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Abstract Steady viscous flow past a circular cylinder with velocity slip boundary condition is numerically
solved. The Navier–Stokes equations are solved using the vorticity-stream function formulation for two-
dimensional incompressible flows. A time-accurate solver is developedwhich can be used for accurate solution
of time-dependent flows. However, only steady results for Reynolds numbers up to 40 are presented in this
paper.Most of the emphasis is dedicated to the validation of the solver and the results, something which is more
or less missing in previous studies of slip flows. There has been a controversy regarding the computation of the
drag coefficient and its various contributions in the past. As reviewed in the text, some papers did not present
the formulation of the drag coefficient and only presented the results, some papers used the no-slip formulae
and some papers presented formulae for the slip case but did not validate them. Due to this controversy, we
derived formulae for the various contributions to the drag coefficient and validated them by comparison to
existing data, especially using an analytical solution of Oseen’s equation for creeping flow around a cylinder
with slip condition. At the end, some results are presneted includingwall vorticity and slip velocity distribution,
streamlines, vorticity contours and various contributions to the drag coefficient.

1 Introduction

Flow about bluff bodies such as a circular cylinder has a paramount importance in technical applications as
well as fundamental studies of fluid mechanics. Such flows exhibit distinct features such as flow separation,
vortex shedding in the near and far fields, fluctuations in lift and drag forces, etc. Hence, there has been a great
deal of research dedicated to study various aspects of this problem by analytical, numerical and experimental
means [1]. Another interesting yet complicated feature of the flow past curved surfaces is a variable separation
point which is dictated, not only by the obstacle geometry, but also by the dynamics of the oncoming flow
[2]. This is essentially different from the flow separation on a cube where the point of separation is solely
determined by sharp edges of the obstacle [3].

Flow around a circular cylinder is an outstanding benchmark problem to study bluff body aerodynamics,
see for example [4–6]. This flow exhibits different regimes depending on the Reynolds number based on the
cylinder diameter, denoted by Re. For the interval 0 < Re ≤ 6, we observe no separation and hence no
recirculation zone. Steady flow separation can be seen in the range of 6 < Re ≤ 47, where a symmetric pair of
vortices exist right behind the cylinder. Unsteady effects and periodic vortex shedding is observed in the range
48 < Re ≤ 160. Aperiodic flow separation starts to take place from about Re = 160 and it gradually shows
three-dimensional effects and instabilities which lead to transition in the wake. Of course, the aforementioned
limits of intervals are just approximate values and they stand for the no-slip case. In the present work, we
study the steady flow regime around a cylinder with wall velocity slip. In a systematic investigation of the
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flow around a circular cylinder, the above regimes are being studied. The present paper addresses the steady
separated flow regime under the influence of wall slip. The unsteady regime will remain to be the subject of
subsequent investigations.

Slip flow on solid walls is encountered in a number of situations such as flow of water over hydrophobic
[7] and superhydrophobic [8] surfaces, and the boundary-layer flows of rarefied gases provided that the degree
of rarefaction is up to the limit where it can still be described by means of continuum theories [9]. For such
flows, the amount of wall slip is determined by a dimensionless group called the Knudsen number, which
quantifies the degree of rarefaction of the gas. The Knudsen number based on the cylinder diameter is denoted
by Kn throughout this paper. In this context, Kn = 0 implies the classical no-slip condition, i.e. zero tangential
velocity on the wall, whereas Kn → ∞ gives the full slip condition, i.e. zero shear stress on the wall. There
exist various formulations of wall slip boundary condition. In the present work, we use the classical Maxwell’s
slip model [10].

Increasing the wall slip in a laminar boundary layer leads to a decreased overall drag, thinner boundary
layer thickness, delayed transition to turbulence, increased heat transfer without the temperature jump at the
wall, and decreased heat transfer even below the no-slip values when the temperature jump is taken into
account [11,12]. An analytical solution of the Oseen’s equation for creeping flow, i.e. low Reynolds number
flow, around a cylinder shows that the total drag coefficient decreases by increasing the amount of wall slip
[13]. This behavior has been verified to exist for moderate Reynolds numbers [14]. Although it was conceived
that the vorticity generation at the wall is due to the no-slip condition, it is now well known that vorticity can
be generated at the wall, even at full slip (zero wall shear stress) [15]. Leal [15] also showed that although the
wall slip deteriorates the vorticity generation at the wall, it somehow enhances the vorticity convection in the
downstream direction after its generation.

The effect of variable slip length on the flow over a cylinder has been investigated numerically [16]. They
have used the commercial software FLUENT to perform the simulations. Although they did not mention how
the drag coefficient is computed, they have validated their computed drag coefficient against an approximate
analytical solution based on the solution of Proudman and Pearson [17]. However, their validation is only for
the total drag coefficient and they did not discuss the various contributions to the drag in their validation.

The slip flow around the cylinder is simulated by Seo and Song [18], by solving the shallowwater equations
instead of the full Navier–Stokes equations. They did not give the formulation used for the calculation of the
drag coefficient. However, the formula they gave for the pressure distribution on the cylinder surface in terms
of the wall vorticity is the one of no-slip flows.

Maghsoudi et al. [19] numerically solved the steady laminar flow and heat transfer around a circular cylinder
using a stream function-vorticity formulation. They have used to no-slip formulae to compute the pressure and
viscous drag coefficient.

Minimum power consumption for drag reduction in the slip flow around a cylinder was studied using
analytical and numerical means [20]. Although the drag coefficient was studied, they only wrote the drag force
as the integral of viscous and pressure forces exerted by the flow on the cylinder, similar to the integral shown
in Eq. (18). However, explicit formulae for the computation of drag coefficient were not given.

Transient flows around slippery circular and elliptic cylinders are respectively simulated in [21,22], using a
stream function-vorticity formulation. Formulae for drag and lift coefficients are given and start-up of the flow
is investigated. No validation of the formulae for drag and lift coefficients is provided. However, an asymptotic
solution is obtained which is valid for a short time interval at the flow start-up. This is used to validate the
velocity field.

The two- and three-dimensional unsteady flow and heat transfer around a circular cylinder with wall slip
was simulated by Rehman et al. [23]. They focused on the Nusselt number and they did not give formulae and
diagrams showing the drag coefficient.

Due to discrepancy in the data presented and since there has been no thorough and extensive validation of
the simulation results presented for slip flow around a circular cylinder, the main objective of the present paper
is the validation of this canonical flow setup by using the existing data. Moreover, as there exist a controversy
on how to compute the drag coefficient in such flows, as discussed above, another aim is to eradicate this
controversy by proposing formulae, derived from the first principles, to compute various contributions to the
drag coefficient and validate it against the existing analytical data of Atefi [13].
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2 Problem setup

An infinitely long circular cylinder of radius R is subjected to a cross flow of a constant-properties rarefied
gas with undisturbed velocity U∞. This flow configuration is schematically depicted in Fig. 1. The free flow
Mach number Ma∞ = U∞/c∞ is small enough so that the incompressible flow assumption holds valid, with
c∞ being the speed of sound at the free flow condition. Therefore, the gas density ρ, dynamic viscosity μ
and kinematic viscosity ν = μ/ρ are assumed constant. The outer boundary of the computational domain is
a sufficiently large circle of radius Rout, non-dimensionally written as R∞ = Rout/R.

Unless otherwise stated, all quantities in this paper are non-dimensionalized by the cylinder radius R, the
free-stream velocity U∞ and the free-stream pressure p∞. Also, the Reynolds number based on the cylinder
diameter is defined as Re = 2RU∞/ν.

3 Theory and governing equations

3.1 Equations of motion

With the assumptions made in Sect. 2, the flow is governed by the time-dependent, two-dimensional and
incompressible continuty and Navier–Stokes equations, written in their dimensionless form as

∇ · u = 0, (1)
∂u
∂t

+ (u · ∇)u = −∇p + 2

Re
�u, (2)

where u, p, ∇ and � are the velocity vector, the pressure, the nabla operator and the Laplacian operator,
respectively.

Due to the incompressibility and two-dimensionality of the flow, the stream function-vorticity formulation
of the Navier–Stokes equations is used. In what follows, the equations are written in the cylindrical coordinate
system, in which ur and uθ are the radial and circumferential velocity components, respectively. The stream
function ψ is related to velocity components via

ur = 1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
. (3)

The vorticity ω is related to the velocity components and the stream function respectively via

ω = 1

r

[
∂(ruθ )

∂r
− ∂ur

∂θ

]
, (4)

ω = −1

r

∂

∂r

(
r
∂ψ

∂r

)
− 1

r2
∂2ψ

∂θ2
. (5)

Equation (5) is a Poisson equation for the stream function ψ . The vorticity transport equation reads

∂ω

∂t
+ 1

r

∂ψ

∂θ

∂ω

∂r
− 1

r

∂ψ

∂r

∂ω

∂θ
= 2

Re

(
∂2ω

∂r2
+ 1

r

∂ω

∂r
+ 1

r2
∂2ω

∂θ2

)
. (6)

Equations (5) and (6) constitute a set of two nonlinear partial differential equationswhich can be solved to obtain
the vorticity and stream function. Once the stream function is computed, the velocity components are obtained
using Eq. (3). This approach is equivalent to solving the Navier–Stokes equations (2) for two-dimensional
incompressible flow problems, since the solution will indentically satisfy the continuity Eq (1).

The boundary conditions are as follows. On the cylinder surface, i.e. at r = 1, we have

ψ(r = 1, θ, t) = 0,
∂2ψ

∂r2

∣∣∣∣
r=1

= α
∂ψ

∂r

∣∣∣∣
r=1

. (7)

Note that the first condition ensures that the cylinder surface is indeed a flow streamline, i.e. the surface is
impervious with ur (r = 1, θ, t) = 0. The second one applies the Navier’s velocity slip condition on the
cylinder surface [10,13], in which α is defined by

α = σ

2(2 − σ)

1

Kn
+ 1, (8)
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Fig. 1 The problem geometry, parameters, the cylindrical coordinate system and the unit base vectors in radial and circumferential
directions

Fig. 2 The computational grid of 5122 grid points in the physical space. Only one quarter in the vicinity of the cylinder is shown

where σ is the tangential momentum accommodation coefficient. For an extremely rough wall at the molecular
level, which pertains to virtually all practical applications of macroscopic scale, one can assume that σ = 1.
From the definition (8), it is obvious that α ∈ [1,∞), α = 1 describes the full slip (zero wall shear stress)
condition while α → ∞ describes the classical no-slip condition. Moreover, Kn is the Knudsen number based
on the cylinder diameter 2R, defined by

Kn = λ

2R
, (9)

with λ being the molecular mean free path of the gas. For a dilute gas consisting of a single chemical species,
λ is given by

λ = kBT√
2πd2 p

, (10)

in which kB , T , d and p are the Boltzmann constant, the gas absolute temperature, the effective diameter of
the gas molecules and the gas pressure, respectively. We also need a boundary condition at the cylinder surface
relating the vorticity to the stream function. This can be obtained from Eqs. (5) and (7):

ω(r = 1, θ, t) = −1 + α

α

∂2ψ

∂r2

∣∣∣∣
r=1

. (11)
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Table 1 Coefficients of frictional, pressure and total drag, and also the separation angle for Re = 10 and Kn = 0, obtained by
using 1282, 2562, 5122 and 7002 grid points, and R∞ = 80.

Grid CDF CDP CD θsep (deg.)

1282 1.2338 1.5798 2.8136 27.12
2562 1.2337 1.5814 2.8151 28.27
5122 1.2337 1.5819 2.8156 28.82
7002 1.2336 1.5822 2.8158 28.86
Correlations (33) 1.2244 1.5706 2.7550 28.71
S. & B. [26] 1.231 1.600 2.831 28.73

Comparison is made with correlations and numerical results of [26,27]

Table 2 Coefficients of frictional, pressure and total drag, and also the separation angle for Re = 10 and Kn = 0, obtained by
using 5122 grid points and domain sizes of R∞ = 40, 60, 80 and 100

R∞ CDF CDP CD θsep (deg.)

40 1.2656 1.6294 2.8950 29.02
60 1.2437 1.5968 2.8405 28.92
80 1.2337 1.5819 2.8156 28.82
100 1.2333 1.5815 2.8148 28.79

At far distance r = R∞, a potential flow is assumed and thus

ψ(r = R∞, θ, t) =
(
R∞ − 1

R∞

)
sin θ, ω(r = R∞, θ, t) = 0. (12)

Since an unsteady solution is performed, initial conditions need to be supplied as well. In all the simulations
reported in this paper, a potential flow is taken for the initialization of ψ and ω, i.e.

ψ(r, θ, t = 0) =
(
r − 1

r

)
sin θ, ω(r, θ, t = 0) = 0. (13)

In practice, the second initial condition is only required and the initial ψ is computed by solving the Poisson
Eq. (5).

In order to have a stretched mesh in the radial direction which accounts for the near-wall sharp gradients,
the radial direction r of the physical space is transformed into a computational space, called z, via r = ez

or z = ln r . This is equivalent to using the conformal mapping z + iθ = ln (x + iy), with x and y being
the Cartesian coordinates. This constitutes an orthogonal curvilinear grid. The so-obtained grid used for the
computations is shown in Fig. 2. With this transform, all first and second derivatives with respect to r must be
calculated with respect to z by using the chain rule of differentiation. By applying this transform, Eqs. (5) and
(6) read

∂2ψ

∂z2
+ ∂2ψ

∂θ2
= −e2zω(z, θ, t), (14)

∂ω

∂t
= e−2z

[
∂ψ

∂z

∂ω

∂θ
− ∂ψ

∂θ

∂ω

∂z
+ 2

Re

(
∂2ω

∂z2
+ ∂2ω

∂θ2

)]
, (15)

Since z = 0 at the cylinder surface, all the derivatives with respect to r at r = 1 equal to their corresponding
derivatives with respect to z at z = 0. This is used in the application of wall boundary conditions.

Onceψ andω fields are computed, all other flowquantities can be obtained by post-processing. The velocity
components are computed by simply differentiating ψ , according to Eq. (3). The calculation of the pressure
distribution on the cylinder surface is presented in the appendix §A whereas the drag and lift coefficients are
defined in §3.2.
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Fig. 3 The centerline radial velocity ur (r, θ = 0) for Kn = 0 (no-slip) and Re = 10, 20, 30 and 40 compared with the results of
Nieuwstadt and Keller [28]

Fig. 4 Slip velocity as a function of the circumferential angle θ at Re = 1 for Tr = 0.1, 1 and 10. The analytical [13] and the
numerical solutions of Oseen’s equation are plotted as well. For the numerical solution of Oseen’s equation, every fifth point is
plotted

3.2 Drag coefficient

The pressure CDP , frictional CDF and total drag coefficients are important quantities in aerodynamics. For
the classical no-slip condition, it is well known that these quantities are computed by

CDP = − 2

Re

∫ 2π

0

(
∂ω

∂r

)
r=1

sin θ dθ. (16a)

CDF = + 2

Re

∫ 2π

0
ω|r=1 sin θ dθ, (16b)

The total drag coefficient CD is then computed by summing up CDP and CDF :

CD = CDP + CDF . (16c)

For the wall slip condition, various approaches have been devised so far. Seo and Song [18] andMaghsoudi
et al. [19] used no-slip formulae (16) for the slip flow around a circular cylinder. D’Alessio [21] derived the
following relation for the total drag coefficient for the slip flow over a circular cylinder, see also [22] for the
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Table 3 Coefficients of frictional, pressure and total drag, and the separation angle for Re = 20 and 40, and Kn = 0 using 5122

grid points and R∞ = 80, compared with correlations and numerical results of [14,26,27]

Re Data source CDF CDP CD θsep (deg.)

20 Present work 0.8075 1.2257 2.0332 43.24
Sucker and Brauer [26] 0.853 1.325 2.178 42.80
Legendre et al. [14] – – 2.045 –
Correlations (33) 0.8023 1.2168 2.0243 43.33

40 Present work 0.5229 0.9949 1.5178 53.23
Sucker and Brauer [26] 0.557 1.076 1.633 51.94
Sen et al. [27] – – 1.5093 –
Correlations (33) 0.5239 0.9897 1.5075 53.61

proof using the conformal mapping method.

CD = 2

Re

∫ 2π

0

(
∂ω

∂r
− ω

)∣∣∣∣
r=1

sin θ dθ + β2

2(1 + β)2

∫ 2π

0
ω2

∣∣
r=1 cos θ dθ

−
∫ 2π

0

∂uθ

∂t

∣∣∣∣
r=1

sin θ dθ,

(17)

where β is defined as the slip coefficient appearing in the slip condition formulated in the computational space,
i.e. uθ = β ∂uθ /∂z [21]. However, he does not give explicit formulae for different contributions to the total
drag coefficient. The signs in Eq. (17) are different from those of Eq. (16) due to the fact that the free-stream
flow is in negative x-direction in [21] whereas it is in positive x-direction in the present work.

None of the above-mentioned formulae have been validated against analytical and/or experimental data
for the slip flow case. Here, we derive equations for all contributions to the total drag coefficients for the slip
flow around a circular cylinder from the first principles, and validate them by comparison with an available
analytical solution of Oseen’s equation [13].

The drag coefficientCD is calculated by integrating the horizontal component of the dimensionless pressure
and viscous (normal and shear) stresses over the cylinder surface:

CD = −
∫ 2π

0

(
−pw + 4

Re

∂ur
∂r

)
r=1

cos θ dθ + 2

Re

∫ 2π

0

(
∂uθ

∂r
− uθ

r

)
r=1

sin θ dθ, (18)

In order to calculate ∂ur/∂r appeared in the first integral of Eq. (18), we start from the continuity equation
in cylindrical coordinates, which yields (∂ur/∂r)r=1 = − (∂uθ /∂θ)r=1. Now, by employing the slip boundary
condition [

∂uθ

∂r
− αuθ

]
r=1

= 0, (19)

and the definition of vorticity (4), one can write[
∂ur
∂r

]
r=1

= −
[
∂uθ

∂θ

]
r=1

= − 1

α + 1

[
∂ω

∂θ

]
r=1

. (20)

It shall be noted here that the contribution from the viscous normal stress 4/Re (∂ur/∂r) to the drag only exists
in the slip flows and it vanishes in no-slip flows for obvious reasons.

By the help of the slip boundary condition (19), the shear strain-rate at the cylinder surface appeared in the
second integral of Eq. (18) can be written in terms of the vorticity at the wall:[

∂uθ

∂r
− uθ

r

]
r=1

= α − 1

α + 1
ω|r=1 . (21)

The wall pressure appeared in the first integral of equation (18) is also provided by Eq. (45) (see appendix
§A). Now, we have all the elements required to calculate the drag coefficients. The so-obtained drag coefficient
reads

CD = CD1 + CD2 + CD3 + CD4 + CD5, (22a)
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Table 4 Drag coefficient contributions CDP = CD1 + CD2 + CD3, CD4, CD5 and the total drag coefficient CD for Re = 1 and,
Tr = 0.1, 1, 10 and ∞, with Tr = α − 1 = 1/(2Kn), obtained by the numerical solution of the full Navier–Stokes as well as
Oseen’s equations, compared with the results of an analytical solution of Oseen’s equation [13]

Tr Data source CDP CD4 CD5 CD

0 (full slip) Present, N-S, Eq. (22) 4.4799 4.3556 0.0 8.8355
Present, N-S, Eq. (17) 4.4799 4.3816 8.8615
S. & A. [20], N-S — — — 9.01
Present, Oseen, Eq. (22) 4.9735 4.7792 0.0 9.7528
Present, Oseen, Eq. (17) 4.9735 4.8031 9.7767
Analytical [13], Oseen 4.8773 4.7701 0.0 9.6474

0.1 Present, N-S, Eq. (22) 4.5179 4.1833 0.2104 8.9117
Present, N-S, Eq. (17) 4.5179 4.4185 8.9364
Present, Oseen, Eq. (22) 5.0190 4.5959 0.2309 9.8459
Present, Oseen, Eq. (17) 5.0190 4.8495 9.8685
Analytical [13], Oseen 4.9199 4.5850 0.2293 9.7341

1 Present, N-S, Eq. (22) 4.7270 3.0645 1.5409 9.3324
Present, N-S, Eq. (17) 4.7270 4.6226 9.3496
Present, Oseen, Eq. (22) 5.2774 3.3989 1.7070 10.3832
Present, Oseen, Eq. (17) 5.2774 5.1209 10.3983
Analytical [13], Oseen 5.1902 3.3989 1.6994 10.2885

10 Present, N-S, Eq. (22) 5.1244 0.8319 4.1798 10.1361
Present, N-S, Eq. (17) 5.1244 5.0158 10.1402
Present, Oseen, Eq. (22) 5.7348 0.9413 4.7203 11.3964
Present, Oseen, Eq. (17) 5.7348 5.6644 11.3992
Analytical [13], Oseen 5.7302 0.9489 4.7443 11.4234

∞(no-slip) Present, N-S, Eq. (22) 5.2711 1.03E-5 5.1640 10.4351
Present, N-S, Eq. (17) 5.2711 5.1640 10.4351
S. & A. [20], N-S – – – 10.64
S. & B. [26], N-S 5.355 – 5.225 10.570
Present, Oseen, Eq. (22) 5.8642 1.17E-5 5.8633 11.7275
Present, Oseen, Eq. (17) 5.8641 5.8633 11.7274
Analytical [13], Oseen 5.9284 1.19E-4 5.9283 11.8569

Drag coefficiets formulae (17) [21] and (22) are compared. For results obtained using Eq. (17), only CDF = CD4 + CD5 is
available. For all the simulations at Re = 1, R∞ = 600 is chosen. Comparison with the numerical results of [20] for the full slip
case and with those of [20,26] for the no-slip case is presented

Table 5 Total drag coefficient with full slip condition (Kn → ∞) for Re = 5, 20, 50, 100 and 200, using 5122 grid points and
R∞ = 80 (R∞ = 120 for Re = 5), compared with numerical results of Legendre et al. [14]

Re Data source CD

5 Present work 3.1637
Legendre et al. [14] 3.15

20 Present work 1.3285
Legendre et al. [14] 1.33

50 Present work 0.7125
Legendre et al. [14] 0.712

100 Present work 0.4154
Legendre et al. [14] 0.415

200 Present work 0.2299
Legendre et al. [14] 0.228

in which

CD1 = − 2

Re

∫ 2π

0

∂ω

∂r

∣∣∣∣
r=1

sin θ dθ, (22b)

CD2 = − 1

2(α + 1)2

∫ 2π

0
ω2

∣∣
r=1 cos θ dθ, (22c)

CD3 =
∫ 2π

0

∂uθ

∂t

∣∣∣∣
r=1

sin θ dθ, (22d)
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CD4 = 4

Re

1

α + 1

∫ 2π

0

∂ω

∂θ

∣∣∣∣
r=1

cos θ dθ, (22e)

CD5 = 2

Re

α − 1

α + 1

∫ 2π

0
ω|r=1 sin θ dθ. (22f)

The first integral of Eq. (18) produces the contributions CD1 to CD4 whereas the second integral produces
CD5. While the pressure drag consists of CD1 to CD3, CD4 is the viscous drag produced by the viscous normal
stress (i.e. the second term in the first integral of Eq. (18) which is only non-zero in slip flows and it vanishes
in no-slip flows) and CD5 is the viscous drag produced by the viscous shear stress. CD3 is not considered in
the present work as we study the steady-state flow.

Due to the fact that (α + 1)uθ = ω at r = 1, CD3 can be rephrased in terms of the vorticity:

CD3 = 1

α + 1

∫ 2π

0

∂ω

∂t

∣∣∣∣
r=1

sin θ dθ. (23)

Moreover, if we perform an integration by parts in Eq. (22e), we get

CD4 = 4

Re

1

α + 1

∫ 2π

0
ω|r=1 sin θ dθ. (24)

Adding CD4 given in Eq. (24) to CD5 given in Eq. (22f) yields

CD4 + CD5 = 2

Re

∫ 2π

0
ω|r=1 sin θ dθ (25)

With this modification, Eq. (22) becomes similar to the drag coefficient formula (17) given by [21] for slippery
flow around a circular cylinder. However, we prefer to separately calculate CD4 and CD5 using Eqs. (22e) and
(22f) rather than combining them as shown in Eq. (25) which is equivalent to using formulation (17) given
in [21]. Because, although the sum of contributions CD4 and CD5 is similar to the no-slip formula (26b), it
does not tell us how the viscous drag is generated. The more detailed contributions CD4 and CD5 show that by
increasing wall slip, the contribution from the viscous normal stress CD4 increases while that of the viscous
shear stress CD5 decreases. That also explains how we do have viscous drag even at full slip α = 1.

It is worthwhile to mention that, in steady flows, it is possible to compute the total drag coefficient by the
no-slip formulae (22a) plus the CD2 contribution geiven in Eq. (22c). It means that in papers where CD of the
slip flow is computed by simply using the no-slip formula (22a), e.g. see [18,19], the CD2 contribution to the
pressure drag has been ignored. The significance of this contribution will be discussed in the sequel.

Because of the coordinate transform r = ez used in this paper, all the evaluations at r = 1 must be done
at z = 0. Also, ∂ω/∂r at r = 1 in Eq. (22b) must be replaced with ∂ω/∂z at z = 0.

Finally, we can decompose the drag coefficient to pressure CDP and frictional CDF contributions similar
to what is conventionally done for the no-slip condition. In this manner, we have

CDP = CD1 + CD2 + CD3, (26a)

CDF = CD4 + CD5. (26b)

It is worthwhile to note that the contribution CD4 is classified as part of the pressure drag in [13]. But, since
CD4 arises from the viscous normal stress, we believe that it is more suitable to be included in the frictional
drag. At the no-slip limit when α → ∞, the above drag coefficient reduces to the well-known no-slip results
(16).

4 Numerical methods

A numerical solution strategy is developed here which is accurate at each time step so that the unsteady flow
phenomena can be resolved with high accuracy and efficiency, though we use it in this paper to obtain steady-
state solution. In contrast to steady solvers which solve the Poisson equation for the stream function only once,
a time-accurate solver requires a fully converged solution of the Poisson equation at each time step. This can
be a very demanding task in terms of computation time. Therefore, a very efficient method is used in this work
for the solution of the Poisson equation, which will be explained in the sequel.
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All flow quantities are periodic in the circumferential direction θ with a period of 2π . Due to the periodicity
and the use of uniform grid in the circumferential direction, we use the fast Fourier transform (FFT) technique
in this direction, and thus, the Poisson equation (14) reads

d2ψ̂

dz2
− k′2ψ̂(z, k, t) = −e2zω̂(z, k, t), (27)

where ψ̂ and ω̂ are respectively the Fourier-transform of ψ and ω. Also, k′ is the modified wavenumber of the
second-order central difference scheme (CDS2) for the second derivative, i.e. k′2 = 2 [1 − cos (k�θ)] /�θ2

with �θ being the grid spacing in the θ -direction and k being the FFT wavenumber [24]. Equation (27) is
an ordinary differential equation (ODE) in the z-direction for each modified wavenumber k′. Thus, for all
wavenumbers, it constitutes a set of ODEs. The discretization of the derivative with respect to z in Eq. (27) is
done by the CDS2 scheme:

ψ̂n
i+1, j − 2ψ̂n

i, j + ψ̂n
i−1, j

�z2
− k′2ψ̂n

i, j = −e2zi ω̂n
i, j , (28)

where i and j are respectively the spatial grid indices in the z and θ directions, and n is the time step counter.
The boundary conditions must be Fourier-transformed as well:

ψ̂n
1, j = 0, ψ̂n

nz , j = FFT

{(
R∞ − 1

R∞

)
sin θ

}
, (29)

where nz is the index of the last grid point in the z-direction.
Equation (28) defines a complex tridiagonal system of linear algebraic equations for each modified

wavenumber k′ and at each time step n. A complex version of the tridiagonal matrix algorithm (TDMA),
called CTDMA, is used for a very efficient and fast solution of these systems. The application of the CTDMA
gives the stream function in the Fourier space. Then, a simple application of the inverse fast Fourier trans-
form (IFFT) technique results in the desired stream function ψ in the physical space. This algorithm yields
a direct and efficient solution of the Poisson Eq. (14) up to the machine accuracy at each time step. The
FORTRANlibrary FFTW3 is used in the present work to perform the required forward and backward FFTs.

In Eq. (15), the first and second derivatives of the stream function and the vorticity with respect to z and θ
are discretized using CDS2, e.g.

∂ψ

∂z

∣∣∣∣
n

i, j
= ψn

i+1, j − ψn
i−1, j

2�z
+ O(�z2), (30a)

∂2ψ

∂z2

∣∣∣∣
n

i, j
= ψn

i+1, j − 2ψn
i, j + ψn

i−1, j

�z2
+ O(�z2). (30b)

Similar formulae are used for the derivatives with respect to θ and for the derivatives of the vorticity field ω.
The boundary conditions are also treated by CDS2 schemes, as will be explained in Sect. 4.1. Since all the
constituents of the numerical method are CDS2, the entire scheme is formally second-order accurate in space.
CDS2 is used in all spatial discretizations to avoid numerical viscosity through upwinding whatsoever.

The time stepping is done by an explicit, low-storage, third-order Runge–Kutta scheme [25]. Equation (15)
is a nonlinear advection–diffusion equation for which, the above-explained numerical method is conditionally
stable. The time step size for each run is taken such that the simulation is stable.

4.1 Boundary closures at the wall

The wall boundary closures are obtained by enforcing a discretized version of wall boundary conditions in the
following manner. Boundary condition (11) is discretized by using the CDS2:

ωn
1, j = −1 + α

α

ψn
2, j − 2ψn

1, j + ψn
0, j

�z2
+ O(�z2), (31)
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in which ψn
0, j is not inside the computational domain and it is computed using a CDS2 discretized version of

the second condition in Eq. (7):

ψn
2, j − 2ψn

1, j + ψn
0, j

�z2
= α

ψn
2, j − ψn

0, j

2�z
+ O(�z2). (32a)

Rearrangement of Eq. (32a) yields

ψn
0, j = 2

2 + α�z

[
2ψn

1, j +
(

α�z

2
− 1

)
ψn
2, j

]
+ O(�z2). (32b)

5 Code validation and convergence

The numerical methods presented in the previous section have been implemented as a FORTRANcode. In
this section, we present the validation of the numerical algorithm and the verification of its computer imple-
mentation. For this purpose, we first illustrate the independence of the results upon the grid resolution and the
domain size R∞. Next, a comparison with an available analytical solution based on Oseen’s equation for the
creeping flow, i.e. flow at very small Reynolds numbers, around a circular cylinder with wall slip condition
[13] is supplied. This validates the steady-state solution. In order to check the accuracy of the unsteady solver,
the wall vorticity is validated against an asymptotic analytical solution [21] which is approximately valid for
relatively large Reynolds numbers and short times after the flow onset. It means that the validation is done for
both low and high Reynolds numbers and both steady and unsteady flows.

Table 1 shows the coefficients of frictional, pressure and total drag, and also the separation angle for
Re = 10 and Kn = 0, i.e. no-slip condition, obtained by using 1282, 2562, 5122 and 10242 number of grid
points. In these simulations, the domain size, normalized by the cylinder radius, was taken as a constant to
be R∞ = 80. It is observed that the friction, pressure and total drag coefficients and the separation angle are
respectively within 0.016%, 0.15%, 0.078% and 6.029% relative error, comparing the results of the coarsest
mesh with those of the finest mesh. These are acceptable results for grid convergence and Table 1 shows that
a 2562 grid is already sufficient to resolve the significant flow physics. However, to be on the safe side and to
guarantee the accuracy and grid independence of the results, unless otherwise stated, we used 5122 grids for
all the simulations presented in this paper.

In order to investigate the effect of the computational domain size, we have run simulations with four
domain sizes, i.e. R∞ = 40, 60, 80 and 100. The results for the coefficients of frictional, pressure and total
drag as well as the separation angle are given in Table 2. In all simulations, the grid resolution was kept constant
and chosen to be 5122. It turns out that the relative error in the frictional, pressure and total drag are 1.91%,
2.19% and 2.06%, respectively. The separation angles predicted by the two simulations are indistinguishable.
Again, to be on the safe side, we used a domain of size R∞ = 80 in all the simulations presented in this
paper. The only exceptions are the very low Reynolds number flows, as it was shown in [26] that a larger
computational domain is needed for such flows. Thus, we used R∞ = 120 for Re = 5, and R∞ = 600 for
creeping flow simulations at Re = 1 for both Navier-Stokes and Oseen solvers, see the following paragraphs
concerning the creeping flow solver based on Oseen’s hydrodynamic equation. It is notable that Maghsoudi et
al. [19] used R∞ = 20 for their simulations.

Table 3 shows the frictional, pressure and total drag coefficients as well as the separation angle at Re = 10,
20 and 40 for Kn = 0 (no-slip case) of the present simulation and results of [26]. In order to have comparison
with some recent publications, the CD of [14] at Re = 20 and of [27] at Re = 40 are also given. The following
correlations for the drag coefficients [27] and the separation angle [26] in the no-slip case are also used for
comparison:

CDF = −0.016 + 4.938Re−0.60, for 6 ≤ Re ≤ 40, (33a)

CDP = 0.583 + 4.311Re−0.64, for 6 ≤ Re ≤ 40, (33b)

CD = 0.26 + 7.89Re−0.5, for 15 ≤ Re ≤ 40, (33c)

θsep =
(
ln(Re) − 1.83

3 × 10−4

)0.456

, for 6.23 ≤ Re ≤ 1000. (33d)

The above validations made for the drag coefficient which is an integrated quantity. In order to check the
accuracy of the code in more details, e.g. in terms of the velocity field, the radial velocity profiles along the x-
axis, i.e. uθ (r, θ = 0), of the no-slip flow at various Reynolds numbers are plotted in Fig. 3 and compared with
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the data of Nieuwstadt and Keller [28]. The agreement is excellent near the cylinder and it slightly deteriorates
by increasing the distance from the cylinder. The slight discrepancy far from the cylinder might be attributed
to the relatively low resolution and the smaller domain size used in [28], dictated by limited computational
resources in 1973.

So far, the no-slip results are validated against existing data. It means that all parts of the solver are validated,
except for the part that applies the slip boundary condition and the part that computes the drag coefficient based
on (22). As mentioned in the literature study, there are not much publications on slip flow over a cylinder.
Moreover to this, most of the existing publications do not mention how they computed the drag coefficient.
Some of the authors, e.g. [19] even used the no-slip formula (16) to compute CD in a slip flow. Therefore,
one could say that the formulae for drag coefficient of the cylinder in a slip flow have not yet been rigorously
validated. In order to do this, we use an existing analytical solution, as explained below.

Atefi [13] has obtained an analytical solution of the Oseen’s equation for creeping flow around a circular
cylinder with slip boundary condition. In his work, the circumferential velocity field is given by

uθ (r, θ) = −
(
1 + 1

r2

)
sin θ + 1

4

∞∑
m=0

∞∑
n=1

Bm

[
Fm,n(k)

rn+1 − Pm,n(kr)

]
sin nθ, (34a)

where k = Re/4 and the auxiliary functions Fm,n and Pm,n are given by

Fm,n = Km (Im+n−1 + Im−n+1 + Im−n−1 + Im+n+1) + (Km−1 + Km+1) (Im−n + Im+n) , (34b)

Pm,n = Km (Im−n−1 − Im−n+1 − Im+n−1 + Im+n+1) + (Km+1 − Km−1) (Im−n − Im+n) , (34c)

with Im and Km being the mth-order modified Bessel function of the first and second kind, respectively. The
constants Bm in Eq. (34a) are calculated by solving a linear set of algebraic Equations [13]. In [13], the wall
slip is quantified by a dimensionless group called the Trostel number (denoted by Tr) which is related to the
Knudsen number and our slip parameter α via

Tr = σ

2(2 − σ)

1

Kn
= α − 1. (35)

In order to obtain the required data for the comparison, the above analytical solution has been programmed
by the first author and the data have been re-computed, of course with the correction made by Moosaie [29] to
the definition of Pm,n in Eq. (34c). Figure4 shows the circumferential velocity uθ at the wall, i.e. the fluid slip
velocity at the wall, as a function of the angle θ for Re = 1 and, Tr = 0.1, 1 and 10. The agreement is generally
good, but not perfect. At the first glance, we were not sure whether the discrepancy is due to a mistake in the
algorithm/code or it is due to the fact that Atefi’s results are from the solution of Oseen’s equation and our
results are from the solution of Navier–Stokes equation. Though, we conjectured that the latter be the case.
To check whether this is true, the Oseen’s equation in the vorticity-stream function formulation is numerically
solved using our solver. The vorticity Eq. (15) is substituted by its Oseen’s approximation [30]:

∂ω

∂t
= e−2z

[
cosh z sin θ

∂ω

∂θ
− sinh z cos θ

∂ω

∂z
+ 2

Re

(
∂2ω

∂z2
+ ∂2ω

∂θ2

)]
. (36)

By a rapid comparison of Eqs. (15) and (36), it is obvious that the only changes we have to make in our
numerical code is the substitution of ∂ψ/∂z with cosh z sin θ and ∂ψ/∂θ with sinh z cos θ . All the other parts
of the code remain unchanged. Thus, this benchmark is a very good validation of the code. Equation (36) is
independent of ψ and it is only written in terms of ω. But, the boundary conditions, which are the same as
the full Navier–Stokes problem, require the stream function. As a post-processing also, the stream function
is needed to compute the velocity components and to draw the streamlines. Thus, the Poisson equation for
ψ , i.e. Eq. (14), is simultaneously solved. The results of the so-obtained numerical solution of Oseen’s flow
are plotted in Fig. 4 as well. The excellent agreement between the analytical and numerical results for the
Oseen’s equation reassures that the algorithm and its computer implementation, specifically the slip boundary
condition, are programmed correctly.

Moreover, the results of the total drag coefficient for the same case (Re = 1) are shown in Table 4 and
compared with those of the analytical solution. We observe that the analytical values of CD are in general
smaller than those of the simulation, within about 10%difference. It is worthwhile tomention thatCD predicted
numerically in [26] for Re = 1 and Tr → ∞ is 10.57, which is in very good agreement with our numerical
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result. Also, Fig. 8b of reference [13] shows that in the range 1 ≤ Re ≤ 10, the Oseen’s theory overestimates
the drag coefficient as compared to the solution of full Navier–Stokes equations for the no-slip case. This
behavior is verified by our simulation as shown in Table 4 for the slip case. For comparison, we computed
the drag coefficients using both D’Alessio’s formulation (17) and the proposed formula (22). We observe
that D’Alessio’s formula slightly overestimates CD as compared to formula (22). Furthermore, if we change
the definition of CD3 from (22e) to (24), the results of both formulations coincide (not presented here). This
coincidence is expected as we theoretically proved in §3.2 that the two formulations collapse to one with the
use of Eqs. (24) and (25).

The total drag coefficient data for full slip condition, i.e. Kn → ∞, are given in [14]. Our results are
compared with those of [14] in Table 5 at Re = 5, 20, 50, 100 and 200. An excellent agreement is observed.

Although steady-state results are only presented in this paper, but in order to check the accuracy of the
developed unsteady solver for the study of time-dependent flow fields, we use an asymptotic analytical solution
of the wall vorticity for the flow around a circular cylinder with slip boundary condition [21]. This solution is
valid for large Reynolds numbers and short times after the flow start-up. The wall vorticity ω0 is given by

ω0(θ, t) = 2(1 + β)

β

(
1 − (1 + β)�√

πβ

)
sin θ, (37)

where� = √
8t/Re (λ in [21]) andD’Alessio’s slip parameter β is related to our slip parameter α via β = 1/α.

It shows that the wall vorticity has a sinusoidal behavior around the cylinder surface. Figure5 represents the
wall vorticity ω0 as a function of θ at Re = 1000 for β = 1.0 and t = 0.5. An excellent agreement is observed
between the numerical and the analytical velocity profiles. The very small discrepancy is attributed to the
approximate nature of the asymptotic analytical solution (37). The results for other values of β and � are in
good agreement as well, and hence are not shown here for the sake of brevity.

6 Results and discussions

In this section, the simulation results for steady flow around the cylinder with wall slip are presented. Simu-
lations were conducted for Re = 5, 10, 15, 20, 25, 30, 35 and 40. For the full slip flow with Kn → ∞, also
simulations at Re = 50, 100 and 200 were conducted in order to compare the total drag coefficient with the
results of Legendre et al. [14]. At each Reynolds number, we considered cases with Kn = 0, 0.001, 0.005,
0.01, 0.03 and 0.05. Some flow streamlines, the separation angle, the length of the separation buble and the
drag coefficient are studied. Specifically, various contributions to the drag coefficient are studied in detail.

The flow streamlines and vorticity contours at Re = 10 and 20 are plotted in Fig. 6 for Kn = 0 (no-slip)
and 0.05. It is observed that by increasing the Knudsen number at constant Reynolds number, the length of the
recirculation zone and the separation angle decrease. A similar trend is observed at other Reynolds numbers
that are computed but they are not shown.

The behavior of the separation angle by changing Knudsen number is best observed in Fig. 7, where the
separation angle (in degrees) is plotted versus the Knudsen number for various Reynolds numbers. We see
that, at a given Re, the separation angle is almost a linear function of Kn. On the other hand, Fig. 8 shows
the separation angle (in degrees) versus the Reynolds number for various Knudsen numbers. The trends are
similar for various Knudsen numbers, but the functionality is not linear anymore. The smaller separation angle
at smaller Kn can be attributed to the higher tangential momentum of the fluid elements adjacent to the wall
at larger slip, i.e. at smaller Kn. The fluid elements with higher tangential momentum can better overcome the
adverse pressure gradient and go on further downstream before being separated.

The length of the separation bubble in the range of steady flow, i.e. approximately Re < 50, is plotted in Fig.
9 versus Knudsen number, for various Reynolds numbers. Similar to the separation angle, a linear dependence
of the bubble length upon Knudsen number is observed. The lines of various Reynolds numbers are almost
parallel to each other. As expected, a decresing behavior of the bubble length by increasing Knudsen number
at a given Reynolds number is observed. The bubble length as a function of Reynolds number is plotted in Fig.
10 for various Knudsen numbers. Unlike the separation angle, the behavior is somewhat linear. But, the lines
are not parallel and their slope increases by decreasing Knudsen number.

The vorticity distribution along the cylinder wall is plotted in Fig. 11 for various Knudsen numbers at
Re = 10, 20, 30 and 40. It is observed that up to about π/2, the wall vorticity increases by increasing Knudsen
number. After about π/2, the behavior is somewhat different and the wall vorticity decreases by increasing
Knudsen number. The angle at which the behavior changes increases by increasing Reynolds number. The
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Fig. 5 Wall vorticity as a function of the circumferential angle θ at Re = 1000 for β = 1.0 and t = 0.5. For the numerical results,
every fifth point is plotted. The analytical solution is taken from [21]

peaks of maximum wall vorticity increase by increasing Reynolds number while it decreases by increasing
Knudsen number. It is straightforward to show from the slip boundary condition (19) that the following relation
holds at the wall:

ω = −
(

1

2Kn
+ 2

)
uθ . (38)

This right-hand side of Eq. (38) is plotted in Fig. 11a as well and the satisfaction of Eq. (38) is checked.
The slip velocity, i.e. the circumferential velocity at the wall, is plotted in Fig. 12 for various Knudsen

numbers at Re = 10, 20, 30 and 40. For the no-slip case with Kn = 0, the slip velocity is zero everywhere as
expected. For higher Knudsen numbers, a negative region of uθ is observedwhich corresponds to the separation
zone. The negative region increases in magnitude and span by increasing Reynolds number, but decreases by
increasing Knudsen number. The peak of uθ at the wall increases by increasing both Reynolds and Knudsen
numbers.

The radial velocity gradient ∂ur/∂r is important in the contribution of the viscous normal stress to the
drag coefficient, i.e. CD4. Figure13 plots the quantity ∂ur/∂r versus angle for various Knudsen numbers at
Re = 20. It is observed that this contribution vanishes for classical no-slip flows, that is why people do not
consider this contribution to the drag coefficient when dealing with no-slip flows. However, by increasing
Knudsen numbers, this term becomes more and more important and this contribution can not be neglected
anymore. Figure14 shows the same quantity versus angle for various Reynolds numbers at Kn = 0.05. We
see that for this slip Knudsen number, this contribution does never vanish and it gets stronger by increasing
Reynolds number.

The contributions CD1, CD2, CD4 and CD5 along with the total drag coefficient CD are plotted in Fig. 15
versus Knudsen number at Re = 10, 20, 30 and 40. First of all, we observe a linear dependence of all drag
contributions as well as the total drag upon Knudsen number. CD1 remains almost constant within the range
of Knudsen numbers considered. However, it shows slight changes in a complicated manner. By increasing
Kn, CD1 slightly decreases at Re = 10 and 20 whereas it slightly increases at Re = 30 and 40. The CD2
contirbution is zero at Kn = 0 and is negative for higher Knudsen numbers. Its magnitude slightly increases
by increasing Kn. At higher Knudsen numbers, not shown here, it becomes more and more significant. It
means that in papers where the authors used the no-slip formulae (16) to compute the drag coefficient, the
contribution of CD2 is neglected and therefore, their results for the drag coefficient become more and more
inaccurate by increasing Kn. CD4, which is zero for the no-slip case, gradually increases by increasing Kn.
CD5 is maximum for no-slip flow and it decreases by increasing Knudsen number. The total drag coefficient
CD is also maximum for no-slip flow and it decreases by increasing Kn. As discussed theoretically, the results
confirm that the viscous normal stress contribution CD4 increases by increasing Kn while the viscous shear
stress contribution CD5 decreases.
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Fig. 6 The flow streamlines (left) and the vorticity field (right) around the cylinder at Re = 10 and 20, and Kn = 0 and 0.05
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Fig. 7 The separation angle in the steady flow regime versus Kn for various values of Re

Fig. 8 The separation angle in the steady flow regime versus Re for Kn = 0, 0.005, 0.01, 0.03 and 0.05. The case Kn = 0.001 is
not shown as its results almost coincide with those of Kn = 0

Fig. 9 The length of the separation bubble in the steady flow regime versus Kn for various values of Re

7 Conclusions

Steady viscous slip flow around a circular cylinder is numerically investigated. The flow is simulated using
the vorticity-stream function formulation of Navier–Stokes equations for two-dimensional incompressible
flows. A time-accurate solver is developed which can be used for accurate solution of time-dependent flows.
Nevertheless, only steady flow case is presented in this paper.Most of the emphasis is dedicated to the validation
of the solver and the results, something which is more or less missing in previous studies. There has been a
controversy regarding the computation of the drag coefficient and its various contributions in the past. As
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Fig. 10 The length of the separation bubble in the steady flow regime versus Re for Kn = 0, 0.005, 0.01, 0.03 and 0.05. The case
Kn = 0.001 is not shown as its results almost coincide with those of Kn = 0

Fig. 11 Vorticity distribution along the wall for various Reynolds and Knudsen numbers in the steady flow regime

reviewed in the text, some papers did not present the formulation of the drag coefficient and only presented the
results, some papers used the no-slip formula and some paper presented formulae for the slip case but did not
validate them. Due to this controversy, we derived formulae for the various contributions to the drag coefficient
and validated them by comparison to existing data, especially using an analytical solution of Oseen’s equation
for creeping flow around a cylinder with slip condition. At the end, some results are presneted including wall
vorticity and slip velocity distribution, streamlines, vorticity contours and various contributions to the drag
coefficient.
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Fig. 12 Circumferential velocity distribution along the wall for various Reynolds and Knudsen numbers in the steady flow regime

Fig. 13 The value of ∂ur/∂r at the wall as a function of the circumferential angle θ at Re = 20 for Kn = 0, 0.001, 0.005, 0.01,
0.05 and ∞
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Fig. 14 The value of ∂ur/∂r at the wall as a function of the circumferential angle θ at Kn = 0.05 for Re = 5, 10, 20, 30 and 40

Fig. 15 Various contributions to drag coefficient and total CD versus Knudsen number at Re = 10, 20, 30 and 40
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A Pressure distribution on the cylinder surface

In order to derive a general expression for the pressure distribution on the wall of a cylinder with velocity slip,
which is required to calculate the drag and lift coefficients, we start from the non-dimensional θ -component
of Navier–Stokes equation:

∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uruθ

r
= −1

r

∂p

∂θ
+ 2

Re

(
∂2uθ

∂r2
+ 1

r

∂uθ

∂r
− uθ

r2
+ 1

r2
∂2uθ

∂θ2

)
. (39)

On the cylinder wall, i.e. at r = 1, we identically have ur = 0 and hence, Eq. (39) reduces to

∂uθ

∂t
+ uθ

r

∂uθ

∂θ
= −1

r

∂p

∂θ
+ 2

Re

(
∂2uθ

∂r2
+ 1

r

∂uθ

∂r
− uθ

r2
+ 1

r2
∂2uθ

∂θ2

)
. (40)

By differentiating the definition of vorticity (4) with respect to r , it is easy to show that at r = 1 we have

∂ω

∂r
= ∂2uθ

∂r2
+ 1

r

∂uθ

∂r
− uθ

r2
. (41)

By differentiating the incompressible continuity equation in cylindrical coordinates with respect to θ , it is
straightforward to show that ∂2uθ /∂θ2 vanishes at r = 1. From the slip boundary condition, one can deduce
that the following relation holds:

u2θ
∣∣
r=1 = ω2

∣∣
r=1

(α + 1)2
, (42)

which leads to [
uθ

∂uθ

∂θ
= 1

2

∂(u2θ )

∂θ
= 1

2 (α + 1)2
∂(ω2)

∂θ

]
r=1

, (43)

Supplying Eqs. (41), (42) and (43) to Eq. (40) gives

∂p

∂θ

∣∣∣∣
r=1

=
[
2

Re

∂ω

∂r
− 1

2 (α + 1)2
∂ω2

∂θ
− ∂uθ

∂t

]
r=1

. (44)

The integration of Eq. (44) yields the following pressure distribution on the cylinder wall pw as a function of
θ and t :

pw(θ, t) − pw(0, t) = 2

Re

∫ θ

0

∂ω

∂r

∣∣∣∣
r=1

dθ̃ − 1

2 (α + 1)2
[
ω2

∣∣
r=1

]θ
0

−
∫ θ

0

∂uθ

∂t

∣∣∣∣
r=1

dθ̃ . (45)

Equation (45) is the same as the formulation provided by [21], whose proof is given in [22] using a confor-
mal mapping from the Cartesian coordinate system, noting that the slip parameter β in D’Alessio’s paper
corresponds to 1/α in the present work.
It is obvious that only the first term in the right-hand side (RHS) of Eq. (45) survives for the no-slip case as
α → ∞. The second term in the RHS exists for a slip flow. The third term in the RHS holds for unsteady flows
with slip.
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