin(x, λ̃) = Dp

x vout (x, λ̃), Dx = d/dx,

for p = 0, 1, 2, 3. Computing the derivatives, we obtain the following linear algebraic system:

AC = O, (50)

where C = (C1,C2,C3,C4)
T , and O = (0, 0, 0, 0)T , and A is a 4 × 4 matrix with entries ai j defined by

a11 = cosh(k+L0), a12 = cos(k−L0), (51)

a21 = k+ sinh(k+L0), a22 = −k− sin(k−L0), (52)

a31 = k2+C1 cosh(k+L0) a32 = −k2− cos(k−L0), (53)

a41 = k3+C1 sinh(k+L0), a42 = k3− sin(k−L0), (54)

where k± depend on λ̃, and the other entries ai j satisfy the estimates

a13 = 1, a14 = 0, a23, a24 = O
(
D−1/4
1

)
,

a33, a34 = O
(
D−1/2), a43, a44 = O

(
D−3/4
1

)
.

The linear system (50) has nontrivial solutions if the determinant of A is equal to zero. Using that D1  1, and
the definitions and estimates for ai j , we obtain that system (50) can be reduced to the study of a characteristic
equation defined by the conditions D2

xvin(x) = D3
xvin(x) = 0 at x = L0. This reduced system is

k2+C1 cosh(k+(λ̃)L0) − k2−C2 cos(k−(λ̃)L0) = 0, (55)

k3+C1 sinh(k+(λ)L0) + k3−C2 sin(k−λ̃)L0) = 0, (56)

and leads to the following characteristic equation for λ̃ (see also Fig. 5):

sin(k−(λ̃)L0) = −b(λ̃) tanh(k+(λ̃)L0) cos(k−(λ̃)L0), (57)

where b(λ̃) = k+(λ̃)/k−(λ̃). Note that the roots of this equation (57) are always real because they are
eigenvalues of the following self-adjoint problem on [−L0, L0]:

D0uxxxx + T0uxx = λ̃u, (58)

ux (x) = u(x) = 0, x = ±L0, (59)

associated to the Lagrangian

L[u] = 1

2

∫ L0

−L0

(
D0u

2
xx − T0u

2
x

)
dx .

In fact, the boundary conditions (59) are a consequence of the equations (55) and (56), which express the fact
that D2

xvin(x) = 0, D3
xvin(x) = 0 at x = ±L0 which in turn is equivalent to (59) since D2

xvin(x) = u(x) for
x ∈ (−L0, L0). Note that problem (58)–(59) can be derived, in a similar way, for odd solutions, and that the
boundary conditions (59) for this problem can be obtained by variational arguments.

Moreover, we should satisfy the conditions (47). It is sufficient to satisfy the first condition β0 > 0 by
taking λ̃ < 0 only, because the second condition β1 < 0 can be automatically satisfied by a choice D1  D0.
Equation (57) has a countable set of real roots and we are looking for the minimal negative root. We vary D0,
T0 and L0 (see Fig. 6). Note that then for odd solutions of (58)–(59) the corresponding values λ̃ are larger in
magnitude.

So, we obtain a solution u(x, λ̃) = vxx (x, λ̃) of Eq. (40), which is exponentially decreasing as x → ∞,
that is, for x → ∞ the function u(x, λ̃) behaves like:

|u(x, λ̃)| < C exp
(−c0 D̄

−1/4
1 x

)
, (60)

where C, c0 are positive constants uniform in D1. This solution is even in x .
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Fig. 2 An example of a spectrum, where a single frequency is designed

Fig. 3 The rigidity D(x), which will generate a spectrum with a single localized eigenfunction, corresponding to eigenvalue
λ1 = δ. The remaining spectrum is separated far away from λ1 (see Fig. 1). The parameters are L = 20, L0 = 1, T0 = 1,
δ = 0.5, K = 3δ, and D1 = 10. The values D0, j are obtained by formula (64)

6.2 Step 2: combining solutions in layers

The idea is illustrated in Figs. 1, 2, 3 and 4.We choose D(x) as a piecewise constant function, with n equidistant
local minima. The wells for D are separated by distances 2L1, and the well widths are 2L0. We suppose that

L1/L0  1.

We choose

D(x) = D0, j , x ∈ I j ,

D(x) = D1, x /∈ ∪I j ,

Fig. 4 An example of a spectrum, where we design the first 3 eigenvalues
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where I j = [a j , b j ] are intervals with boundaries a j = L1( j − 1/2) + 2L0( j − 1), b j = a j + 2L0. We set

L1D
−1/2
1  1. Under this condition the decreasing tails of the functions φ( j)(x) will be exponentially small.

Further we describe how to choose T0, D0, j , K , and how to construct approximating eigenfunctions φ j (x). We
can assume that the prescribed spectrum has the form (35), where δ > 0 is a small parameter. Let us consider
the spectral problem (58)–(59) on the j th-interval I j = (a j , b j ) with D0 = D0, j :

D0, j u
( j)
xxxx + T0u

( j)
xx = λ̃ j u

( j), a j < x < b j (61)

u( j)
x (x) = u( j)(x) = 0, for x = a j , b j . (62)

Let us fix L0, T0 > 0. Then, by using the properties of the corresponding Lagrangian we can observe that
for sufficiently large D0, j the corresponding eigenvalue λ̃ j is positive, and for D0, j close to zero we have
negative λ̃ j . Therefore, there exist a D0, j (close to the value that defines the Euler instability) and a K ∗ > 0
such that λ̃ = δλ j − δK ∗ < 0. Note that the value of D0, j can be computed by using a perturbation approach,
similar as in quantum mechanics, see [22]. First we find the value D0, j = D̄0 such that λ̃ j = 0. In this case
the solution inside the soft zone has the form u0, j = 1 + cos(k0(x − x̄ j )), where k0 = π/L0 and x̄ j is the
center of j th zone. This solution exists if D̄0k40 − T0k20 = 0, thus, D̄0 = T0(L0/π)2. Let D0, j = D̄0 + D̃0, j ,
where D̃0, j is a small correction of the order δ. Consider the perturbed problem

(D̄0 + D̃0, j )uxxxx + T0uxx = λ̃ j u,

ux (±L0) = u(±L0) = 0,

where the term D̃0, j uxxxx is a perturbation. According to perturbation theory, we have

λ̃ j = D̃0, j‖u0, j xx‖2
‖u0, j‖2 + O(δ2). (63)

We note that ‖u0, j‖2 = L0 and ‖u0, j xx‖2 = k403L0/2. We substitute these values into (63) and obtain

D0, j ≈ T0(L0/π)2 + 2δ

3
λ̃ j (L0/π)4 + O(δ2). (64)

We set K = δK ∗. The remaining part of the spectrum is separated and lies above the barrier �0 = O(1),
where �0 is independent of δ. Observe that this whole construction is independent of D1.

Now we can use the obtained functions u( j) to construct approximating eigenfunctionsψ j . First we extend

u( j)(x) defined on I j = (a j , b j ) on a larger interval Wj = (a j − L1, b j + L1), where L1  D1/3
1 , as it

Fig. 5 The rigidity D(x), which will generate a linear beam operator with three localized eigenfunctions with the prescribed
eigenvalues λ1 = δ, λ2 = 2δ, λ3 = 5δ. The parameters are L = 20, L0 = 1, T0 = 1, δ = 0.5, K = 3δ, D1 = 10. The values
D0, j are obtained from formula (64)
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Fig. 6 This plot shows that for an appropriate choice of D0, L0 and T0 we can obtain Eq. (57), which has a single root λ̃ in the
interval (−T 2

0 /4D0, 0]. The curve F is the plot of the map λ̃ ∈ (−T 2
0 /4D0, 0] → −b(λ̃) tan(k+(λ̃)L0) cos(k−(λ̃)L0) and the

curve G is the plot of the function sin(k−(λ̃)L0). The parameters are T0 = 8, D0 = 1 and L0 = 1

was done in step 1. The obtained function we denote by φ j . Furthermore, we construct an extension of these
functions on the whole interval [0, L] as follows:

ψ̂ j (x) = φ( j)(x) for x ∈ Wj , ψ̂ j (x) = 0, for x /∈ Wj .

These functions are not continuous although discontinuities at the edges ofWj are exponentially small and are

of the order exp(−c0D
1/6
1 ), with c0 > 0. We can introduce a convolution with a mollifier χκ to obtain smooth

ψ j ’s, which are approximating eigenfunctions up to exponentially small h j : ‖h j‖ < c exp(−c0D
1/4
1 ).

Remind that a mollifier χ(x) is a C∞ smooth, non-negative function with a bounded support (−1, 1) such
that

∫ ∞
−∞ χ(x)dx = 1, and the convolution of f (x) with a small parameter κ > 0 is defined by the following

convolution

fst (x) =
∫ ∞

−∞
f (x − y)χκ(y)dy,

where χκ(y) = κ−1χ(y/κ). We set

φ j (x) =
∫ L

y=0
ψ̂ j (x − y)χκ(y)dy.

It is clear that the functions φ j are orthogonal just because their supports are disjunct for sufficiently small
κ > 0. The boundary conditions are also satisfied for small κ because the functions ψ̂ j have supports S j ,
which lie strictly within the interval [0, L], and at x = 0 and x = L all derivatives of ψ̂ j are equal to zero.

6.3 Justification of the construction and proof of the estimate (34)

For the boundary conditions (28) and (29) at x = 0 and x = L it is assumed that

L3 � D1 � L4, L  1. (65)

To justify the construction of the eigenfunctions and to prove the estimate (34), we start by noting that the
quadratic form defined by the operator L is equal to the Lagrangian:

(Lφ, φ) = L[φ].
Suppose ‖φ‖ = 1. We decompose the Lagrangian into two contributions. The first one is a term induced by
the hard domain H consisting of intervals where D = D1, and the second one is a contribution given by soft
intervals, where D = D0. If D1  1 and L  1 then under condition (65) the contribution of the hard domain
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is much less than the contribution of the soft domain. Using this fact and using a priori estimates we show,
in this subsection, that in the hard domain |φ| is small. Then the condition of orthogonality (33) implies that
the scalar products

∫
I j

φφ j dx are close to zero in the j th interval I j , where the j th approximating function is
localized. Due to our choice of D0, j this implies that the contribution of the soft domain into the Lagrangian
L[φ] is more than a constant of O(1), uniform in L .

To start, let us prove first an auxiliary lemma.

Lemma III Let φ ∈ C2[0, L] and φx (x0) = 0 at a point x0 ∈ [−L0, L0]. Then,
|φx (x)| ≤ |x − x0|1/2‖φxx‖, (66)

|φ(x) − φ(x0)| ≤ |x − x0|1/2‖φx‖. (67)

If φ(0) = φx (0) = 0 then

sup
x∈[0,L]

|φ(x)|2 ≤ 2L3‖φxx‖2, (68)

and

sup
x∈[0,L]

|φx (x)|2 ≤ L‖φxx‖2. (69)

Proof One has

φ̃x =
∫ x

x0
φ̃yydy.

We apply the Cauchy–Schwarz inequality to the right hand side of this equation and obtain

|φ̃x (x)| ≤ |x − x0|1/2
(∫ x

x0
φ̃2
xxdx

)1/2

≤ |x − x0|1/2‖φ̃xx‖,

that proves (66). To prove (67), we write down

φ̃(x) − φ̃(x0) =
∫ x

x0
φ̃ydy.

As above, one has
∣
∣
∣
∣

∫ x

x0
φ̃ydy

∣
∣
∣
∣ ≤ |x − x0|1/2‖φ̃x‖

that implies (67). To derive (68), we use (67) and (66). Let us note that according to (67)

|φ(x)| ≤ L1/2‖φx‖.
Due to (66) this implies

‖φx (x)‖ ≤ L1/2 sup |φx | ≤ L‖φxx‖
and we obtain (68). Estimate (69) follows from (66). And so the proof of Lemma III is completed.

We introduceLhard andLso f t , which denote the contributions of the hard and soft zones into theLagrangian,
respectively:

Lso f t [u] =
∫ L0

−L0

(
D0u

2
xx − T0u

2
x + Ku2

)
dx,

Lhard [u] =
∫

H

(
D1u

2
xx − T0u

2
x + Ku2

)
dx,
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where the domain H is defined for those x for which D(x) = D1. We also consider the contributions

Lhard, j [u] =
∫

Hj

(
D1u

2
xx − T0u

2
x + Ku2

)
dx,

where Hj = [x2 j , x2 j+1] denotes the j th hard interval, j = 0, 1, ...,m, x0 = 0, and x2m+1 = L . Similarly,

Lso f t, j [u] =
∫

Hj

(
D0u

2
xx − T0u

2
x + Ku2

)
dx,

where S j = [x2 j+1, x2 j+2] denotes the j th soft interval, j = 0, ...,m−1. Our next aim it to find lower bounds
for Lhard and Lsof t .

Lemma IV Under the condition (65) one has

Lhard ≥
∫

H

(D1

2
φ2
xx + Kφ

)2
dx . (70)

Proof We use (69):

T0‖φx‖2 ≤ T0L max |φx |2 ≤ T0L
2‖φxx‖2.

Note that due to (65)

T0L
2‖φxx‖2 � D1

2

∫

H
φ2
xxdx,

and so, inequality (70) is proved.

Lemma V The Lagrangian Lso f t, j satisfies the estimate

Lso f t, j ≥ −CL R j , (71)

with

R j = φ2(x2 j+1) + φ2(x2 j+2) + φ2
x (x2 j+1) + φ2

x (x2 j+2),

where the constant CL > 0 is uniform in L.

Proof Consider the minimization problem

min
φ

∫ x2 j+2

x2 j+1

(
D0φ

2
xxdx − T0φx + Kφ2)dx,

under the boundary conditions

φ(x) = Ai , x = x2 j+1, φ(x) = Bi , x = x2 j+2,

φx (x) = Ãi , x = x2 j+1, φ(x) = B̃i , x = x2 j+2.

The function φ satisfies the Euler equation

D0φxxxx + T0φxx + Kφ = 0.

We solve this equation under the aforementioned boundary conditions. Due to our choice for D0, T0, and K ,
the solutions have the form

φ = C1 cos(k+x) + C2 cos(k−x) + C3 sin(k+x) + C4 sin(k−x),

where

k2± =
T0 ±

√
T 2
0 − 4D0K

2D0
.
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By substituting these solutions into the boundary conditions, we obtain a system of linear algebraic equations
for C = (C1,C2,C3,C4)

tr :

MC = A, A = (Ai , Ãi , Bi , B̃i )
tr ,

where matrix M is non-degenerate: det M �= 0. Therefore, ‖C‖ ≤ c0‖A‖ = c0R, where c0 > 0 is a constant
uniform in L (because all parameters of this minimisation problem are independent of L). This last estimate
for the norm of C completes the proof of Lemma V.

The Lemmas III–V are used to prove the next lemma.

Lemma VI Let condition (65) be satisfied. Then, in the rigid zone H the function φ satisfies the following
estimate

sup
x∈H

|φ(x)| ≤ c0L
3/2D−1/2

1 ρ, (72)

where c0 is a positive constant uniform in L  1 and in ρ = L[φ]1/2.
Proof One has

Lhard [φ] + Lso f t [φ] = ρ2.

Using the Lemmas IV and V, we obtain
∫

H

(D1

2
‖φxx‖2 + K‖φ‖2

)
dx − CL R̄ ≤ ρ2,

where

R̄ =
m−1∑

j=0

R j .

Lemma III gives the following estimate:

R̄ ≤ mc2L
3‖φxx‖2,

where c2 > 0 is a constant uniform in L . Combining the previous estimates and taking into account (65) one
obtains

D1

∫

H
φ2
xxdx ≤ c5ρ

2,

where c5 > 0 is uniform in L . Consider the interval [0, x0]. On this interval (we take into account the boundary
conditions (28)) one has

|φx (x)|2 ≤ |L|
∫ x0

0
φ2
xxdx, x ∈ [0, x0], (73)

and thus

|φ(x)| ≤ L max
x∈[0,x0]

|φx (x)| ≤ L3/2
∫

H
φ2
xxdx, (74)

which implies that

|φ(x)| ≤ D−1/2
1 L3/2ρ. (75)

This proves (72) on the first hard interval. We can extend this estimate to the first soft interval [x0, x1] by
Lemma III. Further, we continue by induction, for example,

|φx (x) − φx (x1)|2 ≤ |L|
∫ x2

x1
φ2
xxdx, x ∈ [x1, x2], (76)

and thus

|φ(x) − φ(x1)| ≤ L max
x∈[x1,x2]

|φx (x)| ≤ L3/2
∫

H
φ2
xxdx, (77)

and estimate (72) follows. And so, Lemma VI is proved.
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The remaining part of the proof of (34) is based on Lemma VI. According to Lemma VI, since φ satisfies
the estimate (72) in the hard zone H the relation (φ, φ j ) = 0 implies that

∫

H
φ(x)φ j (x)dx < D−1/2

1 L3/2ρ (78)

as L → ∞. Let I j denote the j th soft interval. Note that by our construction of φ j one has

sup
x∈Ik

|φ j (x)| < C1 exp(−c7D
1/4
1 ), k �= j,

where C1, c7 > 0 are uniform in L .
Then (33) implies that φ and φ j are almost orthogonal in the soft interval I j :

∫

I j
φ(x)φ j (x)dx = O(L−s), s > 0, L → ∞. (79)

Then we have

φ = C jφ j + φ̃,

where

∫

I j
φ̃(x)φ j (x)dx = 0, |C j | < O(L−s), (80)

and

∫

I j
φ̃(x)2 > 1/2 (81)

for large L  1. By (80) and (81) we can estimate Lso f t [φ] as follows:

Lso f t [φ] > c7(O(L−2s)ρ + Lso f t [φ̃], (82)

where c7 is uniform in L . Due to (80) the term φ̃ is almost orthogonal to the Euler critical mode, and we have

Lso f t [φ̃] > c8‖φ̃‖2 > c9,

where c8, c9 > 0 are constants uniform in δ > 0 and L , where δ is defined in the SDP theorem at the end of
Sect. 5. Then by (81) we obtain that

Lso f t [φ] > c7(O(L−2s) + c9. (83)

Thus,

ρ = L[φ] > Lso f t [φ] > c7(O(L−2s) + c9, (84)

and for large L we obtain inequality (34) with ρ > c10, which is uniform in δ and L . And so, the Theorem at
the end of Sect. 5 is proved.
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7 Nonlinear effects and resonances

7.1 An estimate for the averaged kinetic energy

In this short subsection, we use the a priori estimate (17) for the kinetic energy Ekin = m‖ut‖2
2 as obtained in

Lemma II. This estimate shows that the growth of the L2-norm ‖u‖ can be described by the low frequency
modes only. Let us represent the solution u as a sum of a low frequency part and a high frequency part:
u = u(l) + u(h), where for the high frequency term u(h) one has

‖u(h)
t ‖ > �‖u(h)‖, (85)

where � > 0 is a parameter. For example, if u(h) is a sum of harmonics

u(h) =
∑

j

exp(iω j t)ψ j (x),

where ψ j form a system of orthogonal functions, then � > min |ω j |. Inequality (85) and estimate (17) give

‖u(h)(·, t)‖ ≤ �−1y2(t). (86)

So, the averaged contribution of high frequency modes is proportional to �−1(since y2(t) is bounded). A
similar result can be obtained by using asymptotic approximations of the solutions, which we study in the next
subsection.

7.2 Asymptotic approximations of the solutions

In this section, we consider the weakly nonlinear dynamics of beams for which the spectrum of the corre-
sponding linear oscillations satisfy the properties as described in the previous two sections. As will turn out
in this section internal resonances between low frequency modes will not occur, and when high frequency
modes are involved the corresponding resonances are less important in the sense that the amplitudes of the
involved modes are relatively small. To describe the resonances, we apply the asymptotic representation for
the solutions, and we obtain an infinite Galerkin system

m0
d2X j

dt2
+ m0ω

2
j X j = ε

(
f (ut ), ψ j

)
, (87)

for j = 1, 2, ... on a time interval of order 1
ε
. In (87) f (ut ) is given by (2). X j (t) can be rewritten in

X j (t) = A j (τ ) sin(ω j t + φn(τ )),

where τ = εt is a slow time, and where A j and φ j are the unknown amplitude and phase respectively. Here
X j are Fourier coefficients of the function u(x, t): X j (t) = (u(·, t), ψ j ). Then, for A j we obtain (see [23])

2m0ω j
d A j

dτ
= (

f (ut ), ψ j
) + O(ε). (88)

By integrating (88) with respect to τ , we obtain

2m0(A j (τ ) − A j (0)) = εω−1
j

∫ ε−1τ

0

(
f (ut ), ψ j

)
ds + O(ε). (89)

We apply the Schwarz and Hölder inequalities to obtain a rough estimate of the right hand side in (88)

|(ut , ψ j )| ≤ ‖ut‖2,

|(u3t , ψ j )| ≤
(∫ L

0
|ut |4dx

)4/3(∫ L

0
|ψ j |4dx

)1/4

.
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Then, by using these estimates and (89) we have

|A j (τ ) − A j (0)| ≤ constω−1
j

〈

|a1|‖ut‖ + c j |a3|
(∫ L

0
|ut |4dx

)4/3〉

ε−1τ

, (90)

where 〈 f 〉T denotes the time average of the function f over the interval [0, T ]:

〈 f 〉T = T−1
∫ T

0
f (t)dt.

According to Lemma II and the Corollary after Lemma II, we have on the interval Iε (as defined in Lemma
II)

|A j (τ ) − A j (0)| ≤ C5ω
−1
j , (91)

for some C5 > 0, i.e., the contributions of the high frequency modes are small.
Let us consider the resonances in more detail. Let us denote by ω j , ψ j the frequencies and eigenfunctions

lying in the low frequency spectrum LS, and let us denote by ω̃ j , ψ̃ j the frequencies and eigenfunctions lying
in the high frequency spectrum zone HS. Let us consider the dynamics of A j with j ∈ LS and let us study
possible resonance effects in this dynamics. Then, by the standard analysis (see, for example, [17]) we obtain
that the following different situations might occur:

3HL: an internal resonance induced by three high frequency modes and a single localized one:

|ω̃k1 ± ω̃k2 ± ω̃k1 ± ω j | < cε, (92)

where j ∈ LS, k1, k2, k3 ∈ HS. This effect is proportional to

R jk1,k2,k3 =
∫ L

0
φk1φk2φk3ψ j dx;

2H2L: an internal resonance induced by two high frequency modes and two localized ones:

|ω̃k1 ± ω̃k2 ± ωi ± ω j | < cε, (93)

where i, j ∈ LS, k1, k2 ∈ HS. This effect is proportional to

R jk1,k2,k3 =
∫ L

0
φk1φk2ψiψ j dx;

H3L: an internal resonance induced by a high frequency mode and three localized ones:

|ω̃k ± ωi1 ± ωi2 ± ω j | < cε, (94)

where k ∈ HS, j, i1, i2 ∈ LS. This effect is proportional to

R ji1,i2,k =
∫ L

0
φkψi1ψi2ψ j dx;

4 L: an internal resonance, which involves localized low frequency modes only:

|ωi1 ± ωi2 ± ωi3 ± ω j | < cε, (95)

where j, i1, i2, i3 ∈ LS. This effect is proportional to

R ji1,i2,k =
∫ L

0
ψi1ψi2ψi3ψ j dx .

Let us consider these cases. The resonance 3HL is possible because the sum or differences of three
high frequencies may be small, however, the coefficient R jk1k2,k3 is proportional to the small dimensionless
parameter θ = L0/L (because the function ψ j is localized in the layer with width L0).
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The resonance 2H2L is also possible. The function ψiψ j is exponentially small for i �= j , and the
coefficient R j jk2,k3 is proportional to θ .

The resonance H3L is impossible because it can only exist under the condition that i1 = i2 = j but then
the resonance condition (94) does not hold.

At last, the resonance 4 L can occur for i1 = i2 = i3 = j and it gives the main contribution, which is larger
then all other remaining resonances. This can be shown as follows. We can obtain a general rough estimate for
the high frequency resonance contributions. If we truncate the Galerkin system to the low frequency localized
modes only, we have

m0
d2X j

dt2
= −m0ω

2
j X j + ε

(
f (utrt ), ψ j

)
. (96)

where utr = ∑m
j=1 X jψ j , j = 1, 2, ...,m. This system can be simplified. In fact, as it was mentioned above,

the products ψ jψi with i �= j are small. Thus, taking into account the main resonaces 4 L only, and removing
small terms, we obtain a truncated Galerkin system consisting of m independent equations, which describe m
independent nonlinear oscillators (of the Rayleigh type):

m0
d2X j

dt2
= −m0ω

2
j X j + ā1

dX j (t)

dt
+ ā2

(dX j (t)

dt

)3
, (97)

where ω j are prescribed frequencies and the coefficients ā j are equal to

ā1 = a1, ā2 = a2

∫ L

0
ψ4

j dx .

8 Conclusions and discussion

In this paper, the dynamics of a compressed Euler–Bernoulli beam on an elastic foundation under the action of
an external force, which models a wind force, is studied. The elastic foundation has a few, small, constant soft
parts, and a few, large and constant hard parts. The beam is assumed to be long, and the lower part of its spectrum
is prescribed. An asymptotic method on how to find the beam’s parameters which ensure the prescribed lower
part of the spectrum, is presented. This method uses the following parameters: a spatially heterogeneous
rigidity, a compressive longitudinal force, and a coefficient of the elastic Winkler foundation. The value of the
compressive longitudinal force must be less than the critical Euler force. All these parameters are critically
important to provide the stability of the beam and the absence of resonances between low frequency modes.
These modes have special spatial supports that exclude a direct interaction between them. So, the Galerkin
system describing the significant part of the time evolution of the beam can be given by a system of almost
independent equations, which describesm independent nonlinear oscillators. Each oscillator has its own phase
and frequency. Interactions between oscillators can take place only through high frequency modes. Although
the direct impact of the remaining high frequency modes is weak, we can expect interesting possible effects
such as synchronization or desynchronization of the main localized modes via these weak interactions. This
problem will be considered and studied in a future research project. Since it was not within the scope of this
paper, the asymptotic approach as presented in this paper, has not been justified mathematically. However, it
should be observed that all approximations satisfy the partial differential equation (9) and the initial conditions
(4) up to order ε2 for times t of order ε−1. To prove mathematically that the approximations as obtained in
this paper are also order ε accurate for times t up to order ε−1, one can follow the analysis as given in [15] for
a weakly nonlinear wave equation or in [24] for a weakly nonlinear wave equation on an elastic foundation,
or in [25] for a weakly nonlinear beam equation on an elastic foundation, or in [26] for a weakly nonlinear
plate equation on an elastic foundation. For the constructed approximations of the solutions of the initial-
boundary value problem for (9) a similar, mathematical analysis as given in [15,24–26] can be given, and it
can be shown that the asymptotic approximations of the solutions are order ε accurate for times t of order ε−1

(for ε sufficiently small). Also to validate the obtained analytic results a numerical calculation of the beam
frequencies was performed for the case considered in Sect. 6.1. For the computations, the parameters of the
beam presented in Fig. 3 were taken. The computations were performed with the help of ANSYS 2022 using
the calculation module “Modal”. In Table 1 the magnitudes of the first 6 natural frequencies are presented. As
can be observed the difference between the numerical and analytical results are small.
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Table 1 Values of the frequencies

Frequency

No. Analytic Numeric

1 0.189947 0.18573
2 1.059539 1.0595
3 1.201959 1.1836
4 1.346574 1.2943
5 1.493285 1.4743
6 1.891922 1.7908
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