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Abstract This article investigates the dynamic features of domain walls in a bilayer piezoelectric-
magnetostrictive heterostructure under the influence of piezo-induced strains, inertial damping, and dry friction
dissipation.We assume that the magnetostrictive material belongs to the transversely isotropic hexagonal crys-
tal. The analysis is carried out within the framework of the inertial Landau-Lifshitz-Gilbert equation, which
describes the ultrafast evolution of magnetization inside the magnetostrictive materials. By employing the
classical traveling wave ansatz, the study explores how various factors such as magnetoelasticity, dry fric-
tion, inertial damping, crystal symmetry, and a tunable external magnetic field characterize the motion of the
magnetic domain walls in both steady-state and precessional dynamic regimes. The results present valuable
insights into how these key parameters can effectively modulate dynamic features such as domain wall width,
threshold,Walker breakdown, and domainwall velocity. The obtained analytical results are further numerically
illustrated, and a qualitative comparison with recent observations is also presented.

Mathematics Subject Classification (2000) 35C07 · 35K55 · 35Q60 · 78A25 · 82D40

Abbreviations

DW Domain wall
PES Piezoelectric strip
FMS Ferromagnetic strip
WB Walker breakdown
MS Magnetostrictive
iLLG inertial Landau-Lifshitz-Gilbert

1 Introduction

Recent advances in materials science have led to a shift towards the development of hybrid magnetoelectric
multiferroics for advanced applications in various fields such as electronics, medicine, automotive industry,
aerospace, and robotics, among others (cf. [1–7]). One promising approach involves the creation of a mechani-
cally coupled composite bilayer structure comprising a thin ferromagnetic strip (FMS) and a thick piezoelectric
strip (PES), resulting in magnetoelastic effects that can significantly impact the magnetic domain wall (DW)
motion. This strategic approach has the potential to revolutionize a wide spectrum of technologies, including
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energy harvesting, sensing, data storage, signal processing, spintronic devices, spin wave filters, transformers,
actuators, and logic gates, opening up exciting possibilities for future innovations (cf. [1–8]). The success of
these heterostructures relies on the possibility of achieving robust magnetoelectric coupling. In such composite
structures, the synergy between magnetic and electric properties coexists and is coupled with each other.

Indeed, when a PES deforms upon the application of an electric field, it imposes strains on the FMS
through the common surface. These piezo-induced strains are fully transferred to the FMS and substantially
impact themagnetic state via inversemagnetostrictive effects (cf. [1,7,9–13]). Also, the crystal symmetry of the
magnetic material plays a vital role since it affects anisotropy, magnetoelasticity, andmagnetostrictive energies
(cf. [7,13–16]). Ferromagnetic magnetostrictive materials that are often described in the literature include Co-
Pt (platinum-cobalt alloys), Fe-Ga (Galfenol), Tb1−xDyxFe2 (terfenol-D), NiFe2O4, CoFe2O4, BaFe12O19
and various ferrites and manganites, whose lattice structures generally belong to the cubic or hexagonal crystal
classes (cf. [7,14,17–20]). In particular, devices based on transversely isotropic ferromagneticmagnetostrictive
materials are more advantageous due to their narrow DWs, stable magnetization states, and efficient current-
induced DW motion. The present work focuses on a subclass of transversely isotropic hexagonal materials
extensively used in modern DW-based devices.

It is observed that, in the presence of external stimuli, DWmotion occurs in two dynamical regimes referred
to as steady-state and precessional regimes. In the former dynamic regime, DW exhibits steady motion for the
low-intensity applied magnetic field or electric current, sustaining a constant velocity across the major axis of
the FMS. The maximum value of external sources for which DW motion remains steady is called the Walker
breakdown (WB) limit, and the minimum value required to start DW motion is referred to as the depinning
threshold. As the strength of the external stimulus surpasses the WB limit, the motion shifts into an oscillatory
state due to internal deformation, known as precessional regime (cf. [7,10–12,21–24]).

Furthermore, the Landau-Lifshitz-Gilbert (LLG) equation is commonly used to describe the spatial and
temporal changes in magnetization dynamics within the FMS (cf. [13,15,21,24–27]). Moreover, to understand
the dissipative processes in materials with crystallographic defects (such as dislocations, impurities, and inclu-
sions), the LLGequation has been extended,which includes a rate-independent dry-friction torque term, and the
modified equation is called the Extended Landau-Lifshitz-Gilbert (ELLG) equation (cf. [7,12,23,28–30]). In
addition, to accurately capture magnetization switching processes that occur on a very short timescale (ranging
from sub-nanoseconds to sub-picoseconds), the ELLG equation is further augmented with an additional torque
term referred to as inertial damping. This modified equation is known as the inertial Landau-Lifshitz-Gilbert
equation (iLLG) (cf. [31–38]). This superimposed high-frequency inertial effects have been experimentally
observed recently (cf. [37,39]). However, the inclusion of inertial term into the governing dynamics is theoret-
ically well-established, whether through purely mechanical concepts or via the gyromagnetic relation linking
the angular momentum (cf. [32–35,40]).

Contribution of the paper: This study aims to comprehensively examine the role of inertial damping in
strain-induced DWmotion in hybrid bilayer piezoelectric/magnetostrictive heterostructure under the influence
of a tunable magnetic field. Recent works in the literature have focused on investigating DWmotion in hybrid
piezoelectric/magnetostrictive heterostructures across various crystal classes of magnetostrictive materials,
such as cubic and hexagonal. These studies typically consider the FMS to be isotropic (cf. [21,41,42]), cubic
(cf. [14,29,30]), or transversely isotropic hexagonal (cf. [1,7,12]). In addition, authors have also investigated the
strain-mediated DWmotion in a trilayer heterostructure consisting of a thick heavymetal, a thin ferromagnetic,
and a metal oxide layer (cf. [1,43]). These investigations reveal that the interplay of key factors such as
magnetostriction, crystal symmetry, and piezo-induced strain significantly impact the DW dynamics in bilayer
and trilayer heterostructures and help to achieve larger DW velocities. Moreover, recent investigations have
considered the inertial effects into the magnetization dynamics to investigate the ultrafast DW motion in
ferromagnetic nanowires (cf. [31–37]). These investigations have revealed that incorporating inertial damping
can substantially modulate DW properties, including velocity, depinning threshold, and breakdown, enabling
faster and more energy-efficient data manipulation on very short timescales (cf. [2,10,31]).

However, a significant research gap remains as the effect of inertial damping has yet to be explored in ana-
lyzing theDWmotion in such hybrid heterostructures. Also, the previous investigations predominantly focused
on applying external stimuli in specific directions, leaving a need to comprehend how the anisotropic behavior
of the material changes with respect to the direction of the field (cf. [12,21,23,29,30,38,44,45]). Therefore,
in the present work, we make an earnest attempt to bridge these gaps. We present a comprehensive investiga-
tion of DW motion in hybrid piezoelectric/magnetostrictive heterostructures encompassing the simultaneous
influence of an external magnetic field, inertial damping, strains, dry friction dissipation, magnetoelastic cou-
pling, and magnetocrystalline anisotropy in both steady-state and precessional regimes. We utilize a tunable
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magnetic field, allowing control over both direction and amplitude, to facilitate the impact of the external field
orientation in the dynamics. Our investigation is based on the assumptions that ferromagnetic magnetostrictive
material exhibits linear elasticity, the piezo-induced strains are spatially uniform and efficiently transferred
from the PES to the FMS, and the external magnetic field’s strength and direction can be tuned.

Structure of the paper In Sect. 2, we introduce a theoretical framework to investigate DW motion in a hybrid
piezoelectric-magnetostrictive heterostructure employing a one-dimensional iLLG equation that governs DW
motion in both steady and precessional regimes. Using the standard traveling wave ansatz, we derive the
functional dependence of the most significant dynamical entities on the considered key parameters. Section
3 is dedicated to the numerical illustration of the analytical results obtained in the previous section. We
characterize the DW motion in both dynamic regimes and provide a qualitative comparison with existing
literature. Finally, Sect. 4 concludes this work with some plausible remarks.

2 The micromagnetic model

In this section, we analytically investigate the motion of magnetic DWs propagating along the major axis of a
thin FMS affixed to the upper surface of a thick PES (cf. [7,12,14,21]), as illustrated in Fig. 1. We consider
the dimensions of the FMS as L in length, w in width, and d in thickness along the e1, e2, and e3 directions,
respectively. It is important to note that the physical setup adheres to the condition where the length greatly
exceeds the width and thickness. Furthermore, the system is subjected to a constant in time and spatially
uniform external magnetic field hext, which can be oriented in any direction. Moreover, we assume that the
external bias magnetic field hext controls the position of the domain wall, governing its motion along the major
axis e1 of the FMS.

To analyze the one-dimensional motion of magnetic DWs along the major axis e1 of the nanostrip, we
assume that all relevant physical parameters depend functionally on both time t and the major axis coordinate x
(denotes the position along the FMS). In literature, this method is well-adopted for modeling DW dynamics in
thin and elongated geometries (cf. [7,12,14,21,23,29,42]). In our analysis, we account for the following factors
influencing the DWmotion: the effects arising from the exchange interactions, magnetocrystalline anisotropy,
stress-free magnetostriction, and magnetoelastic fields. Furthermore, when subjected to an electric voltage
imposed between two lateral electrodes, the PES undergoes deformation, which further induces an electric
field acting along the e2-axis. This, in turn, causes the PES width to elongate (or contract) along the same
e2-axis while simultaneously causing contraction (or elongation) in the other two perpendicular directions. The
strains generated in the PES are fully moved to the FMS through the shared interface due to strong acoustic
contact between the two strips. Since the FMS is comparatively thinner than the PES, its mechanical properties
are disregarded.

The spatiotemporal evolution of the magnetization vector inside the FMS, accounting for inertial and
nonlinear dissipative effects, is governed by the iLLG equation (cf. [31–38]):

ṁ = tprec + tdis + tiner, (2.1)

where, m : R × R
+ → S

2 represents the normalized magnetization vector given by m(x, t) = M(x, t)/Ms .
Also, M(x, t) represents the magnetization vector field, Ms denotes the saturation magnetization, and S

2

corresponds to the unit sphere in R
3. The variables x and t represent the spatial and temporal dimensions,

respectively. In addition, tprec, tdis, and tiner correspond to the precessional, dissipation, and inertial damping
torque terms, respectively.

Fig. 1 Diagram of a bilayer composite structure consisting of ferromagnetic and piezoelectric strips together with the frame of
reference
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Now, we elucidate each torque component in the right-hand side of Eq. (2.1). The initial term corresponds
to undamped precession, resulting in the magnetic moment’s rotation around the direction of the total effective
field heff and reads as:

tprec = −γ (m × heff), (2.2)

where, the constant γ is defined as γ = Msμ0γe, μ0 represents the magnetic permeability of vacuum, and
γe = ge/me, being g the Landè factor, e the charge of an electron, and me the electron mass. The total
effective field heff , which include the contribution of exchange hex, demagnetization hdmg, magnetocrystalline
anisotropy han, magnetoelastic hme and external magnetic hext fields and given as:

heff = hex + hdmg + han + hme + hext. (2.3)

The exchange field hex, which is responsible for aligning neighboring magnetic dipole moments parallel
to each other, can be expressed as (cf. [12,14,23,29,30]):

hex = A
∂2m
∂x2

, (2.4)

where the constant A = 2Aexc/(μ0M2
s ), Aexc represents the exchange stiffness constant, which relies on

material characteristics like crystal structure, electron configuration, and atomic spacing.
The demagnetizing field hdmg can be approximated as (cf. [12,14,23,29]):

hdmg = −N1m1e1 − N2m2e2 − N3m3e3, (2.5)

where N1, N2, and N3 represent demagnetizing factors, which are influenced by the shape and geometry of
the ferromagnetic material, and satisfy the normalization condition N1 + N2 + N3 = 1. Determining the
demagnetizing field involves complex calculations and typically requires numerical evaluations. However,
for certain favorable geometries, such as a uniformly magnetized ellipsoid, a parallelepiped, and a straight
nanowire with a circular cross-section, explicit expressions for the demagnetizing field can be derived (cf.
[10,24,25,46–51]). For non-ellipsoidal geometries, such as thin films and nanostrips, the expression (2.5) for
the demagnetizing field hdmg is widely used in the literature as a reliable approximation (cf. [12,14,23,28–
31,42]).

In contrast to cubic crystals, hexagonal crystals exhibit a distinctive behavior in the magnetocrystalline
anisotropy field due to their lower degree of symmetry, resulting in energetically preferred magnetization
directions. Moreover, hexagonal crystals possess a basal plane characterized by a high degree of symmetry,
and themagnetization rotatesmore readily within this plane than perpendicular to it (cf. [52,53]). To be precise,
for the considered hexagonal crystal classes with the easy axis direction e3, the magnetocrystalline anisotropy
field takes the form (cf. [1,7,14,30,54]):

han = 2K

μ0M2
s
(m · e3) e3, (2.6)

where, K is the uniaxial anisotropy coefficient.
The magnetoelastic field hme of a hexagonal crystal ferromagnetic material comprising both elastic and

magnetostrictive strains can be expressed as follows (cf. [7,12–14]):

hme = 1

μ0M2
s
(εεε − εεεm) : C : ∂εεεm

∂m
, (2.7)

where, εεε = εεεe + εεεm, εεεe denotes the total elastic strain and εεεm = Z : (m ⊗ m) represents the magnetostrictive
strain. Moreover, “:”,C, “⊗” andZ correspond to the double contraction, elasticity tensors, tensor product, and
fourth-order magnetostriction tensor, respectively. Eq. (2.7) reveals that the symmetry of the crystal affects the
magnetoelastic field via the elasticity tensor C and the magnetostriction tensor Z through the magnetostrictive
strain tensor εεεm.

In Voigt’s compact notation, the elasticity tensor C can be represented as a 6 × 6 matrix. In the case of
hexagonal crystal classes such as 6̄m2, 6mm, 622, and 6/mmm that exhibit transverse isotropy, delineating an
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invariance under rotations about a specific axis of symmetry (chosen as e3 in our analysis), the elasticity tensor
C can be expressed using five independent elastic constants as follows:

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13
c12 c11 c13 0
c13 c13 c33

c44 0 0
0 0 c44 0

0 0
c11 − c12

2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.8)

For transversely isotropic hexagonal crystals, the fourth-order magnetostriction tensor Z can be expressed
using six independent magnetostriction coefficients and can be written as follows:

[Z ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

Z1111 Z1122 Z1133
Z1122 Z1111 Z1133 0
Z3311 Z3311 Z3333

Z2323 0 0
0 0 Z2323 0

0 0
1

2
(Z1111 − Z1122)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.9)

Using Eq. (2.9), the magnetostriction strain tensor εεεm takes the following form (cf. [7,53–55]):

[εm] =

⎡
⎢⎢⎣

Z1111m
2
1 + Z1122m

2
2 + Z1133m

2
3 (Z1111 − Z1122)m1m2 2Z2323m1m3

(Z1111 − Z1122)m1m2 Z1122m
2
1 + Z1111m

2
2 + Z1133m

2
3 2Z2323m2m3

2Z2323m1m3 2Z2323m2m3 Z3311m
2
1 + Z3311m

2
2 + Z3333m

2
3

⎤
⎥⎥⎦ .

(2.10)

By considering the differential value of εεεm measured with respect to the configuration in which the material is
magnetized along its easy axis (in our analysis, we set e3), and the differential of scalar magnetostriction λn,
Eq. (2.10) can be rewritten as follows (cf. [7,12,55,56]):

[εm] =

⎡
⎢⎢⎣

(λA − λB)m2
1 − λBm2

3 + λB + λ13 (λA − λB)m1m2 λEm1m3

(λA − λB)m1m2 (λA − λB)m2
2 − λBm2

3 + λB + λ13 λEm2m3

λEm1m3 λEm2m3 λC (1 − m2
3) + λ33

⎤
⎥⎥⎦ .

(2.11)

where, the scalar strains, λA = Z1111 − Z1133, λB = Z1122 − Z1133, λC = Z3311 − Z3333, λE = 2Z2323,
λ13 = Z1133, and λ33 = Z3333.

By virtue of Eq. (2.11), the components of the magnetoelastic field can be derived and expressed as:

hme
1 = 2

μ0M2
s

{
(λA − λB)m1

[
c11

(
ε11 − (λA − λB)m2

1 + λBm
2
3 − (λB + λ13)

)

+c12

(
ε22 − (λA − λB)m2

2 + λBm
2
3 − (λB + λ13)

)
+ c13

(
ε33 + λCm

2
3 − (λC + λ33)

)]

+2c44

(
ε13 − λEm1m3

)
λEm3+

(
c11 − c12

)(
ε12 − (λA − λB)m1m2

)(
λA − λB

)
m2

}
,
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hme
2 = 2

μ0M2
s

{
(λA − λB)m2

[
c12

(
ε11 − (λA − λB)m2

1 + λBm
2
3 − (λB + λ13)

)

+c11

(
ε22 − (λA − λB)m2

2 + λBm
2
3 − (λB + λ13)

)
+ c13

(
ε33 + λCm

2
3 − (λC + λ33)

)]

+2c44

(
ε23 − λEm2m3

)
λEm3+

(
c11 − c12

)(
ε12 − (λA − λB)m1m2

)(
λA − λB

)
m1

}
,

hme
3 = 2

μ0M2
s

{
− λBm3

[
(c11 + c12)

(
ε11 + ε22 − (λA − λB)

(
m2

1 + m2
2

) + 2λBm
2
3 − 2 (λB + λ13)

)

+2c13

(
ε33 + λCm

2
3 − λC − λ33

)]
− λCm3

[
c13

(
ε11 + ε22 − (λA − λB)

(
m2

1 + m2
2

) + 2λBm
2
3

−2 (λB + λ13)

)
+ c33

(
ε33 + λCm

2
3 − λC − λ33

)]
+ 2c44λE

(
(ε23 − λEm2m3)m2

+ (ε13 − λEm1m3)m1

)}
. (2.12)

To properly determine the magnetoelastic field hme, it is necessary to specify the values of the six inde-
pendent components (ε11, ε22, ε33, ε12, ε13, and ε23) of the total strain εεε. Given the thinner geometry of FMS,
it is justifiable to disregard any strain variations along the e3 direction. Therefore, to characterize the total
strains experienced by the FMS in the proposed composite structure, mechanical boundary conditions must
be applied to both the upper and lower surfaces (e1-e2 plane) of the FMS. It is plausible to assume that the
thicker PES imposes the magnetization-independent planar strains ε11, ε12, and ε22 on the FMS, since the
lower surface of the thin FMS is perfectly attached to the thick PES. Also, the non-zero planar strains ε11 and
ε22 are related via the Poisson ratio ν (cf. [7,12,21,29]). Furthermore, the estimation of the remaining strain
tensor components is evaluated by applying traction boundary conditions σn = 0 at the top surface of the
FMS. Here, σ = C : (εεε − εεεm) represents the Cauchy stress tensor, and n ≡ e3 represents the normal vector
to the top surface, rendering the following constraints:

⎧⎪⎨
⎪⎩

σ13 = 0 ⇒ ε13 = λEm1m3,

σ23 = 0 ⇒ ε23 = λEm2m3,

σ33 = 0 ⇒ ε33 = c13
c33

[(λA + λB)(1 − m2
3) + 2λ13 − (ε11 + ε22)] + λC (1 − m2

3) + λ33.

(2.13)

We consider the external magnetic field hext of the following form:

hext = (h1, h2, h3) = h (sin� cos�, sin� sin�, cos�) , (2.14)

where �, �, and h are the inclination angle, azimuthal angle, and strength of the external magnetic field,
respectively. The orientation of the external magnetic field can be tuned via the angles � and �.

Subsequently, the second torque term tdis in Eq. (2.1) describes the dissipative processes in the system
and is comprised of two distinct components. The first component corresponds to the standard linear Gilbert-
dissipation torque, representing energy dissipation in an ideal ferromagnetic material. The second component
represents nonlinear rate-independent dry-friction dissipation that arises due to crystallographic defects such as
impurities, inhomogeneities, and other metallic deficiencies present in the material (cf. [12,14,21,28,29,42]).
It reads as:

tdis =
[
αG + γαD

∣∣∣∣
∂m
∂t

∣∣∣∣
−1](

m × ∂m
∂t

)
, (2.15)

where the coefficientαG accounts for the classical Gilbert damping andαD stands for the dry-friction parameter
that measures the average distributions of defects in the material.

Finally, the last torque termpresented in Eq. (2.1) delineates the inertial damping due to nutation oscillations
and is expressed as (cf. [31–37]):

tiner = αGτ

(
m × ∂2m

∂t2

)
, (2.16)
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where, τ > 0 denotes the relaxation time for angular momentum. It is characterized by nutation dynamics,
which are superimposed magnetization oscillations occurring at a significantly higher frequency than the
damped precession dynamics. The parameter τ plays a crucial role in distinguishing between two distinct
regimes: the short-time dynamics (t ≈ τ ) exhibiting nutation oscillations due to inertial term, and the long-
time dynamics (t � τ ) depicting precession oscillations around the applied magnetic field.

Next, to analyze the DW propagation, we employ the polar framework, in which the unitary magnetization
vector is defined by the polar angle ϑ(x, t) and the azimuthal angle ϕ(x, t) as:

m(x, t) = sin ϑ cosϕ e1 + sin ϑ sin ϕ e2 + cosϑ e3 (2.17)

By inserting Eqs. (2.4)-(2.7),(2.15), (2.16) and (2.17) into Eq. (2.1), we obtain:

sin ϑϕ̇ −
[
αG + γαD

(
ϑ̇2 + sin2 ϑϕ̇2)−1/2

]
ϑ̇

= γ

[
−A

∂2ϑ

∂x2
+ A sin ϑ cosϑ

(
∂ϕ

∂x

)2

− cosϑ cosϕ
(
h1 + hme

1 + han1
) − cosϑ sin ϕ

× (
h2 + hme

2 + han2
) + sin ϑ

(
h3 + hme

3 + han3
) + sin ϑ cosϑ

(
N1 cos

2 ϕ + N2 sin
2 ϕ − N3

)]

+ αGτ ϑ̈ − αGτ sin ϑ cosϑ (ϕ̇)2 ,

(2.18)[
αG + γαD

(
ϑ̇2 + sin2 ϑϕ̇2)−1/2

]
sin ϑϕ̇ + ϑ̇

= γ

{
A sin ϑ

∂2ϕ

∂x2
+ 2A cosϑ

∂ϑ

∂x

∂ϕ

∂x
+ (N1 − N2) sin ϑ cosϕ sin ϕ + (

h2 + hme
2 + han2

)
cosϕ

− (
h1 + hme

1 + han1
)
sin ϕ

}
− αGτ sin ϑϕ̈ − 2αGτ cosϑ ϑ̇ϕ̇ , (2.19)

where the components of the magnetocrystalline anisotropy field (2.6) and the magnetoelastic field (2.7) read
as:

han1 = 0 = han2 , han3 = 2K

μ0M2
s
cosϑ . (2.20)

and,

hme
1 = 2

μ0M2
s
sin θ cosϕ (λA − λB)

{
cos2 θ

[(
λAc11 + λBc12 − c213

c33
(λA + λB)

]

+
[
c11ε11 + c12ε22 − c213

c33
(ε11 + ε22 − λA − λB − 2λ13) − (λA + λ13) c11 − (λB + λ13) c12

]}
,

hme
2 = 2

μ0M2
s
sin θ sin ϕ (λA − λB)

{
cos2 θ

[(
λAc11 + λBc12 − c213

c33
(λA + λB)

]

+
[
c12ε11 + c11ε22 − c213

c33
(ε11 + ε22 − λA − λB − 2λ13) − (λA + λ13) c11 − (λB + λ13) c12

]}
,

hme
3 = 2

μ0M2
s
cos θλB

(
2c213
c33

− c11 − c12

){
ε11 + ε22 − (λA + λB + 2λ13) + cos2 θ (λA + λB)

}
,

(2.21)

To characterize the DW motion in the steady-state and precessional dynamic regime, we derive the func-
tional dependence of the relevant dynamic quantities on the considered key parameters.
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2.1 Steady-state regime

Experimental evidence has revealed a phase transition in DW motion as the strength of external sources
(magnetic fields or electric currents) increases. Within a certain range of external fields, the DW profile
undergoes a rigid motion with a constant velocity v at a fixed azimuthal angle ϕ0 along the major axis e1 of
FMS. This phase is commonly referred to as a steady-state regime. The behavior of the DW in this regime
can be described using a mathematical framework known as the traveling wave ansatz, where the polar angle
is expressed as ϑ = ϑ(ξ), with ξ = x − vt as the spatiotemporal traveling wave variable. According to these
assumptions, Eqs. (2.18) and (2.19) reduces to:

αGτv2ϑ ′′ − αGv ϑ ′ − α̂D = γ
{
Aϑ ′′ +

(
N3 − N2 sin

2 ϕ0 − N1 cos
2 ϕ0

)
sin ϑ cosϑ

− (
h3 + hme

3 + han3
)
sin ϑ + [(

h1 + hme
1 + han1

)
cosϕ0

+ (
h2 + hme

2 + han2
)
sin ϕ0

]
cosϑ

}
, (2.22)

v ϑ ′ = γ
{
(N2 − N1) sin ϕ0 cosϕ0 sin ϑ − (

h2 + hme
2 + han2

)
cosϕ0 + (

h1 + hme
1 + han1

)
sin ϕ0

}
,

(2.23)

where, the prime represents the derivative with respect to the traveling wave variable ξ . Also α̂D =
γαD sign

(
vϑ ′).

The steady-state regime exists when the strength of the external sources falls within the range between the
threshold value and the critical WB value. Considering Eqs. (2.14), (2.21) and (2.20), Eq. (2.23) can be recast
as:

ϑ ′ = � (sin ϑ + ϒ) , (2.24)

where,

� = γ

2v

[
(N2 − N1) − 2

μ0M2
s

(λA − λB) (c11 − c12) (ε22 − ε11)

]
sin(2ϕ0) , (2.25)

ϒ = 2μ0M2
s (h2 cosϕ0 − h1 sin ϕ0)[

2(λA − λB) (c11 − c12) (ε22 − ε11) − (N2 − N1) μ0M2
s

]
sin(2ϕ0)

. (2.26)

Let us emphasize that ϒ = 0 corresponds to the external magnetic field aligning along the e3 direction
(i.e., h1 = h2 = 0). In this case, the solution takes the classical form:

ϑ(ξ) = 2 arctan(e�ξ ) = 2 tan−1
{
exp

(
x − vt

δ

)}
. (2.27)

Now, we discuss the solutions obtained as a function of the quantity |ϒ |. Given our focus on identifying
monotonic traveling wave solutions that connect the equilibrium states, we treat ϒ as a constant parameter.
Under the constraint |ϒ | < 1, the solutions can be expressed as follows:

ϑ(ξ) = arccos

(
1 − F2(ξ)

1 + F2(ξ)

)
, (2.28)

with,

F(ξ) = η f2 exp(ξ�) − f1
η exp(ξ�) − 1

, (2.29)

where f1, f2, η are constants and �−1 denotes the DW width. We remark that when |ϒ | 	 1, the solution
given in Eq. (2.28) takes a form similar to the well-known Walker’s type solution (cf. [23,57]).

For |ϒ | > 1 the solution adopts a following form:

ϑ = 2 arctan

⎧⎨
⎩

√
ϒ2 − 1 tan

[
�

√
ϒ2 − 1ξ + κ

]
− 1

ϒ

⎫⎬
⎭ , (2.30)



Ultrafast domain wall motion in hexagonal magnetostrictive

being κ the integration constant,

κ = 1√
ϒ2 − 1

arctan

(
ϒ + 1√
ϒ2 − 1

)
(2.31)

where κ is chosen so that the variable ϑ evaluated at the center of the DW is null. In this case, the traveling
wave solution does not satisfy the Dirichlet boundary conditions. Hence, the solution is only locally valid,
namely, in the proximity of the center of the DW (cf. [58]).

Now, taking into account Eqs. (2.14), (2.21), (2.20) and (2.24), Eq. (2.22) recast as:

�1 sin ϑ + �2 cosϑ + �3 sin ϑ cosϑ + �4 sin ϑ cos3 ϑ + �5 = 0, (2.32)

where,

�1 = � (αGv) − γ h3,

�2 = γ

{
h1 cosϕ0 + h2 sin ϕ0 +

(
A − αGτv2

γ

)
�2ϒ

}
,

�3 = γ

{(
A − αGτv2

γ

)
�2 + N3 − N2 sin

2 ϕ0 − N1 cos
2 ϕ0 + 2(ψ − K )

μ0M2
s

}
,

�4 = 2γ

μ0M2
s

{
(λ2A + λ2B)c11 + 2λAλBc12 − (λA + λB)2

c213
c33

}
,

�5 = ϒ (αGv) � + α̂D .

(2.33)

Furthermore, we retrieve the expression for DW width δ = 1/� by setting �3 = 0 (cf. [7,12,21,29,43]),
as follows:

δ =
√

Aexc − β

K − ψ + 1
2μ0M2

s

(
N1 cos2 ϕ0 + N2 sin2 ϕ0 − N3

) , (2.34)

with,

β = αGτμ0M2
s v2

2γ
, (2.35)

and,

ψ = (λA − λB)

[ (
c11 cos

2 ϕ0 + c12 sin
2 ϕ0

)
ε11 + (

c12 cos
2 ϕ0 + c11 sin

2 ϕ0
)
ε22

]

+
[
λB (c11 + c12) − c213

c33
(λA + λB)

]
(ε11 + ε22) + c213

c33
(λA + λB + 2λ13) (λA + λB)

−
[
λ2A + λ2B + λ13 (λA + λB)

]
c11−

[
2λAλB + λ13 (λA + λB)

]
c12. (2.36)

For brevity, we assume:

χ =
[
(N2 − N1) − 2

μ0M2
s

(λA − λB) (c11 − c12) (ε22 − ε11)

]
such that, � = γχ

2v
sin(2ϕ0) (2.37)

and,

ρ = K − ψ + 1

2
μ0M

2
s

(
N1 cos

2 ϕ0 + N2 sin
2 ϕ0 − N3

)
such that, δ =

(
Aexc − β

ρ

)1/2

. (2.38)

In our analysis, we assume that a 180◦ Blochwall is nucleatedwithin the FMS,wheremagnetization vectors
in the opposite domains align themselves along the ±e3 axes. This specific configuration is distinguished by
ϑ(ξ) � 0 for ξ → −∞ and ϑ(ξ) � π for ξ → +∞which correspond to the boundary conditions established
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by the classical Walker solution. Then, computing the average of Eq. (2.32) across the entire domain wall,
spanning from the first domain to the second (i.e., 0◦ ≤ ϑ ≤ 180◦ ), we obtain the expression for the DW
velocity within the steady regime as:

v =
√
2γ Aexc (2γ h cos� − πα̂D)√

2γρα2
G (2 + πϒ)2 + ταGμ0M2

s (2γ h cos� − πα̂D)2
, (2.39)

which is associated with several key factors, including the dry-friction coefficient, magnetostriction, relaxation
time for angular momentum, piezo-induced strains, and DW width.

Furthermore, it is essential to emphasize that DW velocities adhere to the constraint v ≥ 0. Hence, by
analyzing Eq. (2.39), we deduce threshold condition of the applied magnetic field h(th):

v = 0 �⇒ h(th) = π

2γ cos�
α̂D . (2.40)

An additional restriction v ≤ v(WB) on the DW velocity arises from Eqs. (2.25) and (2.34) and yields the
WB limit for the DW velocity:

v(WB) =
(

2γ 2χ2Aexc

8ρ + γαGτμ0M2
s χ2

)1/2

. (2.41)

Also, we deduce the WB limit of applied magnetic field h(WB) using Eqs. (2.39) and (2.41) as:

h(WB) = π

�
(α̂D + γαGχ) , where � = 2γ cos� + γπαG sin� sin(� − ϕ0)

sin(2ϕ0)
. (2.42)

The constraint 0 ≤ v ≤ v(WB) reflects the range of the DW velocity in the steady-state regime.

2.2 Precessional regime

In this section,we explore the dynamics of the precessional regime,whichoccurswhen the breakdowncondition
is violated. The motion in this phase is characterized by a time-dependent velocity v(t). It exhibits periodic
oscillations at microwave frequencies while maintaining a constant angular speed ϕ̇ = ω0. Now, the governing
equations (2.18) and (2.19) can be rewritten in the form:

ω0 sin ϑ +
[
αGv + γαDv

(
v2ϑ ′2 + ω0

2 sin2 ϑ
)−1/2

]
ϑ ′ = γ

[
−
(
A − αGτv2

γ

)
ϑ ′′

− cosϑ cosϕ
(
h1 + hme

1 + han1
) − cosϑ sin ϕ

(
h2 + hme

2 + han2
) + sin ϑ

(
h3 + hme

3 + han3
)

+ sin ϑ cosϑ
(
N1 cos

2 ϕ + N2 sin
2 ϕ − N3

)] − αGτω0
2 sin ϑ cosϑ, (2.43)

[
αG + γαD

(
v2ϑ ′2 + ω0

2 sin2 ϑ
)−1/2

]
sin ϑω0 − (v + 2αGτvω0 cosϑ)ϑ ′

= γ
{
(N1 − N2) sin ϑ sin ϕ cosϕ − (

h1 + hme
1 + han1

)
sin ϕ + (

h2 + hme
2 + han2

)
cosϕ

}
.

(2.44)

Assuming that the traveling wave profile given in Eq. (2.24) is unchanged, Eqs. (2.43) and (2.44) can be recast
in the following form:

ω0 + �(1 + ϒ)
[
αG + γαD

(
v2�2(1 + ϒ)2 + ω2

0

)−1/2
]
v = γ h cos�, (2.45)

[
αG + γαD

(
v2�2(1 + ϒ)2 + ω2

0

)−1/2
]

ω0 = �(1 + ϒ)v + h sin� sin(� − ϕ0)

+ γ sin ϕ0 cosϕ0

{
N1 − N2 + 2

μ0M2
s

(λA − λB) (c11 − c12) (ε22 − ε11)

}
,

(2.46)



Ultrafast domain wall motion in hexagonal magnetostrictive

where all the quantities have been evaluated at the center of the DW
(
ϑ = π

2

)
.

Next, assuming the hypothesis �(1 + ϒ)v̄ 	 ω0 and taking the average of Eqs. (2.45) and (2.46) over a
period of precession, we obtain:

ω0 + αG�(1+ϒ)v̄ = γ h cos�,

αGω0 + γαD = �(1 + ϒ)v̄.
(2.47)

Now, by solving Eqs. (2.47), we derive the following expression for the average domain wall velocity in
the precessional regime:

v̄ = αGγ δ cos�

(1 + ϒ)
(
1 + α2

G

) h + γαDδ

(1 + ϒ)
(
1 + α2

G

) . (2.48)

3 Numerical results

In this section, we demonstrate numerical illustrations based on the analytical results derived in the previous
section. To make a qualitative comparison, we assume realistic parameter values of a hexagonal cobalt-based
alloy (Pt/Co/Pt) from the literature (cf. [1,7,54,56,59–63]). We consider the dimensions of the FMS as:
length L = 20μm, width w = 700 nm, and thickness d = 20 nm aligned along the e1, e2, and e3 axes,
respectively, satisfying the constraint L � w > d . Material parameter values are summarized in Table 1.

We consider a range of values for the out-of-plane strain ε33 between −4 × 10−4 and +10 × 10−4 (cf.
[1,7]). Furthermore, as suggested in [7], we incorporate dry-friction coefficient (αD) that depends on the out-
of-plane strain (ε33) with the relation αD = (1 − νε33) × 10−3 where ν = 500. Moreover, we consider the
PZT5H material as PES, a type of lead zirconate titanate (PZT) ceramic material known for its exceptional
piezoelectric properties such as high piezoelectric coefficient, high electromechanical coupling coefficient, and
wide temperature range. It is important to highlight that PZT5H optimizes the system response for controlling
the properties of domain walls in various configurations when polarized along the major axis (cf. [64,65]).

In Fig. 2, we demonstrate the relationship between DW width (δ) and the out-of-plane strain (ε33) for
varying the relaxation time for angular momentum (τ ). It can be observed from the figure that the piezo
strains have a weak influence on DW width. Furthermore, DW width decreases as inertial damping increases,
specifically when τ ranges from the sub-picosecond to the sub-nanosecond scale. Also, the inset graph exhibits
the variation ofDWwidth in the absence of inertial damping, consistentwith recent theoretical and experimental
observations (cf. [1,7]).

In Figs. 3a, b we depict the traveling wave profile obtained by fixing the out-of-plane strain and varying τ
and vice-versa, respectively. In particular, in Fig. 3a, for a fixed out-of-plane strain, the traveling wave profile
approximates the classical Walker solution (i.e., ϑ(−∞) ≈ 0 and ϑ(−∞) ≈ π) in the absence of inertial
damping (τ = 0). However, as we increase the value of τ , it deviates away from the classical solution. On the
other hand, for a fixed τ , the traveling wave profile shows a weak dependence on the out-of-plane strain, as
evident from Fig. 3b.

Next, Fig. 4 illustrates the traveling wave profile by systematically varying the orientation of the external
magnetic field. When the external field aligns with the e3 axis, the polar angle ϑ adopts values of 0 and π in

Table 1 Summary of material parameters for hexagonal Co-based magnetostrictive FMS

Quantity Unit Value References Quantity Unit Value References

λA − −45 × 10−6 [7,54,56] c11 GPa 320 [7,12,63]
λB − −95 × 10−6 [7,54,56] c12 GPa 190 [7,12,63]
λC − +110 × 10−6 [7,54,56] c13 GPa 265 [7,12,63]
λE − −232 × 10−6 [7,54,56] c33 GPa 330 [7,12,63]
λS − −35 × 10−6 [1,7,12] c44 GPa 75 [7,59,60]
λ13 − −580 × 10−6 [1,7,12] N1 − 0.6417 Assumed
λ33 − 1.002 × 10−3 [1,7,12] N2 − 0.0093 Assumed
K J/m3 2 × 105 [1,7,12] N3 − 0.3490 Assumed
Ms A/m 1.2971 [1,7,12] αG − 0.01 Assumed
Aexc pJ/m 14 [7,12,61] ϕ0 deg 10 Assumed
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Fig. 2 The dependence of DW width δ on out-of-plane strain ε33 for varying relaxation time for angular momentum τ
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Fig. 3 Comparative analysis of traveling wave profile for (a) varying relaxation time for angular momentum τ and fixed out-of-
plane strain ε33, and (b) vice versa

the left and right domains, respectively. It then continuously varies from these values, resembling a traveling
wave, as we progress along the positive direction of the strip axis. This behavior corresponds to the classical
Walker solution. However, as the orientation of the external magnetic field deviates from the e3 axis, the DW
profile gradually moves away from the classical 180◦ Bloch wall structure. Moreover, the deviation from the
classical Walker profile of the DW structure becomes more significant when the orientation of the external
field shifts away from the e3 axis and inclines towards the e2 axis.

Furthermore, we examine the boundaries of the steady-state regime for the externalmagnetic field portrayed
in Fig. 5. This investigation is conducted in response to the out-of-plane strain, considering the orientation of
the external magnetic field. We illustrate the threshold and the WB values of the external magnetic field in
Fig. 5a, b respectively. We observe that the threshold and WB limit of the external magnetic field decreases
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Fig. 4 Traveling wave profile varying external magnetic field orientation for fixed τ = 10−12s
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Fig. 5 The variation of (a) threshold field h(th), (b) Walker breakdown field h(WB) with out-of-plane strain ε33 varying external
field orientation

linearly as we gradually increase the out-of-plane strain. Also, the boundaries of the steady-state regime can
be modulated by suitably tuning the orientation of the external magnetic field and piezo-induced strain.

In Fig. 6, we illustrate the variation of the WB limit of DW velocity with the out-of-plane strain, consid-
ering different values of τ . It is observed that regardless of the changes in τ , the WB limit of DW velocity
experiences a linear decrease with increasing out-of-plane strain. However, the WB value of DW velocity
enhanced significantly when τ falls within the sub-picosecond range compared to the sub-nanosecond range.

Furthermore, the dynamic behavior of the steady DW velocity with respect to the external magnetic field
is illustrated in Figs. 7 and 8. These figures depict the impact of out-of-plane strain, inertial damping, and
the orientation of the external magnetic field on the DW velocity. In particular, Figs. 7a, b show the velocity
profile by keeping the out-of-plane strain constant and varying τ and vice-versa, respectively. It is evident
from Fig. 7a that the presence of inertial damping leads to a decrease in DW velocity. However, when τ varies
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Fig. 6 The variation of Walker breakdown velocity v(WB) with out-of-plane strain ε33 varying relaxation time for angular
momentum τ
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Fig. 7 Comparative analysis of DW velocity varying (a) relaxation time for angular momentum τ , (b) out-of-plane strain ε33

from nanoseconds to picoseconds, DW velocity increases and approaches the value obtained without inertial
damping. On the other hand, Fig. 7b demonstrates that higher out-of-plane strain yields higher DW velocity for
a fixed external magnetic field. In addition, for a fixed out-of-plane strain, DW velocity increases linearly with
the external magnetic field. Moreover, Fig. 8 represents the effect of orientation of the external magnetic field
on the DW velocity for the fixed out-of-plane strain and parameter τ . It is evident that for a fixed strength of
the external magnetic field, the DW velocity decreases as we slightly deviate from the e3-direction. However,
more deviation from the e3-axis (i.e., � = π/3) results in the expansion of the steady-state regime.

Finally, we demonstrate the DWmotion in the precessional dynamic regime by considering the variation of
inertial damping parameter, out-of-plane strain, and the orientation of the external magnetic field, as depicted
in Figs. 9 and 10. It is worth mentioning that an increase in the inertial damping parameter resulted in a
reasonable decrease in the average DW velocity, as demonstrated in Fig. 9a. Furthermore, it can be argued
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Fig. 8 The variation of DW velocity with external field orientation for τ = 10−12s
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Fig. 9 Comparative analysis of average DW velocity with external magnetic field varying (a) relaxation time for angular momen-
tum, (b) out-of-plane strain in the precessional regime

from Fig. 9b that the average DW velocity shifts upward as the external magnetic field increases. It is noticed
that a lower out-of-plane strain corresponds to a higher average velocity. Lastly, Fig. 10 vividly illustrates that
the modulus of the average DW velocity exhibits a linear increase with the external magnetic field. Moreover,
for a small magnetic field (up to some critical value), the average DW velocity is higher for the case when
the orientation of the external magnetic field deviates more from the e3 direction. On the other hand, as the
strength of the external magnetic field exceeds the critical value, the behavior of the average DW velocity is
reversed.

Now, we compare the sole influence of inertial effects on the DW velocity to the works reported in
the literature (cf. [1,7,12,31,38]). In particular, the works presented in [7,12] examine the strain-controlled
dynamics of a 180◦ Bloch DW in a bilayer piezoelectric-magnetostrictive heterostructure of the hexagonal
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Fig. 10 The variation of average velocity v̄ with magnetic field strength varying external magnetic field orientation when τ =
10−12s

crystal class, taking into accountmagnetostriction, dry friction, andRashba effects. In these studies, the external
magnetic field is applied in a particular direction perpendicular to the plane, which drives theDW’smotion. The
DW velocity increases linearly with the applied magnetic field under dry-friction and magnetoelastic effects.
We observe similar behaviour without inertial damping, which aligns well with these studies in steady-state
and precessional regimes (cf. [1,7,12]). Moreover, the works discussed in ([31,38]) investigate the effects of
inertial damping on the DW dynamics in ferromagnetic materials. These studies reveal nonlinearity in the DW
velocity with the external field under the influence of inertial damping. A similar trend for the DW velocity
caused by the inertial damping is also observed in our analysis.

In summary, this investigation delineates that the strain-induced DW motion within hexagonal magne-
tostrictive material, as considered in the FMS-PES bilayer composite structure, can be controlled by suitably
tuning the key parameters: piezo-induced strains, applied magnetic field, and inertial damping.

At this junction, we remark that the results presented herein give valuable insights, such as the dependence
of DW width on the inertial damping parameter. Moreover, DW velocity can be effectively manipulated via
an external magnetic field, inertial damping, and piezo-induced strains in both dynamical regimes. Also, the
orientation of the external magnetic field emerges as a key factor that provides an additional degree of freedom
to modify the threshold and WB limits.

4 Conclusions

In this study, we theoretically investigated the dynamics of strain-mediated DW propagation under the simul-
taneous action of an external magnetic field, magnetoelastic field, inertial damping, and nonlinear dissipative
effects considering the crystal symmetry of the material. The study is characterized by assuming that the
ferromagnetic material is transversely isotropic and belongs to the hexagonal crystal class, FMS is linearly
elastic, and the dry-friction coefficient exhibits a linear relationship with the applied strain. The piezo-induced
strains are spatially uniform and completely transferred to FMS. Furthermore, the study has comprehensively
examined the influence of magnetic field orientation on the system’s dynamics. The main conclusions of our
investigation are as follows:

1. DW width exhibits negligible dependence on piezo-strains. However, a substantial decrease in width
becomes evident as the relaxation time for angular momentum (τ ) increases.
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2. An increase in inertial damping and out-of-plane strain leads to a deviation of the traveling wave profile
from the classical solution. In contrast, a tunable magnetic field significantly influences the classical wall
structure.

3. The threshold and WB values of the external magnetic field depend on its orientation and the out-of-plane
strain. To be precise, it decreases as the out-of-plane strain increases and the orientation of the external
magnetic field deviates from the e3 direction.

4. The WB limit of DW velocity decreases linearly with increasing out-of-plane strain. However, it is higher
when τ falls within the sub-picosecond range compared to the sub-nanosecond range.

5. DW velocity decreases as τ increases, emphasizing the influence of inertial damping on DW dynamics.
Moreover, as τ varies from sub-nanoseconds to picoseconds, it gradually increases and approaches the
velocity observed without inertial damping.

6. DW velocity decreases as we increase the out-of-plane strain. Also, it can be manipulated by suitably
adjusting the direction and strength of the external magnetic field.

7. In the precessional dynamic regime, an increase in the inertial damping parameter yields a decrease in the
average DW velocity. Also, it increases linearly with an increase in the external magnetic field.

Finally, we emphasize that our results align well with the observations reported in the existing literature
(cf. [1,7,12,31,38]), where previous studies have separately examined the effects of the parameters (inertial
damping, tunable magnetic field, stress-free magnetostrictive strains, and crystal symmetry) considered in the
present investigation. Also, it is worth mentioning that by applying uniform stress generated by a piezoelectric
substrate to a two-domain system, the DW moves to expand the energetically favoured domain and contract
the other. It has been reported that stress-mediated control of magnetization offers excellent energy efficiency,
presenting a relevant alternative to current/magnetic field-based DW motion techniques, which are subject to
higher energy consumption (cf. [47,49,66–69]). We intend to include such aspects in future extensions of our
work.
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