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Abstract A refined hyperbolic shear deformation theory is presented to analyze the mechanical behavior of
isotropic and sandwich functionally graded material (FGM) beams under various boundary conditions. The
material properties are considered to be isotropic at each point and change across the thickness direction.
The volume fraction gradation follows a power law distribution with respect to the FGM core or skins of the
beam. The solution is attained by minimizing the total potential energy. This recent theory is a new type of
third-order shear deformation theory that includes undetermined integral variables. The recent theory describes
the variation of transverse shear strains throughout the thickness of a beam. It shows how these strains satisfy
the zero traction boundary conditions on the top and bottom surfaces, all without the need for shear correction
factors. An analytical solution based on trigonometric series is developed to solve the problemwhile satisfying
various boundary conditions. Comparative studies are conducted to validate the accuracy and efficiency of this
method. The current model can accurately predict the static responses of functionally graded isotropic and
sandwich beams with arbitrary boundary conditions.
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1 Introduction

The need for enhanced structural efficiency in various engineering disciplines has prompted the creation of a
novel category of materials called functionally graded materials (FGMs) [1–3]. FGMs are composites whose
material properties change gradually over one ormore directions. This is accomplished by adjusting the volume
fraction along the thickness direction and blending two different materials [4]. This continuously changing
composition eliminates interface issues, resulting in smooth stress distributions. FGMs are now widely used
as structural elements in various applications. The FGM concept has applications in several engineering fields
such as aerospace, civil engineering, nuclear, automotive, energy, and biomaterials [4–16].

In recent years, much research has been conducted to predict the structural responses of FG beams accu-
rately. The three basic categories for categorizing beam problems are beam theory and solution strategies. The
three types of solution techniques are analytical solutions, elasticity solutions, and numerical solutions. The
availability of exact elasticity solutions is crucial for researchers since they are used as a standard for comparing
solutions derived from approximate beam theories. However, due to the amount of difficulty and the computer
component required, relatively few researchers have made contributions to obtaining precise elasticity answers
for the investigation of the behavior of FG beams [17–26]. Exact elasticity solutions are actually computa-
tionally time-consuming, analytically challenging, and impractical for real-world issues. Hence, approximate
one- and two-dimensional theories are derived by applying specific kinematic assumptions. The beam theory
consists of classical beam theory (CBT), first-order beam theory (FBT), and higher-order theory (HBT). It is
important to note that CBT is only appropriate for thin beams because it neglects the shear effect [27–32].
FBT yields acceptable results but relies on the shear correction factor, which is difficult to establish because
of its dependence on many parameters. Consequently, this theory has been increasingly utilized to predict
responses of FG beams [33–38]. Higher-order shear deformation theories (HSDTs) have been developed to
account for shear deformation effects. These theories are based on a nonlinear variation across the thickness of
the in-plane displacements. The HSDTs ensure that there are zero shear stress conditions at the top and bottom
surfaces of the beams, eliminating the need for a shear correction factor [39–50]. Although analytical methods
lead to accurate solutions, their uses are limited to problems with simpler geometries, limits, and loading
conditions. As a result, numerical methods are needed to solve more complex problems. Numerical methods
used by researchers to study the behavior of FG structures are the Ritz method, state-space method, Galerkin
method, differential quadrature method, Lagrange multiplier method, and Chebyshev collocation method [44,
51–76]. Recent studies have continued to employ and develop these methods. Abbaslou et al. [77] explored the
vibration and dynamic instability of functionally graded porous doubly curved panels with piezoelectric layers
in supersonic airflow, using the Galerkin method to discretize the equations of motion. Ebrahimi and Parsi [78]
investigated wave propagation in functionally graded graphene origami-enabled auxetic metamaterial beams
on an elastic foundation, determining the analytical solution of the governing equations. Yaylacı et al. [79]
conducted a numerical study on the vibration and buckling of FG beams with edge cracks using the finite
element method (FEM) and multilayer perceptron (MLP). Hai et al. [80] used a refined plate theory and the
Galerkin method to investigate the influence of micromechanical models on the behavior of FG plates under
different boundary conditions. Zhang et al. [81] focused on the buckling behavior of two-dimensional function-
ally graded (2D-FG) nanosize tubes, including porosity, based on the first shear deformation and higher-order
theory, solving the derived equations numerically for various boundary conditions. Cho [82] analyzed the static
and free vibration of functionally graded porous plates using neutral surface theory and the natural element
method (NEM). Ghatage and Sudhagar [83] examined the free vibrational responses of bidirectional axially
graded cylindrical shell panels using 3D graded finite element approximation under a temperature field. Tayebi
et al. [84] applied the full layerwise finite element method (FEM) in the free vibration analysis of FG com-
posite plates reinforced with graphene nanoplatelets (GPLs) in a thermal environment. Gholami et al. [85]
investigated the free vibration behavior of bi-dimensional functionally graded (BFG) nanobeams under various
boundary conditions using the variable substitution method to formulate the state-space differential equations
and the dynamic stiffness matrix. Wu [86] examined the nonlinear finite element vibration analysis of func-
tionally graded nanocomposite spherical shells reinforced with graphene platelets. Xu and She [87] studied
the thermal post-buckling and primary resonance of porous functionally graded material (FGM) beams in a
thermal environment using the two-step perturbation method. Finally, Fan et al. [88] investigated the thermal
buckling of a nonuniform nanobeam made of functionally graded material using classical beam theories and
Eringen’s nonlocal elasticity, solving the nonlocal partial differential equationswith the generalized differential
quadrature method (GDQM).
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Fig. 1 Isotropic and FGSB geometry

Sandwich structures have received significant attention in various engineering applications. There has been
a proposal for sandwich structures made of materials with gradients of properties (FG). The core or two skins
have materials with gradient properties (FGM) due to the remarkable advantages of FGM. Many research
papers have been developed to analyze sandwich structures [89–98].

This paper investigates the influences of boundary conditions on the static behavior of isotropic and sand-
wich FG beams using the Ritz method enhanced with a novel trigonometric series and a recently refined shear
deformation theory. The proposed theories have been designed to fulfill the zero traction boundary conditions
on both the top and bottom surfaces of the beam, thereby eliminating the need for a shear correction factor.
The accuracy of the proposed solution was validated through rigorous convergence and verification studies.
Numerical results are presented for various boundary conditions to analyze the impact of length-to-depth ratio,
boundary conditions, power law index skin–core–skin thickness ratios, and configurations on the structural
response of isotropic and sandwich functionally graded beams (SFGB). This study contributes to advancing our
understanding of FGM applications in enhancing structural efficiency across multiple engineering domains.

2 Theoretical formulation

An FG beam made of ceramic–metal is being investigated. It has a length of L and a rectangular cross
section with dimensions b × h, as shown in Fig. 1. This study examines three types of FG beams: (1) Type
A, which refers to isotropic FG beams, (2) Type B, which denotes sandwich beams (SB) with FG core and
homogeneous faces, and (3)TypeC,which represents SBwithFG faces andhomogeneous core. The rectangular
Cartesian coordinate system describes small deformations of three layers of the sandwich elastic beam within
the unstressed reference configuration. The midplane is defined by z � 0, and its external bounding planes are
defined by z � ±h/2. Three elastic layers are defined by “Layer1”, “Layer 2”, and “Layer 3” from the bottom
layer to the top layer. The vertical positions of the base, the two interfaces, and the top are represented by h0
� − h/2, h1, h2, and h3 � h/2, respectively. In the current study, the SB is subjected to compressive in-plane
forces acting on the midplane of the beam.



F. Y. Addou et al.

2.1 Type A

The beam of type A has a graded structure, transitioning from ceramic at the top surface to metal at the bottom
surface (see Fig. 1a). The ceramic phase’s volume fraction is determined using a simple rule of mixtures as
follows:

Vc(z) �
(
2z + h

2h

)p

(1)

where Vc represents the volume fraction function of ceramic, and p denotes the volume fraction index
(0 ≤ p ≤ +∞) that determines the material change profile across h.

2.2 Type B

The core layer of the material transitions from a metal composition at the bottom to a ceramic composition at
the top. The upper face is composed of isotropic ceramic, while the lower face is made of isotropic metal (refer
to Fig. 1b). The volume fraction of the ceramic phase is determined using a straightforward rule of mixtures
as follows:

V (1)
c � 0 z ∈ [h0, h1]

V (2)
c �

(
z−h1
h2−h1

)p
z ∈ [h1, h2]

V (3)
c � 1 z ∈ [h2, h3]

(2)

where V (n) (n � 1, 2, 3) indicates the volume fraction function of layer n; p is the volume fraction index
(0 ≤ p ≤ +∞) that determines the material change profile across h.

2.3 Type C

The faces range from ceramic to metal, with an isotropic ceramic core (Fig. 1c). The volume fraction of the
ceramic phase is calculated using a simple rule of mixtures as follows:

V (1)
c �

(
z−h0
h1−h0

)p
z ∈ [h0, h1]

V (2)
c � 1 z ∈ [h1, h2]

V (3)
c �

(
z−h3
h2−h3

)p
z ∈ [h2, h3]

(3)

where V (n) (n � 1, 2, 3) indicates the layer n’s volume fraction function; p is the volume fraction index
(0 ≤ p ≤ +∞) that determines the material change profile across h.

The effective material properties for the nth layers, like Young’s modulus E (n) and Poisson’s ratio, ν(n),
are determined by the linear rule of the mixture as

P(n)(z) � Pm + (Pc − Pm)V (n) (4)

where subscripts m and c represent metal and ceramic, respectively.
The study assumes that the Poisson’s ratio of the plate remains constant throughout, as its influence on

deformation is considerably less significant than that of Young’s modulus.

2.4 Kinematics and constitutive equations

The displacement field that fulfills the requirements for transverse shear stresses to be zero at a specific point
on the top and bottom surfaces of the plate is as follows [99, 100]:

u(x , z) � u0(x) − z
∂w0

∂x
+ k1 f (z)

∫
θ (x) dx

w(x , z) � w0(x) (5)



Static behavior of FG sandwich beams under various boundary

Table 1 Value of A′ and k1 for different boundary conditions
Boundary conditions A′ k1

S–S − 1
α2 α2

C–F − 4
α2

α2

4

C–C − 1
4α2 4α2

The coefficient k1 depends on the geometry, and the f (z) represents the hyperbolic shape function selected
in the form [101]

f (z) � z(cosh(z/h) − 1.388) (6)

where (u, w) are the displacement components of a general point (x , z) in the FG beam, (u0, w0, θ) are three
unknown displacements of the midplane of the beam, and h is the beam thickness. Using the displacement
field in Eq. (5), the linear strains εi j are obtained as:

εx � ε0x + zkbx + f (z)ksx (7a)

γxz � g(z)γ 0
xz , (7b)

where

ε0x � ∂u0
∂x

, kbx � −∂2w0

∂x2
ksx � k1θ , (8a)

γ 0
xz � k1

∫
θ dx (8b)

The integrals defined in the equations abovewill be solved using a specificmethod and are found as follows:

∫
θ dx � A′ ∂θ

∂x
(9)

The coefficient A′ is expressed based on the type of solution used, such as a trigonometric series for
different boundary conditions.

Therefore, A′ and k1 are expressed in Table 1, noting that α � mπ/L as follows.
The constitutive relations of an FG beam are expressed as

σxx � E(z) εx (10a)

τxz � Gγxz (10b)

where

G(z) � E(z)

2(1 + ν)
(10c)

where (σxx , τyz) and (εx , γyz) are the stress and strain components, respectively.
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2.5 Variational formulation

The beam’s strain energy from the normal force, shear force, moment, and higher-order terms is given as
follows:

U � 1

2

∫
V

(
Nxε

0
x + Mxk

b
x + Sxk

s
x + Qxzγ

0
xz

)
dx , (11)

where

(Nx ,Mx , Sx ) �
∫ h/2

−h/2
(1, z, f )σxxdz, (12a)

Qxz �
∫ h/2

−h/2
g(z)τxzdz, (12b)

Replacing Eq. (12) into Eq. (11), one can calculate the strain energy using the following formula:

U � 1

2

L∫
0

[
A
(
ε0x

)2
+ 2Bε0xk

b
x + 2Bsε0x k

s
x + D

(
kbx

)2
+ 2Dskbx k

s
x + Hs(ksx)2 + As(γ 0

xz

)2]
dx (13)

where (A, B, D, Bs , Ds , Hs , As) are the stiffness components of beams and can be determined by

(
A, B, D, Bs , Ds , Hs) �

h/2∫
−h/2

(
1, z, z2, f (z), z f (z), [ f (z)]2

)
Edz; As �

h/2∫
−h/2

[g(z)]2Gdz (14)

To define the strain energy equation, Eq. (8) is substituted into Eq. (13). Therefore, the strain energy
equation was obtained in the form of displacement and rotation functions as follows:

U � 1

2

L∫
0

[
A
(
u0,x

)2 − 2Bu0,xw0,xx + 2k1B
su0,xθ + D

(
w0,xx

)2

−2k1D
sw0,xxθ + k21H

sθ2 + k21 A
′2As(θ,x)2

]
dx (15)

The work done V by transverse load q is obtained by:

V � −
L∫

0

qw0dx (16)

The FG beams total potential energy can be determined by:

� � U + V

� � 1

2

L∫
0

[
A
(
u0,x

)2 − 2Bu0,xw0,xx + 2k1B
su0,xθ + D

(
w0,xx

)2

−2k1D
sw0,xxθ + k21H

sθ2 + k21 A
′2As(θ,x)2

]
dx −

L∫
0

qw0 dx (17)

The displacement field in Eq. (17) can be estimated using the Ritz method [102] in the following forms:

u0(x) �
m∑
j�1

a jψ j (x)
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Table 2 Shape functions trigonometric series

Boundary conditions ψ j (x) φ j (x) ξ j (x)

S–S cos jπ
L x sin jπ

L x sin jπ
L x

C–F sin (2 j−1)π
2L x 1 − cos (2 j−1)π

2L x cos (2 j−1)π
2L x

C–C sin 2 jπ
L x sin2 jπ

L x cos 2 jπ
L x

Table 3 Different boundary conditions of beams

Boundary conditions S–S C–F C–C

x � 0 w0 � 0 u0 � 0, w0 � 0, θ, x � 0, w0, x � 0 u0 � 0, w0 � 0, θ, x � 0, w0, x � 0
x � L –

w0(x) �
m∑
j�1

c jφ j (x)

θ(x) �
m∑
j�1

d jξ j (x) (18)

where (a j , c j , d j ) are unknown values to be obtained;ξ j (x), φ j (x) and ψ j (x) are the shape functions
that are suggested for different boundary conditions simply supported (S–S), clamped–clamped (C–C), and
clamped–free (C–F) as illustrated in Table 2.

The suggested shape functions satisfy the boundary constraints in Table 3. It has been noticed that improper
shape functions might result in numerical instability and sluggish convergence rates [103, 104]. Moreover, the
Lagrangian multipliers technique can establish boundary constraints for shape functions that do not meet them
[105–107].

By putting Eq. (18) into Eq. (17) and applying Lagrange’s equations, the governing equations of motion
are found by:

∂�

∂q j
� 0 (19)

with q j indicating the values of
(
a j , c j , d j

)
, which leads to:⎡

⎣ K 11 K 12 K 13

T K 12 K 22 K 23

T K 13 T K 23 K 33

⎤
⎦

⎧⎨
⎩
a
c
d

⎫⎬
⎭ �

⎧⎨
⎩

0
F
0

⎫⎬
⎭ (20)

where K denotes the stiffness matrix, andM represents the mass matrix and can be determined by:

K 11
i j � A

L∫
0

ψi ,xψ j ,xdx , K 12
i j � −B

L∫
0

ψi ,xφ j ,xxdx , K 13
i j � −Bsk1

L∫
0

ψi ,xξ jdx ,

K 22
i j � D

L∫
0

φi ,xxφ j ,xxdx − N0

L∫
0

φi ,xφ j ,xdx , K 23
i j � −k1D

s

L∫
0

φi ,xxξ jdx ,

K 33
i j � k21H

s

L∫
0

ξiξ jdx +
(
k1A

′)2As

L∫
0

ξi ,xξ j ,xdx , Fi �
L∫

0

qφidx (21)

By resolving Eq. (20), it is possible to estimate the deflection and stresses of isotropic and FG sandwich
beams.
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Fig. 2 Change of E across plate thickness of beams for different values of the power law index p: a Type A, b Type B (2–1–2),
c Type C (2–1–2)

3 Numerical results and discussions

This section demonstrated the precision of the presented beam theory for bending analysis of isotropic and
FG sandwich beams (FGSB) with different boundary conditions. This is done by comparing the analytical
solution with previously published results in the literature. The study considers three types of functionally
graded beams: A, B, and C.

The materials used in the combination are aluminum and alumina, each with specific material properties
as follows:

Metal (Aluminum, Al): Em � 70 GPa, νm � 0.3.
Ceramic (Alumina, Al2O3): Ec � 380 GPa, νc � 0.3.
In the following, it is noted that various types of sandwich beams are considered:

• (1–0–1) FGSB (h1 � h2 � 0): Plate consists of only two symmetrical and equally thick FG layers without
a core layer.

• (1–1–1) FGSB (h1 � −h/6, h2 � h/6): Plate is symmetrical and consists of three equally thick layers.
• (2–1–1) FGSB (h1 � 0, h2 � h/4): Plate is nonsymmetric; the core thickness equals the upper face
thickness, while it is half the lower face thickness.

• (2–1–2) FGSB (h1 � −h/10, h2 � h/10): Plate is symmetric.
• (1–2–1) FGSB (h1 � −h/4, h2 � h/4): Plate is symmetric.
• (2–2–1) FGSB (h1 � −h/10, h2 � 3h/10): Plate is nonsymmetric.
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Table 4 Convergence studies for nondimensional deflection, fundamental frequency, and critical buckling load of FG beams
(Type A) with L/h � 5 and p � 1

Boundary
conditions

Number of series (m) Vo et al. [62]

2 4 6 8 10 12 14 16

S–S 6.2820 6.2580 6.2599 6.2595 6.2596 6.2596 6.2596 6.2596 6.2594
C–F 57.0139 57.2873 57.3189 57.3267 57.3298 57.3310 57.3317 57.3323 57.3323
C–C 1.5999 1.6151 1.6171 1.6176 1.61775 1.6178 1.6179 1.6179 1.6179

Fig. 3 Distribution of nondimensional stresses across the thickness of single layer FG (S–S) beam subjected to uniform load
(Type A, L/h � 5)

Figure 2 indicates the across-the-thickness change in the modulus of elasticity (E) for p � 0.01, 0.2, 0.5,
2, 5, and 10 for three types: (a) Type A, (b) Type B (2–1–2), and (c) Type C (2–1–2).

For ease of use, the following nondimensional form is utilized: the vertical displacement of beams subjected
to a uniformly distributed load q:

w � 100
Emh3

qL4 w

(
L

2

)
for S − S and C − C beams, w � 100

Emh3

qL4 w(L) for C − F beams

σ x � h

qL
σx

(
L

2
, z

)
, τ xz � h

qL
τxz(0, z).

3.1 Convergence study

The convergence studies analyzed the nondimensional deflections of FG beams (type A) with a uniform load q
for different boundary conditions. The solutions were determined for the power law index (p � 1) and span-
to-depth ratio (L/h � 5). It was observed that the solutions of the SS and CF beams converged more quickly
than the CC beam. A sufficient number of terms (m � 16) were determined to acquire a precise solution,
and this was used consistently throughout the numerical examples. Table 4, nondimensional deflections are
compared with the results of Vo et al. [62] and good agreement is found (Fig. 3).

The research focused on studying the nondimensional deflections of FG beams (type A) with q for different
boundary conditions. The analysis involved determining the solutions for p � 1 and L/h � 5. It was noted
that the results of SS and CF beams demonstrated quicker convergence compared to the CC beam. To ensure
precision, a sufficient number of terms (m � 16) were utilized consistently across the numerical examples.
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Table 5 Comparison of the maximum vertical displacement of FG S–S beams (Type A) under a uniformly distributed load

L/h BC References Model p � 0 p � 1 p � 2 p � 5 p � 10

5 S–S Present Ritz 3.1668 6.2596 8.0689 9.8364 10.9173
Li et al. [44] HSDT 3.1657 6.2599 8.0602 9.7802 10.897
Vo et al. [62] Navier 3.1654 6.2594 8.0677 9.8281 10.938
Vo et al. [62] FE-TBT 3.1654 6.2590 8.0668 9.8271 10.937

20 S–S Present Ritz 2.8968 5.8059 7.4434 8.8203 9.6886
Li et al. [44] HSDT 2.8962 5.8049 7.4415 8.8151 9.6879
Vo et al. [62] Navier 2.8962 5.8049 7.4421 8.8182 9.6905
Vo et al. [62] FE-TBT 2.8963 5.8045 7.4412 8.8173 9.6899

Table 6 Comparison of σ x o f FG S–S beams (Type A)

L/h References Model p � 0 p � 1 p � 2 p � 5 p � 10

5 Present Ritz 3.8148 5.9053 6.9110 8.1522 9.7593
Li et al. [44] HSDT 3.8020 5.8837 6.8812 8.1030 9.7063
Vo et al. [62] Navier 3.8020 5.8836 6.8826 8.1106 9.7122
Vo et al. [62] FE-TBT 3.8040 5.8870 6.8860 8.1150 9.7170

20 Present Ritz 15.0144 23.20814 27.1032 31.8199 38.1461
Li et al. [59] HSDT 15.0130 23.20542 27.0989 31.8112 38.1372
Vo et al. [62] Navier 15.0129 23.2053 27.0991 31.8130 38.1385
Vo et al. [62] FE-TBT 15.0200 23.2200 27.1100 31.8300 38.1600

Table 4 compares nondimensional deflections with the findings of Vo et al. [62], revealing a good agreement
between the results.

3.2 FG beams (type A)

FGbeams (TypeA)under a uniformlydistributed load are studied.Thenondimensional transverse displacement
(w), axial stress (σ̄x ), and transverse shear stress (τ xz) obtained by using a recent refined hyperbolic shear
deformation theory (RHSDT) for different boundary conditions are demonstrated in Tables 5, 6, 7 and 8. The
results attained are compared with solutions reported by Li et al. [44] and Vo et al. [62]. It can be observed
that the values obtained using a recent RHSDT are in good agreement with those given by Li et al. [44] and
Vo et al. [62] for all values of p and L/h. Tables 5 and 6 indicate that the results obtained using the Ritz
method closely align with those of Li et al. [44] and Vo et al. [62], particularly with regard to normal stress
and vertical displacement. The current findings are consistent with prior studies, affirming the accuracy of
the current model. The relationship between shear strain parameters, slenderness ratio, and power law index
for several boundary conditions is depicted in Figs. 4 and 5. Evidently, these parameters are affected by the
slenderness ratio, the power law index, and boundary conditions, with a more pronounced effect observed for
the C–F beams compared to the C–C beams and S–S. As the slenderness ratio increases, the nondimensional
transverse displacement w decreases (Fig. 5).

3.3 Sandwich beams with FG core and homogeneous faces

A bending analysis of Type B sandwich beams is conducted in this example. Tables 9, 10, and 11 display
nondimensional w, σ x and τ xz . These results have been compared with the solutions provided by Vo et al.
[62], demonstrating a good agreement between the two results. The impact of the volume fraction index “p”
on the variation of the nondimensional transverse displacement is depicted in Fig. 6 for both symmetric and
nonsymmetrical square FG beams (Type B) with a side-to-thickness ratio of L/h � 5 and 20. Observing Fig. 6,
it is evident that thew increases rapidly from p� 0 to 0.5 and then continues to increase with further increments
of p. In Fig. 7a, the graph illustrates the variations in τ xz throughout the thickness of FG sandwich beams.
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Table 7 Comparison of τ xz of FG S–S beams (Type A)

L/h References Model p � 0 p � 1 p � 2 p � 5 p � 10

5 Present Ritz 0.7300 0.7300 0.6673 0.5869 0.6431
Li et al. [59] HSDT 0.7500 0.7500 0.6787 0.5790 0.6436
Vo et al. [62] Navier 0.7332 0.7332 0.6706 0.5905 0.6467
Vo et al. [62] FE-TBT 0.7335 0.7335 0.6700 0.5907 0.6477

20 Present Ritz 0.7422 0.7422 0.6793 0.5987 0.6562
Li et al. [44] HSDT 0.7500 0.7500 0.6787 0.5790 0.6436
Vo et al. [62] Navier 0.7451 0.7451 0.6824 0.6023 0.6596
Vo et al. [62] FE-TBT 0.7470 0.7470 0.6777 0.6039 0.6682

Table 8 Maximum vertical displacement of FG (C–F) and FG (C–C) beams (Type A) under a uniformly distributed load

L/h BC References Model p � 0 p � 1 p � 2 p � 5 p � 10

5 C–C Present Ritz 0.8448 1.6179 2.1118 2.7386 3.1326
Vo et al. [62] FE-TBT 0.8501 1.6179 2.1151 2.7700 3.1812

C–F Present Ritz 28.6857 57.3323 73.5830 87.7003 96.5137
Vo et al. [62] FE-TBT 28.7555 57.3323 73.6482 88.2044 97.4151

20 C–C Present Ritz 0.5902 1.1795 1.5139 1.8047 1.9856
Vo et al. [62] FE-TBT 0.5933 1.1843 1.5203 1.8155 2.0027

C–F Present Ritz 27.6738 55.5073 71.1410 84.1661 92.4152
Vo et al. [62] FE-TBT 27.7029 55.5546 71.2051 84.2712 92.5571

Fig. 4 Effects of the p on the nondimensional transverse displacement of FG beams (Type A, L/h � 5 and 20)

Unlike symmetric or homogeneous beams, the τ xz distribution for FG sandwich beams does not follow a
parabolic pattern. It is worth noting that an increase in the value of p results in a decrease in transverse shear
stress within the beam’s skin, potentially improving its resistance to face sheet debonding. Conversely, the
homogeneous beam exhibits a peak of τ xz within the same region. In Fig. 7b, the σ x is depicted as being tensile
at the top surface and compressive at the bottom surface of the material. Additionally, the homogeneous beam
is shown to experience the highest compressive stresses at its bottom surface and the lowest tensile stresses
at its top surface. Moving on to Fig. 8, the graph illustrates the relationship between the nondimensional
transverse displacement and the slenderness ratio of FG beams (Type B). It’s evident from the graph that the
nondimensional transverse displacement significantly increases as the parameter “p” increases. This can be
ascribed to the fact that E of ceramic material exceeds that of metal.
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Fig. 5 Change of the nondimensional transverse displacement with respect to the slenderness ratio of FG beams (Type A)

Table 9 Maximum vertical displacement of (1–8–1) FGSB (Type B)

L/h BC References Model p � 0 p � 1 p � 2 p � 5 p � 10

5 S–S Present Ritz 3.9872 6.7307 8.0269 9.0958 9.5146
Vo et al. [62] Navier 3.9788 6.7166 8.0083 9.0691 9.4817
Vo et al. [62] FE-TBT 3.9788 6.7166 8.0083 9.0691 9.4817

C–C Present Ritz 1.0244 1.7095 2.0783 2.5080 2.7353
Vo et al. [62] FE-TBT 1.0273 1.7079 2.0825 2.5386 2.7866

C–F Present Ritz 35.9945 60.9929 72.2614 80.0466 83.3895
Vo et al. [62] FE-TBT 36.4685 61.7373 73.2441 81.5334 84.2168

20 S–S Present Ritz 3.6930 6.2638 7.4087 8.1595 8.3628
Vo et al. [62] Navier 3.6934 6.2638 7.4085 8.1587 8.3619
Vo et al. [62] FE-TBT 3.6934 6.2638 7.4085 8.1587 8.3619

C–C Present Ritz 0.7486 1.2685 1.5030 1.6653 1.7143
Vo et al. [62] FE-TBT 0.7536 1.2759 1.5122 1.6784 1.7300

C–F Present Ritz 35.3187 59.9199 70.8409 77.8944 79.7420
Vo et al. [62] FE-TBT 35.3495 59.9664 70.9018 77.9882 79.8588

Table 10 Comparison of σ x o f (1–8–1) FG beams with S–S boundary conditions (Type B)

L/h References Model p � 0 p � 1 p � 2 p � 5 p � 10

5 Present Ritz 4.4795 6.0366 6.5312 6.9367 7.2764
Vo et al. [62] Navier 4.4636 6.0094 6.5256 6.8886 7.2229
Vo et al. [62] FE-TBT 4.4660 6.0130 6.5290 6.8930 7.2270

20 Present Ritz 17.6373 23.7289 25.7156 27.0048 28.2638
Vo et al. [62] Navier 17.6327 23.7080 25.6849 26.9694 28.2283
Vo et al. [62] FE-TBT 17.6400 23.7200 25.7000 26.9800 28.2400

3.4 Sandwich beams with FG faces and homogeneous core (type C)

The analysis concludes by examining four types of sandwich beams of Type C: symmetric (1–1–1, 1–2–1)
and nonsymmetric (2–1–1, 2–2–1). The vertical displacement for several boundary conditions is presented in
Tables 12, 13 and 14 and visualized in Figs. 9 and 10. The obtained results from the analysis of symmetric
and nonsymmetric sandwich beams are compared to the solutions provided by Vo et al. [62]. The results
show strong agreement with the predictions based on Vo et al. [62]. Specifically, the smallest displacement
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Table 11 Comparison of τ xz of (1–8–1) FG beams with S–S boundary conditions (TypeB)

L/h Reference Model p � 0 p � 1 p � 2 p � 5 p � 10

5 Present Ritz 0.7564 0.7287 0.6411 0.5280 0.5749
Vo et al. [62] Navier 0.7597 0.7318 0.6445 0.5319 0.5792
Vo et al. [62] FE-TBT 0.7611 0.7315 0.6432 0.5316 0.5798

20 Present Ritz 0.7673 0.7408 0.6526 0.5387 0.5868
Vo et al. [62] Navier 0.7702 0.7436 0.6558 0.5425 0.5910
Vo et al. [62] FE-TBT 0.7785 0.7416 0.6452 0.5400 0.5969

Fig. 6 Effects of the p on the nondimensional w of FG beams (Type B, L/h � 5 and 20)

Fig. 7 Distribution of nondimensional stresses across the thickness of (1–8–1)FG sandwich S–S beams under uniform load (Type
B, L/h � 5)
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Fig. 8 Variation of the nondimensional w with respect to the slenderness ratio of FG beams (Type B)

Table 12 Maximum vertical displacement of FGSB with S–S (Type C)

p References L/h � 5 L/h � 20

1–1–1 1–2–1 2–1–1 2–2–1 1–1–1 1–2–1 2–1–1 2–2–1

0 Present 3.1736 3.1736 3.1736 3.1736 2.8960 2.8960 2.8960 2.8960
Vo et al. [62] 3.1654 3.1654 3.1654 3.1654 2.8963 2.8963 2.8963 2.8963

1 Present 6.2788 5.4212 6.5552 5.8498 5.9391 5.0999 6.1968 5.5153
Vo et al. [62] 6.2693 5.4122 6.5450 5.8403 5.9401 5.1006 6.1977 5.5161

2 Present 8.3994 6.7671 8.9009 7.5683 8.0298 6.4265 8.4990 7.2069
Vo et al. [62] 8.3893 6.7579 8.8896 7.5583 8.0313 6.4276 8.5003 7.2080

5 Present 11.2384 8.5238 11.8377 9.8028 10.8355 8.1627 11.3765 9.4106
Vo et al. [62] 11.2274 8.5137 11.8246 9.7919 10.8376 8.1642 11.3782 9.4120

10 Present 12.1288 9.4147 13.0280 10.8601 12.1282 9.0454 12.5263 10.4510
Vo et al. [62] 12.5659 9.4050 13.0135 10.8486 12.1593 9.0471 12.5281 10.4526

is observed in the (1–2–1) sandwich beam, while the largest displacement is found in the (2–1–1) sandwich
beam. This discrepancy in displacement is attributed to the varying proportions of the ceramic phase in these
beams compared to others.

Based on the information provided in the search results, the influence of the volume fraction index p on the
nondimensional w of FG beams is shown in Fig. 9 for both symmetric and unsymmetric square FG sandwich
beams with side-to-thickness ratios L/h � 5 and 20. The key observations are:

The w increases gradually as the volume fraction index p increases for symmetric and unsymmetric
sandwich beams. Thew of the C–C FG sandwich beams is less than that of the simply supported FG sandwich
beams. In other words, as the volume fraction index p increases, indicating a higher proportion of the ceramic
phase, the transverse displacement of the FG sandwich beams increases. Additionally, the clamped–clamped
boundary condition results in lower transverse displacement than the simply supported condition. Figure 10
displays the changes in the nondimensionalw for symmetric (2–1–2) and nonsymmetric scheme (2–1–1) versus
the side-to-thickness ratio a/h for different values of the inhomogeneity parameter p. The nondimensional
transverse displacement increases as p increases. The data in Tables 15 and 16 indicate that ceramic beams
(p � 0) have the smallest of τ xz and the largest of σ x . As the power law index increases, the τ xz increases,
while the σ x decreases. The variations of these stresses across the thickness (h) are shown in Figs. 11 and 12.
There are differences between the stresses of symmetric and nonsymmetric beams. Symmetric beams shown
in Figs. 11a, b, 12a, and b exhibit the same maximum σ x (tensile/compressive) at the core layer’s top/bottom
surface. On the other hand, nonsymmetric beams demonstrate varying stress distributions. In nonsymmetric
beams, the maximum tensile axial stress is located at the core layer’s top surface. In contrast, the maximum
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Table 13 Maximum vertical displacement of FGSB with C–C (Type C)

p References L/h � 5 L/h � 20

1–1–1 1–2–1 2–1–1 2–2–1 1–1–1 1–2–1 2–1–1 2–2–1

0 Present 0.8506 0.8506 0.8506 0.8506 0.5902 0.5932 0.5932 0.5932
Vo et al. [62] 0.8501 0.8501 0.8501 0.8501 0.5933 0.5933 0.5933 0.5933

1 Present 1.4682 1.2851 1.5934 1.4315 1.2014 1.0328 1.2537 1.1164
Vo et al. [62] 1.5232 1.3372 1.5930 1.4332 1.2053 1.0365 1.2577 1.1202

2 Present 1.9111 1.5665 2.0966 1.8058 1.6208 1.2989 1.7159 1.4559
Vo et al. [62] 1.9715 1.6225 2.0969 1.7988 1.6250 1.3028 1.7203 1.4599

5 Present 2.4998 1.9302 2.7574 2.2898 2.1834 1.6470 2.2939 1.8979
Vo et al. [62] 2.5652 1.9896 2.7306 2.2700 2.1880 1.6512 2.2987 1.9021

10 Present 2.7788 2.1140 3.0304 2.5203 2.4484 1.8239 2.5255 2.1067
Vo et al. [62] 2.8468 2.1747 3.0002 2.4945 2.4532 1.8282 2.5307 2.1110

Table 14 Maximum vertical displacement of FGSB with C–F (Type C)

p References L/h � 5 L/h � 20

1–1–1 1–2–1 2–1–1 2–2–1 1–1–1 1–2–1 2–1–1 2–2–1

0 Present 28.7531 28.7531 28.7531 28.7531 28.7531 28.7531 28.7531 28.7531
Vo et al. [62] 28.7555 28.7555 28.7555 28.7555 28.7555 28.7555 28.7555 28.7555

1 Present 58.1640 50.0484 60.6949 53.5658 56.8651 48.8151 59.3307 52.7977
Vo et al. [62] 58.1959 50.0741 60.7338 54.1078 56.9009 48.8489 59.3681 52.8327

2 Present 78.4754 62.9503 82.3394 69.8584 76.9268 61.5450 81.4168 69.0285
Vo et al. [62] 78.3753 62.8813 82.9905 70.4450 76.9658 61.5809 81.4583 69.0661

5 Present 105.7203 79.8251 110.0781 91.0752 103.8525 78.2070 109.0192 90.1745
Vo et al. [62] 105.4300 79.6213 110.8230 91.7109 103.8950 78.2451 109.0660 90.2148

10 Present 118.5202 88.4020 122.1920 101.0964 116.5322 86.6786 120.0402 100.1572
Vo et al. [62] 118.1780 88.1270 122.0020 101.7590 116.5770 86.7178 120.0910 100.1990

Fig. 9 Effects of the p on the nondimensional w of FG beams (Type C, L/h � 5 and 20)
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Fig. 10 Change of the nondimensional w with respect to the side-to-thickness ratio of FG beams (Type C)

Table 15 Comparison of the axial stress σ x o of FG beams with S–S (Type C)

p References L/h � 5 L/h � 20

1–1–1 1–2–1 2–1–1 2–2–1 1–1–1 1–2–1 2–1–1 2–2–1

0 Present 3.8154 3.8154 3.8154 3.8154 15.0146 15.0146 15.0146 15.0146
Vo et al. [62] 3.8020 3.8020 3.8020 3.8020 15.0129 15.0129 15.0129 15.0129

1 Present 1.4385 1.2364 1.3878 1.2462 5.6852 4.8804 5.4963 4.9367
Vo et al. [62] 1.4349 1.2329 1.3884 1.2474 5.6850 4.8801 5.4960 4.9364

2 Present 1.9377 1.5567 1.8474 1.5862 7.6913 6.1535 7.3230 6.2892
Vo et al. [62] 1.9382 1.5527 1.8475 1.5873 7.6912 6.1532 7.3227 6.2889

5 Present 2.6120 1.9748 2.4083 2.0189 10.3835 7.8196 9.5510 8.0110
Vo et al. [62] 2.6123 1.9705 2.4069 2.0194 10.3835 7.8194 9.5508 8.0109

10 Present 2.9261 2.1869 2.6294 2.2199 11.6510 8.6666 10.4359 8.8105
Vo et al. [62] 2.9293 2.1826 2.6296 2.2199 11.6513 8.6665 10.4357 8.8104

compressive of σ x is found at the core layer’s bottom surface. Furthermore, it’s worth noting that regardless
of beam symmetry, the maximum value of τ xz occurs at the midplane of the beam, as illustrated in Fig. 12.

4 Conclusions

This study presents a recent refined hyperbolic shear deformation theory (RHSDT) for analyzing the mechan-
ical behavior of both isotropic and sandwich functionally graded material (FGM) beams. The proposed theory
incorporates a novel hyperbolic distribution of transverse shear stress and satisfies the traction-free boundary
conditions. Analytical trigonometric series solutions are derived for three types of FG beams under various
boundary conditions. Various types of symmetric and nonsymmetric sandwich beams are considered. Numer-
ical results are presented for different boundary conditions to investigate the effects of length-to-depth ratio,
boundary conditions, power law index, and skin–core–skin thickness ratios and configurations on the structural
response of the isotropic and sandwich functionally graded beams. The findings highlight the accuracy and
efficiency of the RHSDT in predicting the mechanical behavior of FGM beams. The study also underscores
the importance of considering various boundary conditions and geometric configurations in the design and
analysis of FGM beams. Future research directions, such as those outlined by Tounsi et al. [108] on the wave
propagation characteristics of functionally graded porous shells, could further enhance the understanding and
application of RHSDT in analyzing more complex structural components.
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Table 16 Comparison of the shear stress τ xz of FG beams with S–S boundary conditions (Type C)

p References L/h � 5 L/h � 20

1–1–1 1–2–1 2–1–1 2–2–1 1–1–1 1–2–1 2–1–1 2–2–1

0 Present 0.7300 0.7300 0.7300 0.7300 0.7422 0.7422 0.7422 0.7422
Vo et al. [62] 0.7332 0.7332 0.7332 0.7332 0.7451 0.7451 0.7451 0.7451

1 Present 0.8557 0.8091 0.9058 0.8449 0.8660 0.8189 0.9167 0.8551
Vo et al. [62] 0.8586 0.8123 0.9088 0.8479 0.8681 0.8215 0.9191 0.8575

2 Present 0.9225 0.8463 1.0109 0.9047 0.9328 0.8557 1.0222 0.9147
Vo et al. [62] 0.9249 0.8493 1.0136 0.9075 0.9344 0.8581 1.0242 0.9168

5 Present 1.0111 0.8898 1.1719 0.9836 1.0223 0.8995 1.1849 0.9942
Vo et al. [62] 1.0125 0.8925 1.1742 0.9859 1.0227 0.9014 1.1862 0.9957

10 Present 1.0658 0.9128 1.2854 1.0314 1.0775 0.9228 1.2997 1.0425
Vo et al. [62] 1.0665 0.9151 1.2875 1.0335 1.0773 0.9243 1.3008 1.0436

Fig. 11 Distribution of nondimensional stresses across the thickness of FG sandwich S–S beams subjected to uniform load (Type
C, L/h � 5)



F. Y. Addou et al.

Fig. 12 Distribution of nondimensional shear stresses across the thickness of FG sandwich S–S beams subjected to uniform load
(Type C, L � h � 5)
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57. Şimşek, M.: Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having
different boundary conditions. Compos. Struct. 149, 304–314 (2016). https://doi.org/10.1016/j.compstruct.2016.04.026

58. Zahedinejad, P.: Free vibration analysis of functionally graded beams resting on elastic foundation in thermal environment.
Int. J. Struct. Stab. Dyn. 16(07), 1550029 (2016). https://doi.org/10.1142/S0219455415500292

59. Wattanasakulpong, N., Chaikittiratana, A.: Flexural vibration of imperfect functionally graded beams based on Timoshenko
beam theory: Chebyshev collocation method. Meccanica 50, 1331–1342 (2015). https://doi.org/10.1007/s11012-015-0101-
7

60. Wattanasakulpong, N., Mao, Q.: Dynamic response of Timoshenko functionally graded beams with classical and non-
classical boundary conditions using Chebyshev collocation method. Compos. Struct. 119, 346–354 (2015). https://doi.org/
10.1016/j.compstruct.2014.08.031

61. Jin, C., Wang, X.: Accurate free vibration analysis of Euler functionally graded beams by the weak form quadrature element
method. Compos. Struct. 125, 41–50 (2015). https://doi.org/10.1016/j.compstruct.2015.01.039

62. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F.: Static and vibration analysis of functionally graded beams using refined shear
deformation theory. Meccanica 49, 155–168 (2014). https://doi.org/10.1007/s11012-013-9806-y

63. Pradhan, K.K., Chakraverty, S.: Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz
method. Compos. B Eng. 51, 175–184 (2013). https://doi.org/10.1016/j.compositesb.2013.02.027

64. Mohanty, S.C., Dash, R.R., Rout, T.: Static and dynamic stability analysis of a functionally graded Timoshenko beam. Int.
J. Struct. Stab. Dyn. 12(04), 1250025 (2012). https://doi.org/10.1142/S0219455412500253

65. Khalili, S.M.R., Jafari, A.A., Eftekhari, S.A.: A mixed Ritz-DQ method for forced vibration of functionally graded beams
carrying moving loads. Compos. Struct. 92(10), 2497–2511 (2010). https://doi.org/10.1016/j.compstruct.2010.02.012

https://doi.org/10.1016/j.matdes.2008.05.015
https://doi.org/10.1080/17455030.2022.2105885
https://doi.org/10.1016/j.jsv.2008.04.056
https://doi.org/10.1016/S0020-7403(03)00058-4
https://doi.org/10.3390/math9121422
https://doi.org/10.1016/j.ijengsci.2018.10.004
https://doi.org/10.1016/j.ijmecsci.2011.05.003
https://doi.org/10.1016/j.nucengdes.2010.01.011
https://doi.org/10.1007/s00419-010-0435-6
https://doi.org/10.1016/S0020-7683(02)00647-9
https://doi.org/10.1142/S1758825120500075
https://doi.org/10.1007/BF01170621
https://doi.org/10.1007/BF02736224
https://doi.org/10.1016/0020-7225(91)90165-F
https://doi.org/10.1115/1.3167719
https://doi.org/10.1016/j.compstruct.2017.02.012
https://doi.org/10.1016/j.compositesb.2016.10.039
https://doi.org/10.1016/j.compstruct.2015.12.012
https://doi.org/10.1016/j.compositesb.2016.09.024
https://doi.org/10.1016/j.compstruct.2015.11.027
https://doi.org/10.1016/j.enganabound.2016.07.010
https://doi.org/10.1016/j.compstruct.2016.04.026
https://doi.org/10.1142/S0219455415500292
https://doi.org/10.1007/s11012-015-0101-7
https://doi.org/10.1016/j.compstruct.2014.08.031
https://doi.org/10.1016/j.compstruct.2015.01.039
https://doi.org/10.1007/s11012-013-9806-y
https://doi.org/10.1016/j.compositesb.2013.02.027
https://doi.org/10.1142/S0219455412500253
https://doi.org/10.1016/j.compstruct.2010.02.012


Static behavior of FG sandwich beams under various boundary
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