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Abstract In this article, an exact analytical method for the free vibration analysis of functionally graded (FG)
graphene platelet (GPL)-reinforced composite (GPLRC) sector cylindrical shells is presented by considering
Levy-type boundary conditions for the first time. The analysis relies on the use of the Halpin–Tsai micro-
mechanical model for evaluating the material properties of the graded layers of the shell with three different
grading patterns. Mathematical modeling of the Levy-type cylindrical shell is based on the Hamilton principle
and the Sanders first-order shear deformation theory (FSDT). The governing equations of the composite
shell are analytically solved using the state-space method. The validity of the proposed analytical method
is demonstrated by the excellent agreement between the obtained results of the exact analytical solution
and the results available in the literature. Furthermore, some parametric studies are conducted to reveal the
effects of variations in boundary conditions, GPL distribution patterns, GPL weight fraction, and geometrical
parameters such as shallowness angle, length-to-radius ratio, and thickness on the free vibration behavior of
the shell structure. Natural frequencies and mode switching are reported for different mode numbers.

Abbreviations

C Clamped boundary
CNT Carbon nanotubes
F Free boundary
FEM Finite element method
FG Functionally graded
FSDT First-order shear deformation theory
GPL Graphene platelet
ODE Ordinary differential equation
RC Reinforced composite
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S Simply supported boundary

List of symbols

ηL Auxiliary coefficient
ηT Auxiliary coefficient
ν(k) Effective Poisson’s ratio of the k-th layer
ωm Natural frequency of the m-th vibrating mode
ψ Rotation of middle surface of the panel
ρ(k) Effective mass density of the k-th layer
ρGPL Mass density of GPLs
ρm Mass density of polymer matrix
θ Central angle of the panel
ξL Geometrical coefficient
ξT Geometrical coefficient
aGPL Average GPL length
b Panel side length
bGPL Average GPL width
E Young’s modulus
E (k) Effective elastic modulus of the k-th layer
Em Elastic modulus of the polymer matrix
EGPL Elastic modulus of the GPLs
h Total thickness
Ii Inertia
ks Shear correction factor
L Panel length
m Number of half-waves in circumferential direction
Mi Bending moment
n Number of half-waves in axial direction
Ni Normal force
NL Stratification number
Qi Shear force
Q(k)

i j Elements of material stiffness matrix
R Radius of curvature
t Time
tGPL Average GPL thickness
u Displacement of a point on the middle surface in x1 direction
v Displacement of a point on the middle surface in x2 direction
V (k)
m Polymer matrix volume fraction of the k-th layer

V ∗
GPL Total GPL volume fraction

V (k)
GPL GPL volume fraction of the k-th layer

w Displacement of a point on the middle surface in z direction
WGPL Mean weight fraction of GPLs

1 Introduction

Nanocomposite technology is an emergent area of study wherein nanofillers are incorporated into a polymer
matrix to enhance their mechanical, optical, thermal, and electrical properties and introduce innovative charac-
teristics. According to the method of reinforcement, nanocomposites can be divided into fibrous, laminar, and
particulate nanocomposites [1]. Currently, a wide range of nanofillers are utilized in nanocomposites, with the
cost and availability of these fillers undergoing constant fluctuations owing to the nascent nature of the field
and the continued development of such fillers. Nanofillers like carbon nanotubes (CNT), graphene oxide, and
graphene platelets are the most commonly used reinforcements in theory and practice. The particle–matrix
interaction results in remarkable property enhancements, enabling these materials to compete technically and
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commercially with their conventional counterparts [2]. Graphene, which is grown in various forms, includ-
ing graphene nanosheets and graphene nanoplatelets, is a carbon nanoallotrope with a hexagonal honeycomb
nanostructure. Various morphologies of graphene have given rise to a wide range of physical and chemical
properties, such as exceptional electrical, thermal, and mechanical features. A noteworthy carbon nanoma-
terial is the graphene nanoplatelet. This specific configuration of graphene comprises a cluster of graphene
nanosheets that possess an outstanding specific surface area and exhibit remarkable electrical, thermal, and
mechanical characteristics. Graphene nanoplatelets can interact with polymers, therefore improving the ther-
mal, electrical, andmechanical characteristics of the resultingGPLRCstructures.As a result of these impressive
properties, these nanocomposites have found significant applications in numerous disciplines of science and
engineering [3]. Several studies on the linear and nonlinear free and forced vibrations of different FG-GPLRC
nanocomposites are described below.

Kitipornchai et al. [4] analyzed the free vibration of FG-GPLRC porous beams based on the Timoshenko
beam theory andRitzmethod. Symmetric porosity andGPLdistribution patterns proved to be themost effective
in improving the stiffness of the structure. Jafari et al. [5] presented a four-variable shear and normal deformable
quasi-3D beam model to analyze the free and forced vibrations of FG-GPLRC beams under moving loads.
Feng et al. [6] numerically explored the nonlinear free vibration of FG-GPLRC beams with different boundary
conditions using the Ritz method. Bahranifard et al. [7] scrutinized the in-plane vibrational characteristics of
curved beams composed of multilayer FG-GPLRC material within a thermally influenced environment and
under the effect of dynamic moving loads. A multiscale numerical approach was proposed by Zhang et al. [8]
to study the static behavior, dynamic response, and stability of FG-GPLRC beams under various boundary
conditions. Several studies available in the literature investigated the vibration behavior of FG-GPLRC plates
with different geometries [9–11]. Based on the nonlocal strain gradient theory, vibration responses of small-
scale FG-GPLRC plates were analyzed using exponential shear deformation plate theory [12] and Kirchhoff
plate model [13]. Different solution techniques, including Chebyshev–Ritz [14], isogeometric [15], mesh-
free [16], and spectral Chebyshev [17] approaches, were employed by researchers to compute the frequency
characteristics of FG-GPLRC plates. Additionally, Muni Rami Reddy et al. [18] presented a finite element
model based on the first-order shear deformation theory to obtain the natural frequencies of FG-GPLRC plates
under various boundary conditions.

Shell structures play a pivotal role in engineering designs due to their widespread use in a variety of struc-
tural applications. Essentially, a shell structure is a three-dimensional geometry that is thin in one direction
when compared with the other two dimensions. This unique geometric configuration renders them thin and
lightweight and allows them to span large areas. Common applications of shell structures include the construc-
tion of expansive roofs in civil engineering, their incorporation into car bodies within the automobile industry,
integration into aircraft bodies and rockets in aeronautical engineering, and utilization in the hulls of ships and
submarines in naval architecture. A specific sub-type of shell is the cylindrical shell, which finds extensive use
in aerospace and naval construction. Cylindrical shells often serve as load-bearing structures for aircraft, rock-
ets, and submarines. In these applications, the cylindrical shells are typically reinforced to enhance strength,
stiffness, and buckling resistance [19]. The natural frequencies of cylindrical shells are closely grouped in a
narrow band, making them susceptible to resonant vibrations. To manage and control the amplitudes of these
vibrations, understanding the distribution of natural frequencies is crucial to avoiding failure under dynamic
loads in operation. Also, the accuracy of the vibration analysis in an exact analytical and realistic setting such as
the one presented in the paper will allow for the correct determination of the dynamic response under different
operating conditions represented by a variety of different boundary conditions presented here [20]. Numerous
studies in the literature are dedicated to the vibration analysis of FG-GPLRC shells with different geometries.
Safarpour et al. [21] exploited the differential quadrature method to analyze free vibrations of the FG-GPLRC
truncated conical shell, cylindrical shell, and annular plate based on the three-dimensional elasticity theory.
The effects of rotational springs on the edges [22], pressure and thermal environment [23], magneto-electro-
elastic face sheets [24], piezoelectric face sheets [25], fluid–structure interaction [26], and size dependency
[27] on vibration behavior of FG-GPLRC shells were also examined in open literature. NURBS-based [28],
Bezier extraction-based [29], and B-spline-based [30] isogeometric analyses were reported for the vibration
characteristics of FG-GPLRC shells with various shapes. Based on the Navier solution method and Don-
nell kinematic relationships, Baghbadorani et al. [31] studied free vibrations of first-order shear deformable
FG-GPLRC cylindrical shells. Studies on free vibration of FG-GPLRC cylindrical shells with initial stresses
[32] and resting on elastic foundations [33] were also reported. Natural frequencies of FG-GPLRC doubly
curved shells with simply supported [34] and arbitrary [35] edge supports were obtained using the Navier and
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Ritz methods, respectively. Qin et al. [36] proposed a unified solution for analyzing the vibration behavior of
GPL-reinforced laminated shallow shells using the Rayleigh–Ritz method and the artificial spring technique.

According to the above literature survey, the free vibration of FG-GPLRCbeams and plates has beenwidely
studied by different researchers over the years. Contrary to the extensive research on beam and plate structures,
the number of studies that examine the behavior of shell structures remains limited, with the majority of those
focusing on FG-GPLRC cylindrical shell geometries being limited to closed full cylindrical shells. To the best
of the authors’ knowledge, the most relevant study in the literature that examines open sector cylindrical shells
made of GPL-reinforced composites is the work by Wang et al. [34], which exclusively addresses the problem
solution for simply supported (SSSS) FG-GPLRC open cylindrical shells using Navier’s approach. Unlike
existing studies, here we present for the first time an exact analytical solution for the vibration behavior of
open sector cylindrical shells made of GPL-reinforced functionally graded material. This study stands out with
a proposed solution for the governing equations of motion under Levy-type boundary conditions, extending the
applicability of solutions for possible combinations of support types on four edges of the shell structure, namely
SCSC, SCSS, SSSS, SCSF, SSSF, and SFSF. As another novel feature of the proposed exact analytical scheme,
mode switching is reported, which allows for practical implications in real-life applications of such structures.
The analytical procedure relies on the state-space Levy method, a robust analytical technique grounded in
the state-space concept, providing exact Levy-type solutions. This method proves particularly advantageous
when analyzing structures with shear deformation theories, where the number of governing partial differential
equations exceeds that of classical theories.Unlike someof thewell-knownnumerical approaches, the presented
exact analytical approach stands out by eliminating the need for classical discretization and totally avoiding the
inherent challenges, errors, and approximations of the numerical methods. Shear locking and hourglassing are
examples of typical challenges in thefinite element approach that can be eliminated byusing analytical schemes.
Compared to other analytical approaches such as Navier’s solution method, which can only accommodate
simply supported boundaries on all edges, the proposed method excels in addressing different combinations of
Levy-type boundary conditions. The requirement of two simply supported parallel edges is the only limitation
of this analytical solution procedure compared to widely used numerical schemes such as the finite element
method. Nevertheless, the presented procedure allows for the representation of a wide range of different
boundary conditions applicable to practical engineering problems in a computationally efficient and accurate
manner, surpassing the performance of most numerical methods. The first-order shear deformation theory and
the assumptions of Sanders are adopted for the mathematical modeling of the shell structure. It is important
to note that the assumptions made for all the multilayered functionally graded structures discussed in this
paper include the dispersion of fillers in each individual layer in a random and uniform manner with perfect
bonding. Additionally, there is an assumption of no jump conditions in fields, as well as no delamination or
debonding across neighboring layers within the laminated structures [37]. Through some parametric studies,
the influence of GPL weight fraction, stratification number, GPL distribution pattern, shallowness angle, and
other geometrical parameters on the natural frequencies of the structure is examined. The natural frequencies
and mode switching phenomenon are reported for different mode numbers and boundary conditions.

2 Material properties

A GPLRC cylindrical shell with constant thickness h, side lengths L and b, and radius of curvature R is
presented in Fig. 1. The functionally graded cylindrical shell consists of NL number of GPLRC layers of the
same thickness. In each ply of thickness h/NL , the isotropic polymer matrix is reinforced by GPLs. The weight
fraction of GPLs is varied according to three symmetric patterns, namely FG-U, FG-X, and FG-O [37]. A
cylindrical shell made of GPLRC layers in the FG-U pattern has a uniform weight fraction of GPLs along the
thickness direction. For FG-X composites, the top and bottom plies of the shell are GPL rich, whereas more
GPLs are embedded in the middle layers of FG-O laminates. The volume fraction of GPLs for the k-th layer
of the FG composite shell can be calculated by

U - GPLRC: V (k)
GPL = V ∗

GPL

X-GPLRC: V (k)
GPL = 2V ∗

GPL |2k − NL − 1| /NL

O − GPLRC: V (k)
GPL = 2V ∗

GPL (1 − |2k − NL − 1| /NL)

(1)
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where k ranges from 1 to NL and V ∗
GPL is the total GPL volume fraction of the composite shell. The value of

V ∗
GPL can be determined by using the equation

V ∗
GPL = WGPL

WGPL +
(

ρGPL
ρm

)
(1 − WGPL)

(2)

whereWGPL, ρGPL, and ρm denote the mean weight fraction of GPLs, mass density of GPLs, and mass density
of polymer matrix, respectively. As defined above, each layer is isotropic, and, as a result, the effective elastic
modulus of the k-th layer is determined by the Halpin–Tsai micro-mechanical model [38] as

E (k) = 3

8

1 + ξLηLV
(k)
GPL

1 − ηLV
(k)
GPL

× Em + 5

8

1 + ξT ηT V
(k)
GPL

1 − ηT V
(k)
GPL

× Em (3)

where geometrical parameters ξL and ξT and auxiliary coefficients ηL and ηT are defined as follows

ξL = 2

(
aGPL
tGPL

)
, ξT = 2

(
bGPL
tGPL

)
, ηL =

(
EGPL
Em

)
− 1

(
EGPL
Em

)
+ ξL

, ηT =
(
EGPL
Em

)
− 1

(
EGPL
Em

)
+ ξT

(4)

in which Em and EGPL are elastic moduli of the polymer matrix and GPLs. The average GPL thickness, width,
and length are denoted by tGPL, bGPL, and aGPL, respectively. The effective Poisson’s ratio and mass density
of the k-th layer are predicted by the rule of mixture, as Poisson’s ratio and mass density values of GPLs and
polymer matrix are close to each other, and due to practical considerations, only small amounts of GPL are
added to the matrix

ρ(k) = ρGPLV
(k)
GPL + ρmV

(k)
m , ν(k) = νGPLV

(k)
GPL + νmV

(k)
m (5)

where subscripts “m” and “GPL” stand for matrix and GPLs, respectively.

3 Fundamental equations

In this article, the first-order shear deformation theory [39], which predicts the FG-GPLRC cylindrical shell’s
global displacement field by first-order terms and is suitable for thin to moderately thick shells, is employed

u1 (x1, x2, z, t) = u (x1, x2, t) + z ψ1 (x1, x2, t)
u2 (x1, x2, z, t) = v (x1, x2, t) + z ψ2 (x1, x2, t)
u3 (x1, x2, z, t) = w (x1, x2, t)

(6)

where (u1, u2, u3) and (u, v, w) are the global and mid-plane displacements of the shell along longitudinal,
circumferential, and radial directions, respectively. Middle surface rotations at z = 0 about x2 and x1 axes are
denoted byψ1, ψ2, respectively. According to Sanders’ assumptions [40], the strain–displacement relationship
can be expressed as

⎧
⎨
⎩

ε1
ε2
ε6

⎫
⎬
⎭ =

⎧⎪⎪⎨
⎪⎪⎩

ε01

ε02

ε06

⎫⎪⎪⎬
⎪⎪⎭

+ z

⎧
⎨
⎩
k1
k2
k6

⎫
⎬
⎭ , ε4 = ∂w

∂x2
+ ψ2 − v

R
, ε5 = ∂w

∂x1
+ ψ1 (7)

where

ε01 = ∂u
∂x1

, ε02 = ∂v
∂x2

+ w
R , ε06 = ∂v

∂x1
+ ∂u

∂x2

k1 = ∂ψ1
∂x1

, k2 = ∂ψ2
∂x2

, k6 = ∂ψ2
∂x1

+ ∂ψ1
∂x2

(8)
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The mathematical expressions for the stress components of each layer are obtained using constitutive relations
based on the Hook law for linear elastic materials

⎧⎨
⎩

σ1
σ2
σ6

⎫⎬
⎭

(k)

=

⎡
⎢⎢⎣
Q(k)

11 Q(k)
12 0

Q(k)
21 Q(k)

22 0

0 0 Q(k)
66

⎤
⎥⎥⎦

⎧⎨
⎩

ε1
ε2
ε6

⎫⎬
⎭ ,

{
σ4
σ5

}(k)

=
[
Q(k)

44 0
0 Q(k)

55

]{
ε4
ε5

}
(9)

in which Q(k)
i j are the elements of the material stiffness matrix, which can be calculated for each lamina as

Q(k)
11 = Q(k)

22 = E (k)

1 − ν(k)ν(k)
, Q(k)

12 = Q(k)
21 = ν(k)E (k)

1 − ν(k)ν(k)
, Q(k)

44 = Q(k)
55 = Q(k)

66 = E (k)

2
(
1 + ν(k)

) (10)

4 Governing partial differential equations

To obtain partial differential equations of vibrational motion, the Hamilton principle is employed [39]. The
governing equations of the vibratory motion of the FG-GPLRC cylindrical shell in terms of stress resultants
can be obtained as

∂N1
∂x1

+ ∂N6
∂x2

= I1ü + I2ψ̈1

∂N6
∂x1

+ ∂N2
∂x2

+ Q2
R = I1v̈ + I2ψ̈2

∂M1
∂x1

+ ∂M6
∂x2

− Q1 = I2ü + I3ψ̈1

∂M6
∂x1

+ ∂M2
∂x2

− Q2 = I2v̈ + I3ψ̈2

∂Q1
∂x1

+ ∂Q2
∂x2

− N2
R = I1ẅ

(11)

The mathematical formulas for normal forces (Ni ), shear forces (Qi ), and bending moments (Mi ) can be
defined as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N1

N2

N6

Q1

Q2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
NL∑
k=1

∫ zk

zk−1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ
(k)
1

(
1 + z

R

)

σ
(k)
2

σ
(k)
6

(
1 + z

R

)

ksσ
(k)
5

(
1 + z

R

)

ksσ
(k)
4

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

dz,

⎧
⎨
⎩
M1

M2

M6

⎫
⎬
⎭ =

NL∑
k=1

∫ zk

zk−1

⎧⎪⎪⎨
⎪⎪⎩

σ
(k)
1

(
1 + z

R

)

σ
(k)
2

σ
(k)
6

(
1 + z

R

)

⎫⎪⎪⎬
⎪⎪⎭
z dz (12)

where ks is the shear correction factor. Additionally, Ii , where i = 1, 2, 3 stands for mass inertia terms and
can be written as

Ii =
NL∑
k=1

∫ zk

zk−1

ρ(k)
(
1 + z

R

)
z(i−1)dz, (i = 1, 2, 3) (13)

Three classes of classical boundary conditions for the vibration of FG-GPLRC cylindrical shells, namely
clamped (C), simply supported (S), and free (F) edges, are as follows

C : w = ψ1 = ψ2 = u = v = 0

S : w = M1 = ψ2 = u = v = 0

F : N1 = N6 = M1 = M6 = Q1 = 0
(14)
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5 Solution method

The motion equations of the FG-GPLRC cylindrical shell in terms of stress resultants are composed of five
partial differential equations. For the harmonic response of a cylindrical shell under Levy-type boundary
conditions, the following displacement components are assumed, which enforce the periodic motion of the
shell structure in free vibration

u = Um(x1) sin(βmx2)eiωmt

v = Vm(x1) cos(βmx2)eiωmt

ψ1 = Xm(x1) sin(βmx2)eiωmt

ψ2 = Ym(x1) cos(βmx2)eiωmt

w = Wm(x1) sin(βmx2)eiωmt

(15)

where βm is related to the circumferential mode numberm by βm = mπ/Rθ , i is the imaginary unit (i2 = −1),
and the natural frequency of the m-th vibrating mode is denoted by ωm . Moreover, Um , Vm , Xm , Ym , and Wm
represent the mode shapes of the shell structure along the x1 axis. To satisfy Levy requirements for boundary
conditions of the cylindrical shell, we apply simply supported conditions at edges parallel to the x1 axis. Edges
at x1 = ±L/2 assume arbitrary boundary conditions. Substituting generalized displacement solutions in Eqs.
(15) into (11) and after mathematical simplifications, equations of motion can be rewritten in the form of a
system of five coupled linear ordinary differential equations (ODE) as follows

p1U + p2U ′′ + p3V ′ + p4W ′ + p5X + p6X ′′ + p7Y ′ = 0
p8U ′ + p9V + p10V ′′ + p11W + p12X ′ + p13Y + p14Y ′′ = 0
p15U + p16U ′′ + p17V ′ + p18W ′ + p19X + p20X ′′ + p21Y ′ = 0
p22U ′ + p23V + p24V ′′ + p25W + p26X ′ + p27Y + p28Y ′′ = 0
p29U ′ + p30V + p31W + p32W ′′ + p33X ′ + p34Y = 0

(16)

In Eq. (16), differentiation with respect to x1 is indicated by prime superscript, and pi coefficients are given
in Appendix A. The five resulting second-order ODEs are solved using the state-space approach. Any n-th-
order ODE can be transformed into n first-order ODEs employing this technique. Similarly, five second-order
ODEs, which govern the free vibration of the GPLRC cylindrical shell, are converted to ten first-order ODEs.
To implement the strategy, the following ten state variables are taken into account

Z1m (x1) = Um (x1) , Z2m (x1) = U ′
m (x1) = Z ′

1m (x1)

Z3m (x1) = Vm (x1) , Z4m (x1) = V ′
m (x1) = Z ′

3m (x1)

Z5m (x1) = Wm (x1) , Z6m (x1) = W ′
m (x1) = Z ′

5m (x1)

Z7m (x1) = Xm (x1) , Z8m (x1) = X ′
m (x1) = Z ′

7m (x1)

Z9m (x1) = Ym (x1) , Z10m (x1) = Y ′
m (x1) = Z ′

9m (x1)

(17)

After applying the changeof variables anddefining
{
Z
}
and

{
Z ′}vectors as{Z} = {

Z1m Z2m . . . Z10m
}T

and
{
Z ′} = {

Z ′
1m Z ′

2m . . . Z ′
10m

}T , the ordinary differential equations of motion are finally recast as a
set of equations that can be aggregated in the matrix form as

{
Z ′} = [

A
]{
Z
}

(18)

where
[
A
]
is a 10×10 square matrix. The solution to this set of equations assumes the following form [39,41]

{Z(x1)} = e
[
A
]
x1

{
K

}
(19)

where
{
K

}
is a vector containing the information about the boundary conditions that were applied to the shell

structure. The exponential form of the
[
A
]
matrix can be determined by the modal matrix approach, which

reads

e
[
A
]
x1 = [

M
]
⎡
⎢⎢⎢⎣

eλ1x1 0
eλ2x1

. . .

0 eλ10x1

⎤
⎥⎥⎥⎦

[
M

]−1 (20)
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Table 1 Mechanical properties of the GPL reinforcements and epoxy matrix

Properties GPL Epoxy

Young’s modulus (E) GPa 1010 3.0
Mass density (ρ) kg/m3 1060 1200
Poisson’s ratio (ν) 0.186 0.34

Table 2 Dimensionless natural frequencies of SSSS FG-GPLRC cylindrical shells with various L/h ratios for R/L = 5,
L = b = 0.45 m, NL = 12, and WGPL = 1%

(m, n) L/h Pattern Present Ref. [34]

(1, 1) 10 Pattern 1 0.12291 0.12293
Pattern 2 0.10290 0.10402
Pattern 3 0.13952 0.13762

20 Pattern 1 0.03281 0.03281
Pattern 2 0.02774 0.02797
Pattern 3 0.03714 0.03689

50 Pattern 1 0.00652 0.00652
Pattern 2 0.00587 0.00589
Pattern 3 0.00711 0.00708

(2, 1) 10 Pattern 1 0.28923 0.28923
Pattern 2 0.24331 0.24669
Pattern 3 0.32590 0.31794

20 Pattern 1 0.07700 0.07700
Pattern 2 0.06389 0.06457
Pattern 3 0.08793 0.08697

50 Pattern 1 0.01265 0.01265
Pattern 2 0.01049 0.01058
Pattern 3 0.01449 0.01440

(2, 2) 10 Pattern 1 0.44366 0.44377
Pattern 2 0.37553 0.38282
Pattern 3 0.49570 0.47982

20 Pattern 1 0.12191 0.12192
Pattern 2 0.10158 0.10272
Pattern 3 0.13859 0.13679

50 Pattern 1 0.02046 0.02046
Pattern 2 0.01706 0.01721
Pattern 3 0.02335 0.02320

in which
[
M

]
is the eigenvectors of the square matrix

[
A
]
and λi (i=1, 2, . . ., 10) are the eigenvalues of the

square matrix
[
A
]
. Considering different configurations of the boundary conditions at the edges x1 = ±L/2

and incorporating the associated details in Eq. (19), a homogeneous system of equations is found as
[
G

]{
K

} = 0 (21)

where
[
G

]
is the coefficientmatrix.By setting the determinant of the coefficientmatrix to zero, the characteristic

equation is obtained. Solving for the roots of the characteristic equation provides the natural frequencies of
the FG-GPLRC cylindrical shell.

6 Results and discussions

An analysis method for the free vibrations of FG-GPLRC cylindrical shells was established in the earlier
sections. First, comparative studies are carried out in this part. The precision and efficiency of the methods
used to analyze the cylindrical shell behavior are then demonstrated using novel numerical data. In our paper,
the computation time for a typical single computation was reported as 1.0413s on an M3 processor with an
8-core CPU, 8.0GB of installed RAM, and a macOS operating system, with the frequency accuracy measured
to 3 decimal places in Hertz units. Unless stated otherwise, a shell structure with GPLs serving as fillers
and epoxy serving as the matrix is examined. Table 1 contains a list of the material characteristics of these
components. For various geometrical parameters and material properties, parametric studies are carried out in
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Table 3 Comparison of fundamental natural frequencies of SSSS and SCSCCNTRC square plates with various a/h ratios against
experimental and FEM results from [43] for WCNT = 0.1%

Boundary condition a/h Experiment [43] FEM [43] Present

SSSS 100 60 63.267 62.947
80 80 80.696 78.668
60 104 107.43 104.84
40 156 157.85 157.07

SCSC 100 92 93.636 92.270
80 120 119.24 115.28
60 160 158.56 153.53
40 230 232.75 229.57

Table 4 Natural frequencies (Hz) of FG-GPLRC cylindrical shells with various boundary conditions for different FG patterns
and mode numbers (L/h = 10, L/R = 1, R = 1 m, θ = 90◦, NL = 12, and WGPL = 1%)

BCs Pattern Mode number (m, n)

(1, 1) (1, 2) (2, 1) (2, 2)

SCSC U 499.9 993.4 523.1 1053.2
O 457.9 865.1 445.6 899.8
X 535.0 1088.7 584.0 1165.0

SCSS U 446.0 885.0 463.7 955.1
O 418.0 772.9 394.7 813.2
X 470.6 963.1 519.1 1061.7

SSSS U 406.7 640.5 417.4 870.6
O 389.2 640.7 354.3 738.3
X 423.1 640.7 469.4 974.5

SCSF U 212.5 570.9 273.7 606.4
O 204.5 525.7 224.9 517.8
X 219.6 609.6 313.2 676.7

SSSF U 60.0 503.7 249.0 551.7
O 47.8 475.4 199.3 471.6
X 70.0 526.6 288.9 617.0

SFSF U 41.6 81.7 221.4 306.8
O 33.1 65.6 177.1 246.5
X 48.5 94.5 257.1 354.6

order to assess the influences on the vibrational behavior of the associated structures under various boundary
conditions. Letter symbols are used to describe the boundary conditions. For example, a panel with edges
simply supported (S) at x2 = 0, clamped (C) at x1 = −L/2, simply supported (S) at x2 = Rθ , and free
(F) at x1 = L/2 is represented by SCSF abbreviation. The m and n letters in the (m, n) symbol indicate the
associated vibrating mode’s number of half-waves in the circumferential and axial directions, respectively.
Graphs are presented to display numerical outcomes.

6.1 Validation of results

Unless otherwise stated, a stratification number of NL = 12 is employed throughout this study [34]. Moreover,
length, width, and thickness of the nanoplatelets [34] are set to be aGPL = 2.5 µm, bGPL = 1.5 µm, and
tGPL = 1.5 nm, respectively. In using FSDT, shear correction factors are incorporated to address discrepancies
between true transverse shear force distributions and those calculated through the kinematic relations of the
FSDT, modifying the shell transverse shear stiffnesses to ensure that the strain energy due to transverse
shear stresses equals the strain energy due to true transverse stresses predicted by three-dimensional elasticity
theory [42]. Since transverse shear strains are modeled to be uniformly distributed through the shell thickness,
transverse shear stresses are consequently constant. To rectify the disparity between the actual stress state and
the constant stress state predicted by the first-order shear deformation theory, a correction is applied solely in
the energy sense by introducing the shear correction factor. The actual value of the shear correction factor is
dependent on the geometry and material properties of the shell. The impact of the shear correction factor is
evident in frequency reduction; specifically, smaller shear correction factors correspond to smaller frequencies.
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However, within acceptable and realistic ranges, the variation in shear correction factor has minimal influence
on the natural frequencies of structures. Consequently, a shear correction of 5/6 is widely adopted in numerous
engineering applicationswithout compromising calculation accuracy [39].Asmentioned before in the literature
survey and to the best of the authors’ knowledge, no article considers an analytical solution based on the state-
space Levy approach for the natural frequencies of FG-GPLRC cylindrical shells under various boundary
conditions. Therefore, a comparison study is conducted in Table 2 between the present results and those
obtained by Wang et al. [34] on the non-dimensional frequencies of simply supported FG-GPLRC cylindrical
shallow shells. The natural frequencies are reported for different mode numbers and three different patterns
adopted in the above-mentioned research. A good agreement is achieved between the present results and those
reported in the mentioned article on the dimensionless natural frequencies of the simply supported shell with
different L/h ratios. In another comparison study in Table 3, fundamental natural frequencies of SSSS and
SCSC CNTRC square plates with various a/h ratios are tabulated against experimental and finite element
method (FEM) results provided by Patel et al. [43]. The accuracy of the proposed method is proved by the
good agreement between the present results and the experimental/FEM results of the reference work.

6.2 Parametric studies

The natural frequencies of FG-GPLRC cylindrical shells with various boundary conditions are tabulated in
Table 4 for different FG patterns and mode numbers. Stiffer support types make a positive contribution to the
general rigidity of the structure, and higher natural frequencies are obtained formore rigid boundary conditions.
A general trend is observed for the same edge configurations and the same mode numbers, as FG-X and FG-O
composites possess the highest and lowest stiffness among the dispersion patterns, respectively.

For three differentGPLdistribution patterns along the thickness of a composite shell that is simply supported
at all edges (SSSS), the first and second natural frequencies are plotted in Fig. 2 versus the total weight fraction
of GPLs. The results show that the addition of GPLs noticeably enhances both the first and second natural
frequencies of the shell structure. As expected, higher GPL content results in better enhancement of the shell
stiffness and increases the fundamental and second natural frequencies of the system. Moreover, among the
distribution patterns and for the same amount of GPL weight fraction, FG-X composite shells exhibit the
highest first and second frequencies, whereas the lowest frequency values are obtained for shells made of FG-
O composite. This trend implies that more GPL fillers in the top and bottom layers of the shell considerably
improve the elastic stiffness and accordingly contribute to the mechanical behavior of the structure.

For cylindrical composite shells that are simply supported at all edges (SSSS) with three different GPL
distribution patterns along the thickness direction, the first and second natural frequencies are presented in
Fig. 3 versus the stratification number. Notably, when the stratification number exceeds 15, both frequencies
remain relatively stable across all patterns. Not surprisingly, due to the homogeneous distribution of GPL
fillers in the FG-U pattern, the first two frequencies of FG-GPLRC shells remain constant despite varying
stratification numbers. Conversely, the frequencies of FG-O and FG-X composite shells are considerably
affected by stratification number. The FG-O pattern exhibits a decrease in both frequencies as the stratification
number increases; however, the FG-X pattern demonstrates the opposite behavior. Knowing that the mean
GPL weight fraction is constant, by increasing the number of layers for the FG-X pattern, the high-stiffness
layers with higher reinforcements are pushed toward the top and bottom surfaces of the shell structure, and
this causes a higher stiffness compared to the FG-U pattern. Conversely, for the FG-O pattern, increasing the
number of layers will concentrate most of the nanofillers close to the center of the composite shell, which in
turn will result in lower overall stiffness.

Figure 4 depicts the variation in the first two natural frequencies of SSSS FG-GPLRC cylindrical shells
with three different GPL distribution patterns against shallowness angle θ . It is generally observed that the
frequencies exhibit a decreasing trendwith increasing shallowness angles, owing to the reduction in the rigidity
of the structure. As shown in Fig. 4a, the alterations in the shallowness angle serve as a cause for the switching
mode phenomenon in fundamental frequency, as an increase in the shallowness angle results in the reduction
in the panel’s flexural rigidity, consequently leading to higher half-waves in the circumferential direction. For
FG-O composite shells, the mode switching fromm = 1 tom = 2 occurs at about θ = 97◦, whereas for FG-U
and FG-X composites, it appears at higher values of θ compared to FG-O shells as their flexural rigidity is
generally higher than their FG-O counterparts. As depicted in Fig. 4b, the mode switching is also observable
in the second natural frequency of the shell structure. The first mode shift from m = 1 to m = 2 arises at
about θ = 69◦ for FG-O composites, and the second mode change is observed again at θ = 97◦, where the
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mode switching for fundamental frequency happens. Similar to the observations for fundamental frequency,
in second frequency, mode switching for FG-U and FG-X composites is at higher values of θ .

The effect of sallowness angle on the first two natural frequencies of FG-GPLRC cylindrical shells under
various boundary conditions is investigated in Fig. 5. Results are graphically represented for all six possible
boundary combinations of the Levy- type, namely SCSC, SCSS, SSSS, SCSF, SSSF, and SFSF. A general
downward trend in frequencies for increasing values of θ is confirmed for all sets of boundary conditions,
which is similar to our finding in Fig. 4. Support types with higher rigidity, namely SCSC, SCSS, and SSSS,
behave similarly in terms of both the variation in frequencies and mode switching. As it can be seen in Fig. 5a,
the mode shift in fundamental frequency of SCSC, SCSS, and SSSS shells emerges at shallowness angles of
θ = 95◦, 96◦, and 97◦, whereas no switching in fundamental frequency is detected for SCSF, SSSF, and SFSF
composites. As shown in Fig. 5b, for the second natural frequency of the panels with no free edges, first and
second mode shifts take place at approximate shallowness angles of θ = 67◦, 68◦, 69◦ and θ = 95◦, 96◦, 97◦,
respectively. The only detectable mode shifts in second frequencies of the structures with a single free edge,
namely SCSF and SSSF shells, are at about θ = 79◦ and θ = 80◦, respectively. Moreover, no switching is
observed for SFSF shells.

Figure 6a, b shows the effect of changing the length-to-radius ratio on the first two frequencies of FG-O
composite cylindrical shells under various boundary conditions. It can be posited that increasing the length-to-
radius ratio L/R results in a decline in the natural frequencies of the cylindrical shells under different sets of
boundary conditions. This observation can be attributed to the reduction in the bending stiffness of the panel
when the L/R ratio is larger. One can easily discern that the L/R ratio has a marginal impact on the first
two frequencies of SSSF and SFSF cylindrical shells. This behavior occurs since the length ratio of the shell
structure plays a crucial role in determining the stiffness andmass distribution across the laminated shell. As the
length ratio increases, the shell’s stiffness becomes more noticeable in the shorter direction (edges are simply
supported due to the Levy requirement along this direction) compared to the longer one, thereby influencing
the natural frequencies. With a growing aspect ratio, the shell structure becomes more flexible along its length,
leading to a reduction in stiffness and, consequently, natural frequencies. The presence of free edges allows
for greater motion. As a result, an increase in the number of free edges in the structure reduces the impact of
the length ratio on the natural frequencies. This suggests that the geometric (essential) boundary conditions
exert a more substantial influence on the vibration of the composite cylindrical shell than the natural boundary
conditions. Furthermore, mode switching occurs for SCSF composites at about L/R = 1.43.

The lowest natural frequencies of SSSS and SCSC FG-O composite cylindrical shells associated with
different shell thicknesses and mode numbers are provided in Fig. 7. Based on the data presented, by altering
the total thickness of the shell, the circumferential half-wave number of the fundamental frequency undergoes
a change. When the thicknesses of SSSS and SCSC cylindrical shells are 2 cm and 3 cm, the circumferential
mode number corresponding to fundamental frequencies ism = 3. For other thicknesses presented in the figure,
the fundamental frequencies are associated with the circumferential mode number m = 2. It is important to
note that a slight change can be observed in the frequency of the mode associated with m = 1 by increasing
the panel thickness for both SSSS and SCSC shells. However, for other circumferential mode numbers, a
positive correlation prevails between the thickness of the panel and the related natural frequency. The modes
of vibration involved determine how natural frequencies behave in shells with rigid boundary constraints.
Vibration in the first mode, often known as the fundamental mode, typically results in a more global structural
deformation. When the boundary conditions are quite rigid, the first mode’s frequency remains essentially
stable for the thickness values provided in this figure, due to the strict boundary requirements that help limit
the total response. On the other hand, there is a complicated interaction between mass distribution and bending
stiffness for higher modes. Consequently, the deformation behavior becomes increasingly complicated and
localized at higher modes of vibration. The global response is still governed by rigid boundary constraints,
but higher modes are more sensitive to variations in structural parameters like thickness due to their increased
level of complexity. Also, it is noteworthy that a narrow range of thickness variation is considered here.

7 Conclusions

In this article, exact solutions based on the state-space Levy approach for free vibrations of FG-GPLRC
cylindrical shells under various boundary conditions are presented. In-plane global displacements are assumed
to be linear functions of the coordinate along the thickness of the shell, according to the first-order shear
deformation theory. The assumptions of Sanders are adopted for strain–displacement relations. The effect of
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Fig. 1 Schematic of a GPLRC cylindrical shell

Fig. 2 First two frequencies of SSSS FG-GPLRC cylindrical shells with three distribution patterns versus GPL weight fraction
for L/h = 10, L/R = 0.2, L = b = 0.45 m, and NL = 12: a first natural frequency; b second natural frequency

Fig. 3 First two frequencies of SSSS FG-GPLRC cylindrical shells with three distribution patterns versus stratification number
for L/h = 10, L/R = 0.2, L = b = 0.45 m, and WGPL = 1%: a first natural frequency; b second natural frequency
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Fig. 4 First two frequencies of SSSS FG-GPLRC cylindrical shells with three distribution patterns versus shallowness angle for
h/R = 0.1, L/R = 2, R = 1 m, NL = 12, and WGPL = 1%: a first natural frequency; b second natural frequency

Fig. 5 First two frequencies of FG-O composite cylindrical shells under various boundary conditions versus shallowness angle
for h/R = 0.1, L/R = 2, R = 1 m, NL = 12, and WGPL = 1%: a first natural frequency; b second natural frequency

Fig. 6 First two frequencies of FG-O composite cylindrical shells under various boundary conditions versus length-to-radius
ratio for h/R = 0.06, θ = 90◦, R = 1 m, NL = 12, and WGPL = 1%: a first natural frequency; b second natural frequency
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Fig. 7 Natural frequencies of FG-O composite cylindrical shells with different shell thicknesses and mode numbers for L/R = 1,
θ = 90◦, R = 1 m, NL = 12, and WGPL = 1%: a SSSS FG-GPLRC shells; b SCSC FG-GPLRC shells

GPLweight fraction, stratification number, GPL distribution pattern, shallowness angle, and other geometrical
parameters, namely thickness and length-to-radius ratio, on the natural frequencies of the panel is examined
using a series of parametric studies, and the free vibration frequencies are reported for different mode numbers
and boundary conditions. This study also yields the following conclusions:

• The circumferential mode number associated with the fundamental frequency of the FG-GPLRC shell is
sensitive to variations in support types, shallowness angle, and geometrical ratios.

• Mode switching is affected by variations in boundary conditions, shallowness angle, and length ratios. To
elaborate further, mode switching takes place at different length ratios and shallowness angles depending
on the rigidity of the boundary conditions. In stiffer configurations such as SCSC, SCSS, and SSSS, mode
switching in the second frequencies occurs at lower values of shallowness angles (θ ≈ 68◦) compared to
less stiff setups (θ ≈ 96◦). Additionally, the variation in length ratio and shallowness angle plays a pivotal
role in determining the stiffness and mass distribution across the laminated shell. With an increase in the
length ratio, the shell’s stiffness becomes more evident in the circumferential direction, while an increase
in the shallowness angle accentuates the longitudinal stiffness.

• As expected, the rigidity of different boundary configurations affects the natural frequencies of the FG-
GPLRC cylindrical shell. For the configuration in Fig. 5 and θ = 90◦, the fundamental frequency of SCSC
shells is approximately 7 times the frequency of SFSF shells.

• GPL-reinforced cylindrical shells with layers stacked up according to the FG-X pattern exhibit the highest
stiffness and frequencies among the examined patterns (depending on the shell configurations, approxi-
mately 45 percent higher compared to the FG-O pattern for simply supported shells).

• A considerably small amount (0.2 percent weight fraction) of GPL reinforcement gives rise to an almost
50 percent enhancement of the frequencies of the simply supported shells.

• A layered GPLRC shell structure with stratification numbers of NL = 10 or higher provides an appropriate
functionally graded composition for stiffness improvement in the structure.

The findings of this study can serve as a fundamental benchmark solution for forthcoming research pertaining
to the free vibration of FG-GPLRC shells. It is crucial to consider the associations between the frequencies
and geometrical parameters, boundary conditions, and mode numbers for the sake of future applications.
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