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Abstract This work compares the effect that two categories of passive dampers have on the vibratory motion
of a bridge modeled as simply supported uniform beam, namely the fixed versus the moving tuned mass
damper (TMD). Assuming that the suspension system of the moving vehicle performs like a TMD, its effect
on the vibratory motion at points on the beam is studied by juxtaposing it with the performance of the same
system placed at a specific location on the bridge span. In both cases, the vehicle suspension is modeled as
a single degree-of freedom (SDOF) system with a mass, a stiffness and a damping element. Specifically, we
first examine the eigenproblem of this combined structural system comprising the bridge, the moving mass
and the TMD, to compute spectrograms that show the time—frequency evolution of the eigenfrequencies for
both fixed and moving TMD cases. Subsequently, we examine vibrations at a point close to center span of the
beam and produce energy measures to contrast fixed versus moving TMD effectiveness, which changes over
time thus making it impossible to produce a concrete measure.

1 Introduction

The use of tuned mass dampers (TMD) as vibration absorption devices within a structural system has a long
history dating to over a hundred years [1]. TMD’s are classified as passive devices in the sense that they are
activated when the primary system they are attached to starts to vibrate [2]. As such, they require no external
power source to function as their performance simply depends on a combination of lumped mass, spring and
dashpot components. The choice of these components is usually based on optimizing their performance for
harmonic loads, which implies that they may not be as effective for other categories of loads such as impact,
random, etc. [3]. In this case, they can be classified as sub-optimal TMD. Another parameter of TMD design
and performance is their actual placement, which means that the designer has to decide on both the number
and the location where they best perform.

As the literature on TMD’s is vast, we will briefly survey some recent work done in reference to the subject
of vehicles traversing a bridge. In particular, bridge vibrations are a crucial issue in structural health monitoring
(SHM), since they are one of the main reasons behind bridge performance deterioration, other reasons being
corrosion, temperature variation, support movement, etc. [4]. In particular, two aspects of this problem have
attracted attention: (a) The role that the suspension system of the moving vehicle plays in ameliorating not
only its own vibrations, but those induced to the bridge; (b) the change in the dynamic characteristics of the
bridge (natural frequencies and associated modes) when the mass of the moving vehicle is roughly comparable
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to that of the bridge. References [5—14] address these issues, encompassing numerical-analytical models,
experimental results, field measurements and also examining a variety of forcing functions.

As mentioned, bridge vibration mitigation through tuning of the vehicle suspension parameters is a topic
of current interest. Earlier work [5] investigated the dynamic response of short-span bridges produced by the
passage of heavy vehicles with two different types of suspensions. The solution methodology combined the
modal shapes of the bridge with the dynamic wheel loads in a time-convolution integral, while the surface
profile of the bridge was also taken into account. A parametric study followed to ascertain which type of
suspension system is the most effective for vibration mitigation. One of the earliest experimental evaluations
aimed at measuring the time evolution of bridge modal properties during the passage of a single vehicle
was reported in [6]. Specifically, two bridges were instrumented for both traversing and parked trucks and the
measurements were processed by an output-only technique using the continuous wavelet transformation. Shifts
in the eigenproperties of the bridges were indeed detected, and a simplified numerical model was developed to
quantify them. Stochasticity was introduced as a means of capturing uncertainties in vehicles traversing a bridge
[7]. Specifically, a Gaussian distribution of the vehicle parameters was assumed, followed by Monte Carlo
simulations that gave the statistical measures of the dynamic response of the bridge. However, no mentioned
was made regarding the influence of the moving loads on the bridge eigenproperties.

The question of instantaneous frequencies of bridges under moving vehicles is discussed in [8], where a
theoretical framework was presented for both structure and vehicle frequency variations. An analytical solution
was based on eigenvalue extraction for the coupled bridge-vehicle dynamical system, which was used to identify
the dominant factors behind this problem and yielded as special cases the moving force and the moving mass.
Mitigation of the dynamic response of a bridge by tuning the vehicle suspension parameters was recently studied
in [9] by considering a quarter-car model with semi-active suspension. Transmissibility functions were derived
for this time-dependent system, which showed that the frequency response of the bridge depends primarily on
the vehicle-bridge frequency and damping ratios. However, it is difficult to define a transmissibility function for
atime-dependent dynamic system. Next, the change of a bridge’s natural frequencies with respect to the position
of the traversing vehicle was studied in [10] by conducting measurements on a scaled model of a bridge. It was
empirically shown that both direct (sensor on the bridge) and indirect (sensor on the vehicle) records showed
that the bridge frequency shift depended primarily on the bridge-to-vehicle frequency ratio. Next, a single-axle
test vehicle, which was used in scanning the roughness of bridge surfaces [11], was further examined from the
viewpoint of dynamic interaction with the bridge that may adversely data quality. A frequency-free vehicle
was proposed as a means for avoiding this interaction phenomenon by assuring that its natural frequency falls
far beyond that of the bridge. Another alternative proposed was the parked state of the vehicle. Laboratory
tests were also conducted with two-axle vehicles under ambient vibrations, as well as benchmark test for a real
bridge. Finally, in reference to railroad bridges traverse by massive and directionally moving cars, the temporal
variation of the fundamental frequencies of both systems was studied in [12]. Given the difficulty in developing
analytical solutions, a time—frequency analysis was used with the modified Stockwell transform for optimizing
the spatial-temporal energy distribution of the combined dynamic system. Following this development for a
single moving vehicle, a machine learning technique was subsequently employed to extract multi-vehicle
interaction frequencies, which were further validated with data from scaled laboratory experiments.

The difficulty presented in damage detection techniques based on bridge resonances during the passage
of traffic was studied in [13], given the fact that bridge-vehicle interaction results in the development of a
coupled dynamic system. A vehicle-induced delta frequency function was introduced to account for changes
in the bridge’s time-varying resonance, followed by a damaged-induced delta frequency function to account
for additional changes caused by damage in the bridge. This problem was studied for railway bridges, focusing
on the difference between single and dual suspension train systems. Finally, the effect of the placement of a
fixed TMD in a vehicle-bridge coupled system was studied in [14], where the mechanics of bridge-vehicle
interaction were accounted for. The bridge response in the presence of a TMD to both a moving as well as
a parked vehicle was examined when the source of vibration is earthquake-induced ground motions causing
vertical motions in the bridge.

In what follows, an experimental study of a model bridge span that was tested for a moving heavy mass
[15] was re-visited by conducting a numerical study based on the underlying mathematical model with an
added TMD. This TMD was first placed at a fixed location at center span of the bridge and subsequently
attached under the heavy moving mass. Results showed that energy dissipation by these TMD systems is
time-dependent, which makes it difficult to establish superior performance by either one, when the design
criterion is vibration minimization at a specific point on the bridge.
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2 Statement of the problem

A heavy mass moving across the span of a bridge is often linked to a suspension system comprising a spring
plus a damper. It turns out that this configuration is equivalent to a tuned mass damper (TMD) through which
a time-dependent load is transmitted to the span. We note in passing that if the mass is heavy as compared to
the weight of the span itself, the eigenvalue problem becomes time-dependent since the mass of the combined
system changes during the passage time. From another viewpoint, it is possible to attach a single degree-of-
freedom (SDOF) secondary system to a fixed location on the bridge, which is the primary structural system,
for the purpose of vibration suppression. Thus, an interesting problem arises as to which configuration is most
effective, assuming that it is possible to choose either one. The problem is illustrated in Fig. 1 for a simply
supported beam span of length L and flexural stiffness EI. Furthermore, the heavy moving mass is denoted
as M, the mass of the attached passive damper as m, while k, ¢ are spring and damper elements in the TMD,
respectively. Finally, w(x, ¢) is the beam’s transverse displacement, u, (¢) is the relative displacement between
a point mass and its attachment where the internal force fc develops, while r(x) is the roughness of the upper
surface of the beam.

3 Equations of motion

The mechanical representation of the combined structural system consists of the primary structure (bridge)
that is modeled as a continuous beam to which a secondary system (TMD) modeled as an SDOF is attached. At
first, the transverse displacement of the beam is expressed in terms of its eigenfunctions and the corresponding
generalized coordinates as w(x, t) = ®;(x)g;(t), i = 1, 2, ....Next, in Table 1 we define the position vectors
of the structural system with respect to its static equilibrium configuration.
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* S
My Ty u
@ k% Tc
f. MI —r(x) T — r(x)
X — e aecm .:_'_,* — R Ay —_—
z,w(x,t) &l z,w(x,t)
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Fig. 1 Free body diagram of a simply supported beam traversed by a heavy mass: a TMD attached at center span and b the
moving mass acting as a TMD

Table 1 Position vectors 7 defined for the beam, the moving mass M and the attached mass m

TMD attachedatx = L = L/2

Moving mass M acting as the TMD

Foeam = (0, 0, @i (x)q; (1))
rm = (0, 0, ®; (L1)gi (1) +ur (1))
ry = (t, 0, Di()gi(t) +r(x(1)))

Poeam = (0, 0, ; (x)gi (1))

ru = (v, 0, Qi (v)gi (1) +ur(t) +r(x(1)))
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An energy approach for case (a), the attached TMD, defines the potential energy U and the kinetic energy
T of the combined system as follows:

1
zw, q; — Mg(®; ()qi (1) +r(x (1)) (la)

1 1 1
T(@ = 367 + 5m@iLadi )+ 00 + 5 M (S w00gi(0) + B0 0) + ' (()v) + 3 MV (1)

U(q) = —ku +

For case (b) where the moving mass simultaneously behaves as a TMD, the potential and kinetic energies
are now equal to

1
U(q) = —ku + 260 % Mg(®;(vt)g;(t) +r(x(t))) (2a)
T(q) = lq, + ;M(Q> (WH)vgi (1) + D; (V1)Gi () + ity (1) + 7 (x(t))v) + %Mvz (2b)

Note the vector q = (g, ur), i = 1, 2 and that the first two eigenfunctions of the beam are used in this
representation.

Using the previously defined energy terms, Lagrange’s equations for the combined system modeled by the
first two eigenfunctions and the relative displacement are

d (dT oT 8 U
——) - +c¢fqi=0,i=1,2
dt \ 9g; 3% 8 qi
d (oT oT U .
—| =) - + +cu, =0
dt \ ou, du, Jdu,
The RHS of the above equation is zero because of the absence of external forces and of non-conservative

fields. After substitution of the energy terms in the above equations and following manipulations, a system of
finite element method-like results for the generalized coordinate vector q is as follows:

3)

Mg @)+ C(nq (1) + K(q(n) = F(1) “4)

The terms appearing in Eq. (4) are listed below, with index j = 1 denoting the case where the TMD is
attached at location x = L/2 = Lj, while index j = 2 denotes the heavy mass acting as a moving TMD.
In both cases, w;, i = 1, 2 are the eigenfrequencies and &; the corresponding modal damping ratios of the
simply supported beam without the moving mass or the TMD, i.e., the primary system. It is noted that in the
bibliography these equations appear in different forms, depending on whether the generalized coordinates are
defined with respect to the static deflection of the combined structural system or not.

[ 1+ M, (v1)®, (v1)  M®, (v1) D (v1) 0
M) =| MD,y(vt)d;(ve) 1+ M®Py(vt)Pr(vt) O | + MTMD
0 0 0
[ 2Mud ()@ (v1) + 2018 2M®) (v1) D) (vt) 0
C(1) = | 2Mvdy(vr) @ (vt) 2Mu®; () Dy (vr) + 2w O | + Com
0 0 0
[ M2, ()@ (u1) + P Mv2d, (v1) D) (v1) 0
K(t) = | Mv>®y(vt)® (vr) Mv2 Dy (v) @y (vt) + w3 0 |+ KTMD
0 0 0
(Mg — Mv? " (x(1))) @1 (vt)
F() = (Mg — Mv? r"(x(1)) ®2(v1) ¢ + Fiyp ®)
0
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- m®(L)Pi(L1) mP(L)P2(Ly) mPi(Ly)
My = | mP2(L)®P1(L1) mP(L)DPa(L)) mdy(Ly) |,

D(Ly) Do (L1) 1
» 0 0 0 - 0 0 0 - 0
=10 00 |, Kyp=[0 0 0 |, Fyp=10t¢,
0 0 2wt 0 0 o? 0 ©
)
) 0 0 M®, (vt) ) 0 0 0
M= |0 0 M®;(vr) |, Chyp =10 0 UN
®i(vt) Pr(vt) 1 200, (vt) 2vP,(vt) 2wé
L 0 0 0 ) 0
Kivp = 02 ) 02 ) 02 . Fop = ) 9
V2D, (vr) VIO, (vf) @ v r(x(t))

4 Numerical solution

The above systems of second-order, matrix differential equations are solved by recasting it as a system of
first-order differential equations of twice the size, i.e.,

AWF©) + BO)y(@©) = h() ™
where
i
0 0 L 0
_ M) _[-Ma i _
A“"[M(r) C(r)]’B(’)—[ 0 K(r)}’y(”— a1 ”‘(”—{F(r)}
q2
Ur

The transient response is computed by discretizing the time axis inn = 1, 2, ... N time steps A¢, where
the total time of interest is fiors = NAt = L/v. Thus, Eq. (7) is solved for y(¢) stepwise as:

Jn(nAL) = (—A; (nAD By (n A1)y, (nAL) + Ay (n Ak, (nAY) (8)

It is assumed that all matrices remain constant over the duration of a time step. Equation (7) can be solved
for each time step by either the fundamental matrix approach [17] or by use of the Laplace transform [15]. In
here, the former approach was used that requires the solution of an eigenvalue problem during each time step
At for extraction of the time-dependent eigenfunctions and their corresponding eigenfrequencies, as derived
from system matrix:

—A ' (nAt)Ba(nAr) ©)

5 Numerical study

The numerical example studied here is based on a mathematical model developed for simulating an experiment
involving a heavy mass traversing a simply supported HEB 100 steel beam conducted by the authors [15],
see Fig. 1. The relevant numerical values for the mechanical properties of the primary-secondary structural
system configurations are listed in Tables 2 and 3. It is noted that damping in the TMD is provided by the spring
element alone, as there is no dedicated damper. Thus, the amount of damping is truly minimal, thus leading to a
sub-optimal TMD design. In terms of the analysis, minimal damping allows for a clear picture of the evolution
of the eigenfunctions of the combined structural system with passage time of the heavy mass, as shown in
Fig. 2. As previously mentioned, the presence of the TMD adds an extra degree-of-freedom to supplement
the two generalized coordinates used to model the supporting continuous beam. Note that the TMD, as a
separate SDOF structural system, has its own eigenfrequency, which can be designed to coincide with one of
the eigenfrequencies of the simply supported beam. This is done by simply changing the stiffness parameter
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Table 2 Mechanical properties for the simply supported HEB 100 steel section

2 4
pln/m’)  A(m?)  EGPa  I(m®) 3 & pAL(m)  L(m)  fiHz)  fa(Ho)
7.65 26-10~* 198.5 450108 0.0021 0.0084 0.116 5.83 9.80 39.18
Tuned to 10.70 Hz Tuned to 39.18 Hz
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Fig. 2 Eigenfrequency f;(Hz) evolution with the passing of the heavy mass in the presence of a TMD moving with that mass
(top row) and fixed at mid-span (bottom row): TMD tuning is with respect to a, ¢ the first mode and b, d the second mode

Table 3 The moving mass and the TMD properties

M (tn) v(m/s) Fixed location L TMD mass m(tn) TMD stiftness k TMD damping & f(Hz)
(m) (kN/m)
0.027 0.33 2.915 0.027 122.0/1637.0 0.0075 10.70/39.18

k, hence the two different values listed in Table 3. In this case, it modifies the corresponding eigenfunction,
leaving the remaining ones unchanged. In our case however, since the fixed TMD is placed at center span which
is a nodal point for the second eigenfunction, the corresponding eigenfunction remains virtually unaffected.
The evolution of the eigenfrequencies of the original primary system is also shown for comparison purposes.

More specifically, for both TMD configurations, the spring component’s stiffness k is chosen so that this
secondary SDOF system configuration is tuned to either the first or the second eigenfrequency of the primary
structure. All computations regarding the eigenanalysis of the fundamental matrix of Eq. (9) are performed
for each time step Ar = 1/128 s using the QR-Householder algorithm and the resulting eigenvalues come
as complex conjugate pairs. Solving for the characteristic polynomial of Eq. (9) was found to be an unstable
computation, because small perturbations of the polynomial’s coefficients results in large variations of its
complex roots [16]. It is finally mentioned that both eigenfrequencies w; and generalized coordinates yg are
used as initial conditions for the computation of the immediately next time step values w;+ and yIH .

Results are also presented in the form of spectrograms [18] for the power spectral density (PSD) in dB/Hz
of the primary system transient accelerations w(x = 3L /4, t) and likewise for the relative TMD acceleration
iir(¢) in Figs. 3 and 4 for the moving and the fixed TMDs, respectively. This way, both their time evolution and
frequency content becomes visible. In the construction of the spectrograms, a 256 point Hanning window was
applied to the transient records with an overlap of 250 points. More specifically, for both TMD configurations,
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Tuned to 39.18 Hz
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Fig. 3 Eigenfrequency f; (Hz) evolution with the passing of the moving heavy mass in the presence of a TMD fixed at two stations
on the beam: a x = L/4 and b x = 3L/4. Note that TMD tuning is with respect to the second mode

Moving TMD
Tuned to 10.70 Hz Tuned to 39.18 Hz

db/Hz
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1(s) t(s)
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Fig. 4 Spectograms for the moving TMD with the transient accelerations computed at station x = 3L /4 (top row) and the relative
TMD acceleration ii, (bottom row). The TMD tuning is with respect to a the first mode and b the second mode of the primary
structure

the spring component’s stiffness k is chosen so that this secondary SDOF system configuration is tuned to
either the first or the second eigenfrequency of the primary structure.

Obviously, the behavior of the traveling vehicle as a separate system can be studied either from the time
series recorded by sensors placed directly on the bridges, or from sensors located in the moving vehicles [19].
If certain frequency bands of interest are not detected in the time series recorded by the sensors, (e.g., areas
marked by a light-yellow color instead of deep yellow in the spectrograms of Fig. 4), their energy level can be
enhanced by using adaptive amplifiers mounted on the moving vehicles. This subject is discussed in detail in
some recent publications [20, 21].

Examining at first the response of the TMD itself, we observe that it is more predictable for the fixed case, in
the sense that most vibratory energy is concentrated around its own fundamental frequency. This is especially
true for tuning with respect to the low (first) eigenfrequency of the primary structure. When tuning is with
respect to the second eigenfrequency, vibratory energy is more diffused. This behavior is more pronounced
for the case of the moving TMD as opposed to the fixed TMD, meaning that the former vibrates over a wider
range of frequencies, thus avoiding resonance (Fig. 5).

However, since of interest is the response of the primary system, and for the fixed TMD case, we observe
that it operates successfully when tuned to the first eigenfrequency, as it absorbs most of the vibratory energy
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Fixed TMD
Tuned to 10.70 Hz Tuned to 39.18 Hz
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Fig. 5 Spectograms for the fixed TMD with the transient accelerations computed at station x = 3L /4 (top row) and the relative
TMD acceleration ii, (bottom row). The TMD tuning is with respect to a the first mode and b the second mode of the primary
structure

0.00025 — NeTMD
' —— Moving TMD
‘ —— Fixed TMD
. ‘H \ }‘ ‘} ‘ ‘
— \ ‘
2 0.00015 ‘\‘ MW i "}
S ‘\H“UU H‘ A WH, )' w I
é 0.00010 ‘ ‘ ‘ i ' “
I i
0.00005 M \H
i il
0.00000 .
0.0 25 50 75 10.0 12.5 15.0 17.5

1(s)

Fig. 6 Potential and kinetic energy development in the beam during the passage time of the heavy mass in the absence of a
TMD, and in the presence of a moving TMD and a fixed TMD at x = L/2. Both TMD’s are tuned to the first eigenfrequency of
f1=10.70Hz

from that frequency range. However, when tuning is with respect to the second eigenfrequency, effectiveness
is diminished as the primary system vibrates in bands around both the first and the second eigenfrequency.
The effect of the moving TMD on the primary system is different, because irrespective of tuning, vibrations
are primarily in the low frequency range around its first eigenfrequency, which is exactly the area that should
be avoided. One positive fact about the moving TMD, however, is that does suppress the higher frequency
vibrations when tuned to the lower frequency (Fig. 6).

In closing, the sum of the kinetic and potential energy in the beam as the heavy mass moves along its upper
flange is expressed in terms of the first two generalized coordinate as follows:

1 1
T(41.42) = (ql(t)+q2(t)) Uq1,q2) = = (wlql(t)+w2q2(t)) (10)
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6 Discussion and conclusions

This study focuses on the difference in passive vibration protection offered by a simple TMD (acting as a
secondary SDOF system) when placed at a fixed point on the bridge (the primary system) versus the suspension
system associated with a vehicle modeled as a heavy traveling mass that is the source of vibration. At first, it
should be noted that the TMD parameters (mass, stiffness, damping) can be chosen so that its eigenfrequency
coincides with one of the eigenfrequencies of the primary system, leading to what is known as optimal tuning.
Of course, this optimization process depends heavily on the frequency content of the excitation. A further
variable is the question of placement of the fixed TMD on the primary structure, which is usually approached
in an ad hoc way, meaning that for simple cases such as the simply supported beam, placement is around
mid-span. For the specific problem at hand, additional variables are the speed of traverse and the magnitude
of the moving mass.

The time-dependence of the eigenproperties of a structure alludes to a non-autonomous mathematical
problem, resulting in a time-stepping eigenproblem solution that is computationally involved and possibly
unstable, as updated initial conditions must be defined at the onset of every time step of the solution procedure.

From this brief parametric study, a predictable conclusion is that the fixed TMD operates locally and
effectively absorbs vibrations in the frequency range for which it was design. It should be noted that the
particular TMD studied lacked a damper and the low level of structural damping available derived from the
metallic spring element. Because of this, there was leakage of vibratory energy back to the frequency range
where it was supposed to be zero. This was even more pronounced for the moving TMD, which seems to
simply ameliorate the vibrations radiating from the moving mass, hence the diffusion of the frequency bands
of vibration observed around the first two eigenfrequencies of the beam.

Acknowledgements Results presented in this work have been produced using the Aristotle University of Thessaloniki High-
Performance Computing Infrastructure. The first author (G.1.D.) acknowledges the Hellenic Foundation for Research and Inno-
vation (HFRI) for a Ph.D. Fellowship under the third call for Ph.D. fellowships (Fellowship Number: 6522). The second author
(G.D.M.) acknowledges a Mercator fellowship made available by the German Research Foundation (DFG) project SM 281/20-1
entitled ‘Resilient Infrastructure Based on Cognitive Buildings’, Professor Kay Smarsly, coordinator, Technical University of
Hamburg, Germany.

Funding This work was supported by Hellenic Foundation for Research and Innovation grant number (6522) and Deutsche
Forschungsgemeinschaft grant number (SM 281/20-1).

Data availability The data supporting the findings of this study are available within the article.

Declarations

Conflict of interest Both authors state that there is no conflict of interest.

References

. Den Hartog, J.P.: Mechanical vibrations, 3rd edn. McGraw-Hill, New York (1947)
. Soong, T.T., Dargush, G.F.: Passive energy dissipation systems in civil engineering. Wiley, Chichester, UK (1997)
. Warburton, G.B.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthq.
Eng. Struct. Dyn. 10, 381-401 (1982)
4. Peeters, B., De Roeck, G.: One-year monitoring of the Z24-Bridge: environmental effects versus damage events. Earthq.
Eng. Struct. Dyn. 30, 149-171 (2001)
5. Green, M.F, Cebon, D., Cole, D.J.: Effects of vehicle suspension design on the dynamics of highway bridges. J. Struct. Eng.
ASCE 121(2), 272-282 (1995)
6. Cantero, D., Hester, D., Brownjohn, J.: Evolution of bridge frequencies and modes of vibration during truck passage. Eng.
Struct. 152, 452-464 (2017)
7. Ettefagh, M.M., Behkamkia, D., Pedrammehr, S., Asadi, K.: Reliability analysis of the bridge dynamic response in a stochastic
vehicle-bridge interaction. KSCE J. Civ. Eng. 19(1), 220-232 (2015). https://doi.org/10.1007/s12205-013-0388-8
8. Yang, Y.B., Cheng, M.C., Chang, K.C.: Frequency variation in vehicle bridge interaction systems. Int. J. Struct. Stab. Dyn.
13(2), 1350019 (2013)
9. Jin, S, Tan, C.A., Lu, H.: Vehicle suspension tuning for bridge-friendliness and influence on coupled vehicle-bridge system
frequency. Eng. Struct. 304, 117649 (2024)
10. Cantero, D., McGetrick, P., Kim, C.W., O’ Brian, E.: Experimental monitoring of bridge frequency evolution during the
passage of vehicles with different suspension properties. Eng. Struct. 187, 209-219 (2019)

W N =


https://doi.org/10.1007/s12205-013-0388-8

G. I. Dadoulis, G. D. Manolis

11.
12.

13.
14.
15.
16.
17.

18.
19.

20.
21.

Yang, Y.B., Li, Z., Wang, Z.L., Shi, K., Xu, H., Qiu, F.Q., Zhu, J.F.: A novel frequency-free movable test vehicle for retrieving
modal parameters of bridges: theory and experiment. Mech. Syst. Signal Process. 170, 108854 (2022)

Lee,J.,Lee,J.,Kim, R.E.: Spatio-temporal frequency evaluation of a railroad bridge considering vehicle-bridge interaction. In:
proceedings, experimental vibration analysis for civil engineering (EVACES 2023), M. P. Limongelli et al. (eds.), p. 721-730
(2023). https://doi.org/10.1007/978-3-031-39117-0_74

Mostafa, N., Di Maio, D., Loendersloot, R., Tinga, T.: The influence of vehicle dynamics on the time-dependent resonances
of a bridge. Adv. Bridge Eng. 4, 22 (2023). https://doi.org/10.1186/s43251-023-00102-4

Homaei, H., Dimitrakopoulos, E.G., Bakhshi, A.: Vehicle-bridge interaction and the tuned-mass damper effect on bridges
during vertical earthquake excitation. Acta Mech. (2023). https://doi.org/10.1007/s00707-023-03533-2

Manolis, G.D., Dadoulis, G.1.: Passive control in a continuous beam under a travelling heavy mass: dynamic response and
experimental verification. Sensors 24(2), 573 (2024)

Manolis, G.D., Dadoulis, G.I.: On the numerical treatment of the discontinuity arising from a time-varying point mass
attachment on a waveguide. Algorithms 16(1), 26 (2023). https://doi.org/10.3390/a16010026

Dadoulis, G.I., Manolis, G.D.: Dynamic response of a damaged bridge span traversed by a heavy point mass. J. Sound Vib.
551, 117613 (2023)

Brandt, A.: Noise and vibration analysis: signal analysis and experimental procedures. Wiley, Chichester (2011)

Wang, Z.L., Yang, J.P., Shi, K., Xu, H., Qiu, F.Q., Yang, Y.B.: Recent advances in researches on vehicle scanning method
for bridges. Int. J. Struct. Stab. Dyn. 22(15), 2230005 (2022)

Yang, Y.B., Wang, Z.L., Shi, K., Hao, X., Yang, J.P.: Adaptive amplifier for a test vehicle moving over bridges: theoretical
study. Int. J. Struct. Stab. Dyn. 21(3), 2150042 (2021)

Xu, H., Yang, M., Yang, J.P., Wang, Z.L., Shi, K., Yang, Y.B.: (2023) Vehicle-scanning method for bridges enhanced by dual
amplifiers. Struct. Control. Health Monit. 1, 6906855 (2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


https://doi.org/10.1007/978-3-031-39117-0_74
https://doi.org/10.1186/s43251-023-00102-4
https://doi.org/10.1007/s00707-023-03533-2
https://doi.org/10.3390/a16010026

	A comparative study on the effectiveness of a moving versus a fixed passive damper in beam vibration mitigation
	Abstract
	1 Introduction
	2 Statement of the problem
	3 Equations of motion
	4 Numerical solution
	5 Numerical study
	6 Discussion and conclusions
	Acknowledgements
	References


